metradar 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metradar/__init__.py +7 -0
- metradar/cnrad_level2.py +1326 -0
- metradar/comm_func.py +135 -0
- metradar/construct_aws_refvpr_mainprog.py +515 -0
- metradar/construct_aws_refvpr_mainprog_cams.py +310 -0
- metradar/construct_aws_refvpr_mainprog_datan3d.py +386 -0
- metradar/construct_aws_refvpr_mainprog_swan.py +306 -0
- metradar/decode_fmt_pyart.py +200 -0
- metradar/decode_pup_rose.py +1993 -0
- metradar/draw_mosaic_new.py +421 -0
- metradar/draw_radar_aws_jilin_new.py +206 -0
- metradar/draw_radar_comp_func.py +1379 -0
- metradar/exceptions.py +50 -0
- metradar/geo_transforms_pyart.py +627 -0
- metradar/get_cross_section_from_pyart.py +354 -0
- metradar/get_tlogp_from_sharppy.py +93 -0
- metradar/grid.py +281 -0
- metradar/grid_data.py +64 -0
- metradar/main_pydda.py +653 -0
- metradar/make_gif.py +24 -0
- metradar/make_mosaic_mp_archive.py +538 -0
- metradar/mosaic_merge.py +64 -0
- metradar/mosaic_quickdraw.py +338 -0
- metradar/nowcast_by_pysteps.py +219 -0
- metradar/oa_couhua.py +166 -0
- metradar/oa_dig_func.py +955 -0
- metradar/parse_pal.py +148 -0
- metradar/pgmb_io.py +169 -0
- metradar/prepare_for_radar_draw.py +197 -0
- metradar/read_new_mosaic.py +33 -0
- metradar/read_new_mosaic_func.py +231 -0
- metradar/retrieve_cmadaas.py +3126 -0
- metradar/retrieve_micaps_server.py +2061 -0
- metradar/rose_structer.py +807 -0
- metradar/trans_nc_pgmb.py +62 -0
- metradar/trans_new_mosaic_nc.py +309 -0
- metradar/trans_polor2grid_func.py +203 -0
- metradar-0.1.0.dist-info/METADATA +12 -0
- metradar-0.1.0.dist-info/RECORD +41 -0
- metradar-0.1.0.dist-info/WHEEL +5 -0
- metradar-0.1.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1993 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
'''
|
|
4
|
+
@File : decode_pup_rose.py
|
|
5
|
+
@Time : 2023/04/27 23:12:54
|
|
6
|
+
@Author : Wenjian Zhu
|
|
7
|
+
@Version : 1.0
|
|
8
|
+
@Email : kevin2075@163.com
|
|
9
|
+
'''
|
|
10
|
+
|
|
11
|
+
'''
|
|
12
|
+
解析pup_rose文件
|
|
13
|
+
|
|
14
|
+
'''
|
|
15
|
+
|
|
16
|
+
# %%
|
|
17
|
+
import os
|
|
18
|
+
import numpy as np
|
|
19
|
+
import geo_transforms_pyart as geotrans
|
|
20
|
+
from datetime import datetime,timedelta
|
|
21
|
+
# from rose_structer import _unpack_from_buf,_structure_size,SIT_HEADER_BLOCK,GENERIC_HEADER,\
|
|
22
|
+
# SITE_CONFIG,TASK_CONFIG,SCAN_CONFIG,PRODUCT_HEADER_BLOCK,PRODUCT_ID_NAME_MAP,\
|
|
23
|
+
# PRODUCT_DEPENDENT_PARAMETER,STORM_MOTION_BLOCK,STORM_FST_HIS_NUM,STORM_FST_HIS_BLOCK, \
|
|
24
|
+
# STORM_PROPERTY,STORM_TRACK_PARAM,STORM_COMPONENT
|
|
25
|
+
import xarray as xr
|
|
26
|
+
import rose_structer as rs
|
|
27
|
+
|
|
28
|
+
class READ_ROSE(object):
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def __init__(self,):
|
|
32
|
+
self.stiinfo = None
|
|
33
|
+
self.mesoinfo = None
|
|
34
|
+
self.hailinfo = None
|
|
35
|
+
self.tvsinfo = None
|
|
36
|
+
self.ssinfo = None
|
|
37
|
+
pass
|
|
38
|
+
|
|
39
|
+
# 将数字风暴序号转为字母数字组合
|
|
40
|
+
|
|
41
|
+
def get_id_char(self,id_num):
|
|
42
|
+
'''
|
|
43
|
+
该函数的算法由张持岸提供
|
|
44
|
+
'''
|
|
45
|
+
if not isinstance(id_num,int):
|
|
46
|
+
print('id_num is not int')
|
|
47
|
+
return None
|
|
48
|
+
if id_num > 0:
|
|
49
|
+
num = (id_num-1) // 26
|
|
50
|
+
tail = (id_num-1) % 26
|
|
51
|
+
newid = '%s%d'%(chr(65+tail),num)
|
|
52
|
+
else:
|
|
53
|
+
newid = '0'
|
|
54
|
+
return newid
|
|
55
|
+
|
|
56
|
+
#将数字的风向转换为文字
|
|
57
|
+
def get_wind_dir_name(self,wdir):
|
|
58
|
+
wdir_cn = '未知'
|
|
59
|
+
if not isinstance(wdir,int) and not isinstance(wdir,float):
|
|
60
|
+
return wdir_cn
|
|
61
|
+
if (wdir >= 348.76 and wdir <= 360) or (wdir >= 0 and wdir <= 11.25):
|
|
62
|
+
wdir_cn = '北'
|
|
63
|
+
elif wdir >= 11.26 and wdir <=33.75:
|
|
64
|
+
wdir_cn = '北东北'
|
|
65
|
+
elif wdir >= 33.76 and wdir <=56.25:
|
|
66
|
+
wdir_cn = '东北'
|
|
67
|
+
elif wdir >= 56.26 and wdir <=78.75:
|
|
68
|
+
wdir_cn = '东东北'
|
|
69
|
+
elif wdir >= 78.76 and wdir <101.25:
|
|
70
|
+
wdir_cn = '东'
|
|
71
|
+
elif wdir >= 101.26 and wdir <123.75:
|
|
72
|
+
wdir_cn = '东东南'
|
|
73
|
+
elif wdir >= 123.76 and wdir <146.25:
|
|
74
|
+
wdir_cn = '东南'
|
|
75
|
+
elif wdir >= 146.26 and wdir <168.75:
|
|
76
|
+
wdir_cn = '南东南'
|
|
77
|
+
elif wdir >= 168.76 and wdir <191.25:
|
|
78
|
+
wdir_cn = '南'
|
|
79
|
+
elif wdir >= 191.26 and wdir <213.75:
|
|
80
|
+
wdir_cn = '南西南'
|
|
81
|
+
elif wdir >= 213.76 and wdir <236.25:
|
|
82
|
+
wdir_cn = '西南'
|
|
83
|
+
elif wdir >= 236.26 and wdir <258.75:
|
|
84
|
+
wdir_cn = '西西南'
|
|
85
|
+
elif wdir >= 258.76 and wdir <281.25:
|
|
86
|
+
wdir_cn = '西'
|
|
87
|
+
elif wdir >= 281.26 and wdir <303.75:
|
|
88
|
+
wdir_cn = '西西北'
|
|
89
|
+
elif wdir >= 303.76 and wdir <326.25:
|
|
90
|
+
wdir_cn = '西北'
|
|
91
|
+
elif wdir >= 326.26 and wdir <348.75:
|
|
92
|
+
wdir_cn = '北西北'
|
|
93
|
+
|
|
94
|
+
return wdir_cn
|
|
95
|
+
|
|
96
|
+
def get_mda_rank(self,range_from_radar,shear_value):
|
|
97
|
+
|
|
98
|
+
'''
|
|
99
|
+
range_from_radar: km
|
|
100
|
+
shear_value : m/s
|
|
101
|
+
'''
|
|
102
|
+
knot2ms = 0.514444445
|
|
103
|
+
nmi = 1.852
|
|
104
|
+
|
|
105
|
+
#x = np.array([0,30,60,90,120,150,180,210]) # x取值
|
|
106
|
+
x = np.arange(0,250) # x取值
|
|
107
|
+
y1 = -1.*knot2ms*x/(24*nmi)+25*knot2ms
|
|
108
|
+
y2 = -1.*knot2ms*x/(18*nmi)+35*knot2ms
|
|
109
|
+
y3 = -1.*knot2ms*x/(14*nmi)+45*knot2ms
|
|
110
|
+
|
|
111
|
+
curx = int(range_from_radar)
|
|
112
|
+
if curx >=250 or curx <=0:
|
|
113
|
+
print('range from radar should be larger than 0 and less than 250km ')
|
|
114
|
+
return None
|
|
115
|
+
|
|
116
|
+
cury = shear_value
|
|
117
|
+
if cury < y1[curx]:
|
|
118
|
+
return 1
|
|
119
|
+
elif cury <y2[curx]:
|
|
120
|
+
return 2
|
|
121
|
+
elif cury < y3[curx]:
|
|
122
|
+
return 3
|
|
123
|
+
else:
|
|
124
|
+
return 4
|
|
125
|
+
|
|
126
|
+
def get_tvs_rank(self,lldv_value):
|
|
127
|
+
|
|
128
|
+
# the "19" icon indicates that LLDV was at least 190 kts.
|
|
129
|
+
|
|
130
|
+
ms2knot = 1.943844490
|
|
131
|
+
|
|
132
|
+
value = lldv_value * ms2knot
|
|
133
|
+
|
|
134
|
+
index = value // 10
|
|
135
|
+
if index > 19:
|
|
136
|
+
index=19
|
|
137
|
+
|
|
138
|
+
return index+1
|
|
139
|
+
|
|
140
|
+
# 解析风暴追踪产品
|
|
141
|
+
def read_sti(self,filepath,filename):
|
|
142
|
+
'''
|
|
143
|
+
解析sti产品文件
|
|
144
|
+
'''
|
|
145
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
146
|
+
buf = fin.read()
|
|
147
|
+
fin.close()
|
|
148
|
+
buf_length = len(buf)
|
|
149
|
+
pos = 0
|
|
150
|
+
|
|
151
|
+
# 获取通用信息头
|
|
152
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
153
|
+
# pprint(dic_gh)
|
|
154
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
155
|
+
print('源数据格式错误!')
|
|
156
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
157
|
+
|
|
158
|
+
# 获取站点信息
|
|
159
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
160
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
161
|
+
|
|
162
|
+
# 获取任务信息
|
|
163
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
164
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
165
|
+
|
|
166
|
+
# 获取扫描信息
|
|
167
|
+
cutinfo = []
|
|
168
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
169
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
170
|
+
cutinfo.append(dic_cutcfg)
|
|
171
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
172
|
+
|
|
173
|
+
# 获取产品头信息
|
|
174
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
175
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
176
|
+
|
|
177
|
+
# 获取产品参数信息
|
|
178
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
179
|
+
# pprint(prod_type)
|
|
180
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
181
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
# 获取产品数据块
|
|
185
|
+
|
|
186
|
+
#获取STI头信息
|
|
187
|
+
dic_sti_header = rs._unpack_from_buf(buf, pos, rs.SIT_HEADER_BLOCK)
|
|
188
|
+
pos = pos + rs._structure_size(rs.SIT_HEADER_BLOCK)
|
|
189
|
+
|
|
190
|
+
# 风暴追踪信息块
|
|
191
|
+
# 风暴移动信息
|
|
192
|
+
storm_motion_block=[]
|
|
193
|
+
for nn in np.arange(dic_sti_header['storm_number']):
|
|
194
|
+
storm_motion_block.append(rs._unpack_from_buf(buf, pos, rs.STORM_MOTION_BLOCK))
|
|
195
|
+
pos = pos + rs._structure_size(rs.STORM_MOTION_BLOCK)
|
|
196
|
+
|
|
197
|
+
# 风暴预报信息
|
|
198
|
+
all_storm_fst_block=[]
|
|
199
|
+
for nn in np.arange(dic_sti_header['storm_number']):
|
|
200
|
+
dic_storm_fst_num = rs._unpack_from_buf(buf, pos, rs.STORM_FST_HIS_NUM)
|
|
201
|
+
pos = pos + rs._structure_size(rs.STORM_FST_HIS_NUM)
|
|
202
|
+
|
|
203
|
+
storm_fst_block=[]
|
|
204
|
+
for nn in np.arange(dic_storm_fst_num['position_number']):
|
|
205
|
+
storm_fst_block.append(rs._unpack_from_buf(buf, pos, rs.STORM_FST_HIS_BLOCK))
|
|
206
|
+
pos = pos + rs._structure_size(rs.STORM_FST_HIS_BLOCK)
|
|
207
|
+
all_storm_fst_block.append(storm_fst_block)
|
|
208
|
+
|
|
209
|
+
# 风暴历史信息
|
|
210
|
+
all_storm_his_block=[]
|
|
211
|
+
for nn in np.arange(dic_sti_header['storm_number']):
|
|
212
|
+
dic_storm_his_num = rs._unpack_from_buf(buf, pos, rs.STORM_FST_HIS_NUM)
|
|
213
|
+
pos = pos + rs._structure_size(rs.STORM_FST_HIS_NUM)
|
|
214
|
+
|
|
215
|
+
storm_his_block=[]
|
|
216
|
+
for nn in np.arange(dic_storm_his_num['position_number']):
|
|
217
|
+
storm_his_block.append(rs._unpack_from_buf(buf, pos, rs.STORM_FST_HIS_BLOCK))
|
|
218
|
+
pos = pos + rs._structure_size(rs.STORM_FST_HIS_BLOCK)
|
|
219
|
+
all_storm_his_block.append(storm_his_block)
|
|
220
|
+
|
|
221
|
+
# 风暴属性表块数据
|
|
222
|
+
# 风暴属性
|
|
223
|
+
all_storm_prop=[]
|
|
224
|
+
for nn in np.arange(dic_sti_header['storm_number']):
|
|
225
|
+
dic_storm_prop = rs._unpack_from_buf(buf, pos, rs.STORM_PROPERTY)
|
|
226
|
+
pos = pos + rs._structure_size(rs.STORM_PROPERTY)
|
|
227
|
+
|
|
228
|
+
# 将风暴数字ID转换为字符串ID
|
|
229
|
+
dic_storm_prop['id_char'] = self.get_id_char(dic_storm_prop['id'])
|
|
230
|
+
|
|
231
|
+
# 将风暴移动信息融合进来
|
|
232
|
+
dic_storm_prop['mv_spd'] = storm_motion_block[nn]['mv_spd']
|
|
233
|
+
dic_storm_prop['mv_dir'] = storm_motion_block[nn]['mv_dir']
|
|
234
|
+
|
|
235
|
+
all_storm_prop.append(dic_storm_prop)
|
|
236
|
+
|
|
237
|
+
# 风暴构成表
|
|
238
|
+
all_storm_comp=[]
|
|
239
|
+
for nn in np.arange(dic_sti_header['storm_number']):
|
|
240
|
+
dic_storm_comp = rs._unpack_from_buf(buf, pos, rs.STORM_COMPONENT)
|
|
241
|
+
pos = pos + rs._structure_size(rs.STORM_COMPONENT)
|
|
242
|
+
all_storm_comp.append(dic_storm_comp)
|
|
243
|
+
|
|
244
|
+
# 风暴追踪适配数据
|
|
245
|
+
dic_storm_track_param = rs._unpack_from_buf(buf, pos, rs.STORM_TRACK_PARAM)
|
|
246
|
+
pos = pos + rs._structure_size(rs.STORM_TRACK_PARAM)
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
allresult={}
|
|
250
|
+
allresult['dic_gh'] = dic_gh
|
|
251
|
+
allresult['dic_scfg'] = dic_scfg
|
|
252
|
+
allresult['dic_tcfg'] = dic_tcfg
|
|
253
|
+
allresult['cutinfo'] = cutinfo
|
|
254
|
+
allresult['dic_prod_header'] = dic_prod_header
|
|
255
|
+
allresult['dic_prod_param'] = dic_prod_param
|
|
256
|
+
allresult['dic_sti_header'] = dic_sti_header
|
|
257
|
+
allresult['storm_motion_block'] = storm_motion_block
|
|
258
|
+
allresult['all_storm_fst_block'] = all_storm_fst_block
|
|
259
|
+
allresult['all_storm_his_block'] = all_storm_his_block
|
|
260
|
+
allresult['all_storm_prop'] = all_storm_prop
|
|
261
|
+
allresult['all_storm_comp'] = all_storm_comp
|
|
262
|
+
allresult['dic_storm_track_param'] = dic_storm_track_param
|
|
263
|
+
|
|
264
|
+
# 将所有的方位角和距离转换成经纬度
|
|
265
|
+
for nn in np.arange(dic_sti_header['storm_number']):
|
|
266
|
+
pass
|
|
267
|
+
x,y,z = geotrans.antenna_to_cartesian(storm_motion_block[nn]['range']/1000.0,storm_motion_block[nn]['azi'],0)
|
|
268
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
269
|
+
storm_motion_block[nn]['lon'] = clon[0]
|
|
270
|
+
storm_motion_block[nn]['lat'] = clat[0]
|
|
271
|
+
all_storm_prop[nn]['lon'] = clon[0]
|
|
272
|
+
all_storm_prop[nn]['lat'] = clat[0]
|
|
273
|
+
for blk in all_storm_fst_block[nn]:
|
|
274
|
+
x,y,z = geotrans.antenna_to_cartesian(blk['range']/1000.0,blk['azi'],0)
|
|
275
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
276
|
+
blk['lon'] = clon[0]
|
|
277
|
+
blk['lat'] = clat[0]
|
|
278
|
+
for blk in all_storm_his_block[nn]:
|
|
279
|
+
x,y,z = geotrans.antenna_to_cartesian(blk['range']/1000.0,blk['azi'],0)
|
|
280
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
281
|
+
blk['lon'] = clon[0]
|
|
282
|
+
blk['lat'] = clat[0]
|
|
283
|
+
|
|
284
|
+
pass
|
|
285
|
+
|
|
286
|
+
# 整理成track
|
|
287
|
+
alltrackinfo=[]
|
|
288
|
+
all_past_position=[] # 历史位置
|
|
289
|
+
all_fst_position=[] # 预报位置
|
|
290
|
+
all_current_position=[] # 当前位置
|
|
291
|
+
for nn in np.arange(dic_sti_header['storm_number']):
|
|
292
|
+
pass
|
|
293
|
+
|
|
294
|
+
if all_storm_prop[nn]['type']==0: # 连续风暴
|
|
295
|
+
trackinfo=[]
|
|
296
|
+
|
|
297
|
+
# 先添加历史位置
|
|
298
|
+
for blk in all_storm_his_block[nn][::-1]:
|
|
299
|
+
trackinfo.append([blk['lat'],blk['lon']])
|
|
300
|
+
all_past_position.append([blk['lat'],blk['lon']])
|
|
301
|
+
|
|
302
|
+
# 添加当前风暴位置
|
|
303
|
+
trackinfo.append([storm_motion_block[nn]['lat'],storm_motion_block[nn]['lon']])
|
|
304
|
+
all_current_position.append([storm_motion_block[nn]['lat'],storm_motion_block[nn]['lon']])
|
|
305
|
+
|
|
306
|
+
# 再添加预报位置
|
|
307
|
+
for blk in all_storm_fst_block[nn]:
|
|
308
|
+
trackinfo.append([blk['lat'],blk['lon']])
|
|
309
|
+
all_fst_position.append([blk['lat'],blk['lon']])
|
|
310
|
+
|
|
311
|
+
alltrackinfo.append(trackinfo)
|
|
312
|
+
|
|
313
|
+
# allresult={}
|
|
314
|
+
allresult['track'] = alltrackinfo
|
|
315
|
+
allresult['marker_past'] = all_past_position
|
|
316
|
+
allresult['marker_current'] = all_current_position
|
|
317
|
+
allresult['marker_fst'] = all_fst_position
|
|
318
|
+
|
|
319
|
+
self.stiinfo = allresult
|
|
320
|
+
return allresult
|
|
321
|
+
|
|
322
|
+
# 解析风暴结构文本产品
|
|
323
|
+
def read_ss(self,filepath,filename):
|
|
324
|
+
'''
|
|
325
|
+
解析ss产品文件
|
|
326
|
+
'''
|
|
327
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
328
|
+
buf = fin.read()
|
|
329
|
+
fin.close()
|
|
330
|
+
buf_length = len(buf)
|
|
331
|
+
pos = 0
|
|
332
|
+
|
|
333
|
+
# 获取通用信息头
|
|
334
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
335
|
+
# pprint(dic_gh)
|
|
336
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
337
|
+
print('源数据格式错误!')
|
|
338
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
339
|
+
|
|
340
|
+
# 获取站点信息
|
|
341
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
342
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
343
|
+
|
|
344
|
+
# 获取任务信息
|
|
345
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
346
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
347
|
+
|
|
348
|
+
# 获取扫描信息
|
|
349
|
+
cutinfo = []
|
|
350
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
351
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
352
|
+
cutinfo.append(dic_cutcfg)
|
|
353
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
354
|
+
|
|
355
|
+
# 获取产品头信息
|
|
356
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
357
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
358
|
+
|
|
359
|
+
# 获取产品参数信息
|
|
360
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
361
|
+
# pprint(prod_type)
|
|
362
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
363
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
# 获取产品数据块
|
|
367
|
+
|
|
368
|
+
#获取SS头信息
|
|
369
|
+
dic_ss_header = rs._unpack_from_buf(buf, pos, rs.SS_HEAD_BLOCK)
|
|
370
|
+
pos = pos + rs._structure_size(rs.SS_HEAD_BLOCK)
|
|
371
|
+
|
|
372
|
+
# SS结构信息
|
|
373
|
+
ss_tab=[]
|
|
374
|
+
for nn in np.arange(dic_ss_header['storm_number']):
|
|
375
|
+
tmp_tab = rs._unpack_from_buf(buf, pos, rs.SS_TAB)
|
|
376
|
+
pos = pos + rs._structure_size(rs.SS_TAB)
|
|
377
|
+
# 将风暴数字ID转换为字符串ID
|
|
378
|
+
tmp_tab['id_char'] = self.get_id_char(tmp_tab['storm_id'])
|
|
379
|
+
|
|
380
|
+
ss_tab.append(tmp_tab)
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
# 风暴趋势信息
|
|
384
|
+
cell_trend=[]
|
|
385
|
+
for nn in np.arange(dic_ss_header['storm_number']):
|
|
386
|
+
cur_cellinfo={}
|
|
387
|
+
cell_info=rs._unpack_from_buf(buf, pos, rs.CELL_TREND)
|
|
388
|
+
pos = pos + rs._structure_size(rs.CELL_TREND)
|
|
389
|
+
cur_cellinfo['head_info'] = cell_info
|
|
390
|
+
# 历史体扫信息
|
|
391
|
+
tmpcell_his=[]
|
|
392
|
+
for im in np.arange(cell_info['his_vol_num']):
|
|
393
|
+
tmpcell_his.append(rs._unpack_from_buf(buf, pos, rs.HIS_VOL))
|
|
394
|
+
pos = pos + rs._structure_size(rs.HIS_VOL)
|
|
395
|
+
cur_cellinfo['cell_info'] = tmpcell_his
|
|
396
|
+
|
|
397
|
+
cell_trend.append(cur_cellinfo)
|
|
398
|
+
|
|
399
|
+
# 风暴段适配数据
|
|
400
|
+
seg_adapt = rs._unpack_from_buf(buf, pos, rs.SEG_ADAPT)
|
|
401
|
+
pos = pos + rs._structure_size(rs.SEG_ADAPT)
|
|
402
|
+
|
|
403
|
+
# 风暴质心适配数据
|
|
404
|
+
centroid_adapt = rs._unpack_from_buf(buf, pos, rs.CENTROIDS_ADAPT)
|
|
405
|
+
pos = pos + rs._structure_size(rs.CENTROIDS_ADAPT)
|
|
406
|
+
|
|
407
|
+
# 风暴追踪适配数据
|
|
408
|
+
storm_track_adapt = rs._unpack_from_buf(buf, pos, rs.STORM_TRACK_PARAM)
|
|
409
|
+
pos = pos + rs._structure_size(rs.STORM_TRACK_PARAM)
|
|
410
|
+
|
|
411
|
+
|
|
412
|
+
# 将所有的方位角和距离转换成经纬度
|
|
413
|
+
for nn in np.arange(dic_ss_header['storm_number']):
|
|
414
|
+
pass
|
|
415
|
+
x,y,z = geotrans.antenna_to_cartesian(ss_tab[nn]['range']/1000.0,ss_tab[nn]['azi'],0)
|
|
416
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
417
|
+
ss_tab[nn]['lon'] = clon[0]
|
|
418
|
+
ss_tab[nn]['lat'] = clat[0]
|
|
419
|
+
|
|
420
|
+
|
|
421
|
+
allresult={}
|
|
422
|
+
allresult['ss'] = ss_tab
|
|
423
|
+
|
|
424
|
+
self.ssinfo = allresult
|
|
425
|
+
return allresult
|
|
426
|
+
|
|
427
|
+
# 解析中气旋产品
|
|
428
|
+
def read_mda(self,filepath,filename):
|
|
429
|
+
'''
|
|
430
|
+
解析meso产品文件
|
|
431
|
+
'''
|
|
432
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
433
|
+
buf = fin.read()
|
|
434
|
+
fin.close()
|
|
435
|
+
buf_length = len(buf)
|
|
436
|
+
pos = 0
|
|
437
|
+
|
|
438
|
+
# 获取通用信息头
|
|
439
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
440
|
+
# pprint(dic_gh)
|
|
441
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
442
|
+
print('源数据格式错误!')
|
|
443
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
444
|
+
|
|
445
|
+
# 获取站点信息
|
|
446
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
447
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
448
|
+
|
|
449
|
+
# 获取任务信息
|
|
450
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
451
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
452
|
+
|
|
453
|
+
# 获取扫描信息
|
|
454
|
+
cutinfo = []
|
|
455
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
456
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
457
|
+
cutinfo.append(dic_cutcfg)
|
|
458
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
459
|
+
|
|
460
|
+
# 获取产品头信息
|
|
461
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
462
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
463
|
+
|
|
464
|
+
# 获取产品参数信息
|
|
465
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
466
|
+
# pprint(prod_type)
|
|
467
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
468
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
469
|
+
|
|
470
|
+
# 获取产品数据块
|
|
471
|
+
|
|
472
|
+
#获取中气旋头信息
|
|
473
|
+
dic_meso_header = rs._unpack_from_buf(buf, pos, rs.MESO_HEADER_BLOCK)
|
|
474
|
+
pos = pos + rs._structure_size(rs.MESO_HEADER_BLOCK)
|
|
475
|
+
|
|
476
|
+
# 中气旋表块
|
|
477
|
+
meso_tab=[]
|
|
478
|
+
for nn in np.arange(dic_meso_header['meso_number']):
|
|
479
|
+
meso_tab.append(rs._unpack_from_buf(buf, pos, rs.MESO_TABLE))
|
|
480
|
+
pos = pos + rs._structure_size(rs.MESO_TABLE)
|
|
481
|
+
|
|
482
|
+
# 中气旋特征表
|
|
483
|
+
meso_feature_tab=[]
|
|
484
|
+
for nn in np.arange(dic_meso_header['feature_number']):
|
|
485
|
+
meso_feature_tab.append(rs._unpack_from_buf(buf, pos, rs.MESO_FEATURE_TAB))
|
|
486
|
+
pos = pos + rs._structure_size(rs.MESO_FEATURE_TAB)
|
|
487
|
+
|
|
488
|
+
# 中气旋适配数据
|
|
489
|
+
dic_meso_adapt_param = rs._unpack_from_buf(buf, pos, rs.MESO_ADAPTATION_DATA)
|
|
490
|
+
pos = pos + rs._structure_size(rs.MESO_ADAPTATION_DATA)
|
|
491
|
+
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
for nn in np.arange(dic_meso_header['meso_number']):
|
|
495
|
+
# 将所有的方位角和距离转换成经纬度
|
|
496
|
+
x,y,z = geotrans.antenna_to_cartesian(meso_tab[nn]['range']/1000.0,meso_tab[nn]['azi'],0)
|
|
497
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
498
|
+
meso_tab[nn]['lon'] = clon[0]
|
|
499
|
+
meso_tab[nn]['lat'] = clat[0]
|
|
500
|
+
|
|
501
|
+
# 将数字序号转换成字母数字组合
|
|
502
|
+
meso_tab[nn]['storm_id_char'] = self.get_id_char(meso_tab[nn]['storm_id'])
|
|
503
|
+
meso_tab[nn]['feature_id_char'] = self.get_id_char(meso_tab[nn]['feature_id'])
|
|
504
|
+
meso_tab[nn]['feature_type'] = meso_feature_tab[nn]['feature_type']
|
|
505
|
+
|
|
506
|
+
for nn in np.arange(dic_meso_header['feature_number']):
|
|
507
|
+
# 将所有的方位角和距离转换成经纬度
|
|
508
|
+
x,y,z = geotrans.antenna_to_cartesian(meso_feature_tab[nn]['range']/1000.0,meso_feature_tab[nn]['azi'],0)
|
|
509
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
510
|
+
meso_feature_tab[nn]['lon'] = clon[0]
|
|
511
|
+
meso_feature_tab[nn]['lat'] = clat[0]
|
|
512
|
+
|
|
513
|
+
# 将数字序号转换成字母数字组合
|
|
514
|
+
meso_feature_tab[nn]['storm_id_char'] = self.get_id_char(meso_feature_tab[nn]['storm_id'])
|
|
515
|
+
meso_feature_tab[nn]['feature_id_char'] = self.get_id_char(meso_feature_tab[nn]['feature_id'])
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
allresult={}
|
|
519
|
+
allresult['meso'] = meso_tab
|
|
520
|
+
allresult['feature'] = meso_feature_tab
|
|
521
|
+
|
|
522
|
+
self.mesoinfo = allresult
|
|
523
|
+
return allresult
|
|
524
|
+
|
|
525
|
+
# 解析龙卷涡旋特征产品
|
|
526
|
+
def read_tvs(self,filepath,filename):
|
|
527
|
+
'''
|
|
528
|
+
解析tvs产品文件
|
|
529
|
+
'''
|
|
530
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
531
|
+
buf = fin.read()
|
|
532
|
+
fin.close()
|
|
533
|
+
buf_length = len(buf)
|
|
534
|
+
pos = 0
|
|
535
|
+
|
|
536
|
+
# 获取通用信息头
|
|
537
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
538
|
+
# pprint(dic_gh)
|
|
539
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
540
|
+
print('源数据格式错误!')
|
|
541
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
542
|
+
|
|
543
|
+
# 获取站点信息
|
|
544
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
545
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
546
|
+
|
|
547
|
+
# 获取任务信息
|
|
548
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
549
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
550
|
+
|
|
551
|
+
# 获取扫描信息
|
|
552
|
+
cutinfo = []
|
|
553
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
554
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
555
|
+
cutinfo.append(dic_cutcfg)
|
|
556
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
557
|
+
|
|
558
|
+
# 获取产品头信息
|
|
559
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
560
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
561
|
+
|
|
562
|
+
# 获取产品参数信息
|
|
563
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
564
|
+
# pprint(prod_type)
|
|
565
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
566
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
567
|
+
|
|
568
|
+
# 获取产品数据块
|
|
569
|
+
|
|
570
|
+
#获取TVS头信息
|
|
571
|
+
dic_tvs_header = rs._unpack_from_buf(buf, pos, rs.TVS_HEADER_BLOCK)
|
|
572
|
+
pos = pos + rs._structure_size(rs.TVS_HEADER_BLOCK)
|
|
573
|
+
|
|
574
|
+
# TVS表块
|
|
575
|
+
tvs_tab=[]
|
|
576
|
+
for nn in np.arange(dic_tvs_header['tvs_number']):
|
|
577
|
+
tvs_tab.append(rs._unpack_from_buf(buf, pos, rs.TVS_TAB))
|
|
578
|
+
pos = pos + rs._structure_size(rs.TVS_TAB)
|
|
579
|
+
|
|
580
|
+
# TVS适配数据
|
|
581
|
+
dic_tvs_adapt_param = rs._unpack_from_buf(buf, pos, rs.TVS_ADAPTATION_DATA)
|
|
582
|
+
pos = pos + rs._structure_size(rs.TVS_ADAPTATION_DATA)
|
|
583
|
+
|
|
584
|
+
|
|
585
|
+
# 将所有的方位角和距离转换成经纬度
|
|
586
|
+
for nn in np.arange(dic_tvs_header['tvs_number']):
|
|
587
|
+
pass
|
|
588
|
+
x,y,z = geotrans.antenna_to_cartesian(tvs_tab[nn]['range']/1000.0,tvs_tab[nn]['azi'],0)
|
|
589
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
590
|
+
tvs_tab[nn]['lon'] = clon[0]
|
|
591
|
+
tvs_tab[nn]['lat'] = clat[0]
|
|
592
|
+
|
|
593
|
+
|
|
594
|
+
# 将数字序号转换成字母数字组合
|
|
595
|
+
tvs_tab[nn]['storm_id_char'] = self.get_id_char(tvs_tab[nn]['storm_id'])
|
|
596
|
+
|
|
597
|
+
|
|
598
|
+
|
|
599
|
+
allresult={}
|
|
600
|
+
allresult['tvs'] = tvs_tab
|
|
601
|
+
|
|
602
|
+
self.tvsinfo = allresult
|
|
603
|
+
return allresult
|
|
604
|
+
|
|
605
|
+
# 解析ppi产品文件
|
|
606
|
+
def read_ppi(self,filepath,filename):
|
|
607
|
+
'''
|
|
608
|
+
解析ppi产品文件
|
|
609
|
+
'''
|
|
610
|
+
pass
|
|
611
|
+
|
|
612
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
613
|
+
buf = fin.read()
|
|
614
|
+
fin.close()
|
|
615
|
+
buf_length = len(buf)
|
|
616
|
+
pos = 0
|
|
617
|
+
|
|
618
|
+
# 获取通用信息头
|
|
619
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
620
|
+
# pprint(dic_gh)
|
|
621
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
622
|
+
print('源数据格式错误!')
|
|
623
|
+
return None
|
|
624
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
625
|
+
|
|
626
|
+
# 获取站点信息
|
|
627
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
628
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
629
|
+
|
|
630
|
+
# 获取任务信息
|
|
631
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
632
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
633
|
+
|
|
634
|
+
# 获取扫描信息
|
|
635
|
+
cutinfo = []
|
|
636
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
637
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
638
|
+
cutinfo.append(dic_cutcfg)
|
|
639
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
640
|
+
|
|
641
|
+
# 获取产品头信息
|
|
642
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
643
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
644
|
+
|
|
645
|
+
# 获取产品参数信息
|
|
646
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
647
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
648
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
649
|
+
|
|
650
|
+
# 读取产品径向头信息
|
|
651
|
+
dic_radial_header = rs._unpack_from_buf(buf, pos, rs.RADIAL_HEADER)
|
|
652
|
+
pos = pos + rs._structure_size(rs.RADIAL_HEADER)
|
|
653
|
+
|
|
654
|
+
print('数据类型: %d-%s'%(dic_radial_header['data_type'],rs.PRODUCT_DATA_TYPE[dic_radial_header['data_type']]))
|
|
655
|
+
# Value=(Code-Offset)/Scale
|
|
656
|
+
# 读取径向数据RADIAL_DATA
|
|
657
|
+
data=[]
|
|
658
|
+
data_azi=[]
|
|
659
|
+
binnum = None
|
|
660
|
+
for nn in np.arange(dic_radial_header['radial_number']):
|
|
661
|
+
radial_data_info = rs._unpack_from_buf(buf, pos, rs.RADIAL_DATA)
|
|
662
|
+
pos = pos + rs._structure_size(rs.RADIAL_DATA)
|
|
663
|
+
binnum = radial_data_info['num_bins']
|
|
664
|
+
rdata = buf[pos:pos+dic_radial_header['bin_length']*radial_data_info['num_bins']]
|
|
665
|
+
data.extend(rdata)
|
|
666
|
+
pos = pos + dic_radial_header['bin_length']*radial_data_info['num_bins']
|
|
667
|
+
# print(radial_data_info['start_azi'])
|
|
668
|
+
data_azi.append(radial_data_info['start_azi'])
|
|
669
|
+
pass
|
|
670
|
+
data = np.array(data)
|
|
671
|
+
|
|
672
|
+
|
|
673
|
+
# data = data.astype('uint8')
|
|
674
|
+
data = data.astype('float32')
|
|
675
|
+
nx = dic_radial_header['radial_number']
|
|
676
|
+
ny = binnum
|
|
677
|
+
print(nx,ny)
|
|
678
|
+
# 将data转成numpy数组
|
|
679
|
+
data = data.reshape((nx,ny))
|
|
680
|
+
|
|
681
|
+
# decode data
|
|
682
|
+
# ppiarray = (ppiarray - dic_radial_header['offset']) / dic_radial_header['scale']
|
|
683
|
+
|
|
684
|
+
|
|
685
|
+
# 将方位角坐标转换成经纬度坐标
|
|
686
|
+
sweep_azimuths =np.array(data_azi)
|
|
687
|
+
ele = dic_prod_param['ele']
|
|
688
|
+
range_reso = dic_radial_header['resolution']
|
|
689
|
+
# 输出的距离库只保留一半
|
|
690
|
+
ngates = int(ny//2*2) #//2*2
|
|
691
|
+
grid_x = np.arange(-1*ngates,ngates+1,1)
|
|
692
|
+
grid_y = np.arange(-1*ngates,ngates+1,1)
|
|
693
|
+
total_gates = len(grid_x)
|
|
694
|
+
|
|
695
|
+
aa = np.meshgrid(grid_x,grid_y)
|
|
696
|
+
azi_grid = np.arctan2(aa[0],aa[1])*180/np.pi
|
|
697
|
+
azi_grid[azi_grid<0]+=360
|
|
698
|
+
|
|
699
|
+
azi_reso = 360/len(sweep_azimuths)
|
|
700
|
+
|
|
701
|
+
# 求方位角索引
|
|
702
|
+
new_azi = azi_grid.flatten()
|
|
703
|
+
t = new_azi-sweep_azimuths[0]
|
|
704
|
+
t[t<0]+=360
|
|
705
|
+
ray_number = np.round(t/azi_reso,0).astype(int)
|
|
706
|
+
ray_number[ray_number==len(sweep_azimuths)]=0
|
|
707
|
+
ray_number = np.reshape(ray_number,(total_gates,total_gates))
|
|
708
|
+
|
|
709
|
+
# 求距离索引
|
|
710
|
+
dis_grid = np.sqrt(aa[0]**2 + aa[1]**2)
|
|
711
|
+
dis_grid = np.round(dis_grid.flatten(),0).astype(int)
|
|
712
|
+
dis_grid = np.reshape(dis_grid,(total_gates,total_gates))
|
|
713
|
+
|
|
714
|
+
# 对数据进行截断,在径向方向上
|
|
715
|
+
data = data[:,0:ngates]
|
|
716
|
+
|
|
717
|
+
# data_grid = np.zeros((total_gates,total_gates),dtype='uint8') + 255
|
|
718
|
+
data_grid = np.zeros((total_gates,total_gates),dtype='float32')
|
|
719
|
+
new_data = data_grid.flatten()
|
|
720
|
+
new_spdata = data.flatten()
|
|
721
|
+
|
|
722
|
+
pos_out = [i+j*total_gates for i in range(total_gates) for j in range(total_gates) if dis_grid[i,j] < ngates]
|
|
723
|
+
d_out = [rn*ngates+dg for rn,dg in zip(ray_number.flatten(),dis_grid.flatten()) if dg < ngates]
|
|
724
|
+
|
|
725
|
+
new_data[pos_out]=new_spdata[d_out]
|
|
726
|
+
|
|
727
|
+
data_grid = np.reshape(new_data,(total_gates,total_gates))
|
|
728
|
+
|
|
729
|
+
|
|
730
|
+
if total_gates % 2 == 0:
|
|
731
|
+
out_grid = np.arange(int(-total_gates/2),int(total_gates/2))
|
|
732
|
+
else:
|
|
733
|
+
out_grid = np.arange(int(-(total_gates-1)/2),int((total_gates-1)/2)+1)
|
|
734
|
+
# 将ougrid转换为经纬度坐标
|
|
735
|
+
out_lon,out_lat = geotrans.cartesian_to_geographic_aeqd(out_grid*range_reso,out_grid*range_reso,dic_scfg['lon'],dic_scfg['lat'])
|
|
736
|
+
outdata = (data_grid - dic_radial_header['offset']) / dic_radial_header['scale']
|
|
737
|
+
minvalue = (dic_radial_header['min_value'] - dic_radial_header['offset']) / dic_radial_header['scale']
|
|
738
|
+
maxvalue = (dic_radial_header['max_value'] - dic_radial_header['offset']) / dic_radial_header['scale']
|
|
739
|
+
# outdata[outdata > 90] = -32
|
|
740
|
+
# outdata[outdata < -10] = -32
|
|
741
|
+
outdata[outdata >= maxvalue] = -9999
|
|
742
|
+
outdata[outdata <= minvalue] = -9999
|
|
743
|
+
varname = 'ref'
|
|
744
|
+
units = 'dBZ'
|
|
745
|
+
if dic_radial_header['data_type'] == 7:
|
|
746
|
+
varname = 'zdr'
|
|
747
|
+
units = 'dB'
|
|
748
|
+
elif dic_radial_header['data_type'] == 9:
|
|
749
|
+
varname = 'cc'
|
|
750
|
+
units = '%'
|
|
751
|
+
elif dic_radial_header['data_type'] == 11:
|
|
752
|
+
varname = 'kdp'
|
|
753
|
+
units = 'deg/km'
|
|
754
|
+
pass
|
|
755
|
+
data = xr.DataArray(np.array(outdata.transpose()),coords=[out_lat,out_lon],dims=['lat','lon'],name=varname)
|
|
756
|
+
data.attrs['units'] = units
|
|
757
|
+
# data.attrs['standard_name'] = 'equivalent_reflectivity_factor'
|
|
758
|
+
# data.attrs['long_name'] = 'equivalent_reflectivity_factor'
|
|
759
|
+
data.attrs['varname'] = varname
|
|
760
|
+
data.attrs['radar_lat'] = dic_scfg['lat']
|
|
761
|
+
data.attrs['radar_lon'] = dic_scfg['lon']
|
|
762
|
+
data.attrs['ana_height'] = dic_scfg['ana_height']
|
|
763
|
+
data.attrs['grid_num'] = total_gates
|
|
764
|
+
data.attrs['grid_reso'] = range_reso
|
|
765
|
+
data.attrs['elevation'] = ele
|
|
766
|
+
data.attrs['obs_range'] = int(range_reso * (total_gates-1)/2)
|
|
767
|
+
data.attrs['distance_unit'] = 'meter'
|
|
768
|
+
data.attrs['missing_value'] = -9999
|
|
769
|
+
data.attrs['datatype'] = 'float32'
|
|
770
|
+
# data.attrs['decode_method'] = 'dbz = (data - %d) / %d'%(dic_radial_header['offset'],dic_radial_header['scale'])
|
|
771
|
+
data.attrs['task_name'] = dic_tcfg['task_name'].decode('utf-8').strip('\x00')
|
|
772
|
+
data.attrs['radar_type'] = dic_scfg['radar_type']
|
|
773
|
+
data.attrs['scan_time'] = datetime.fromtimestamp(dic_tcfg['scan_stime']).strftime('%Y-%m-%d %H:%M:%S')
|
|
774
|
+
try:
|
|
775
|
+
data.attrs['site_name'] = dic_scfg['site_name'].decode('utf-8').strip('\x00')
|
|
776
|
+
except:
|
|
777
|
+
data.attrs['site_name'] = 'Unknown'
|
|
778
|
+
data.attrs['site_id'] = dic_scfg['site_code'].decode('utf-8').strip('\x00')
|
|
779
|
+
# data.attrs['offset'] = dic_radial_header['offset']
|
|
780
|
+
# data.attrs['scale'] = dic_radial_header['scale']
|
|
781
|
+
|
|
782
|
+
return data
|
|
783
|
+
|
|
784
|
+
# 解析cr产品文件,栅格数据
|
|
785
|
+
def read_cr(self,filepath,filename):
|
|
786
|
+
'''
|
|
787
|
+
解析cr产品文件
|
|
788
|
+
'''
|
|
789
|
+
pass
|
|
790
|
+
|
|
791
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
792
|
+
buf = fin.read()
|
|
793
|
+
fin.close()
|
|
794
|
+
buf_length = len(buf)
|
|
795
|
+
pos = 0
|
|
796
|
+
|
|
797
|
+
# 获取通用信息头
|
|
798
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
799
|
+
# pprint(dic_gh)
|
|
800
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
801
|
+
print('源数据格式错误!')
|
|
802
|
+
return None
|
|
803
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
804
|
+
|
|
805
|
+
# 获取站点信息
|
|
806
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
807
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
808
|
+
|
|
809
|
+
# 获取任务信息
|
|
810
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
811
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
812
|
+
|
|
813
|
+
# 获取扫描信息
|
|
814
|
+
cutinfo = []
|
|
815
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
816
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
817
|
+
cutinfo.append(dic_cutcfg)
|
|
818
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
819
|
+
|
|
820
|
+
# 获取产品头信息
|
|
821
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
822
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
823
|
+
|
|
824
|
+
# 获取产品参数信息
|
|
825
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
826
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
827
|
+
print('产品类型: %d-%s'%(dic_prod_header['product_type'],prod_type))
|
|
828
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
829
|
+
|
|
830
|
+
# 读取产品径向头信息
|
|
831
|
+
dic_grid_header = rs._unpack_from_buf(buf, pos, rs.GRID_HEADER)
|
|
832
|
+
pos = pos + rs._structure_size(rs.GRID_HEADER)
|
|
833
|
+
print('数据类型: %d-%s'%(dic_grid_header['data_type'],rs.PRODUCT_DATA_TYPE[dic_grid_header['data_type']]))
|
|
834
|
+
# Value=(Code-Offset)/Scale
|
|
835
|
+
# 读取栅格数据GRID_DATA
|
|
836
|
+
|
|
837
|
+
if dic_grid_header['bin_length'] == 1:
|
|
838
|
+
data1 = np.frombuffer(buf[pos:pos + dic_grid_header['row_side_len']*dic_grid_header['col_side_len']*dic_grid_header['bin_length']], '>u1')
|
|
839
|
+
data1 = data1.astype('uint8')
|
|
840
|
+
data2 = np.reshape(data1,(dic_grid_header['row_side_len'],dic_grid_header['col_side_len']))
|
|
841
|
+
# data2[data2<dic_grid_header['min_value']]=255
|
|
842
|
+
# 根据offset和scale进行解码
|
|
843
|
+
data2 = (data2 - dic_grid_header['offset']) / dic_grid_header['scale']
|
|
844
|
+
data2[data2 > 90] = -32
|
|
845
|
+
data2[data2 < -10] = -32
|
|
846
|
+
nlat = dic_grid_header['row_side_len']
|
|
847
|
+
nlon = dic_grid_header['col_side_len']
|
|
848
|
+
# print(nlat,nlon)
|
|
849
|
+
lat_reso = dic_grid_header['row_resolution']
|
|
850
|
+
lon_reso = dic_grid_header['col_resolution']
|
|
851
|
+
|
|
852
|
+
# 将data由list转成二维numpy数组
|
|
853
|
+
|
|
854
|
+
|
|
855
|
+
# 将直角坐标转换成经纬度坐标
|
|
856
|
+
|
|
857
|
+
if nlat % 2 == 0:
|
|
858
|
+
out_grid_lat = np.arange(int(-nlat/2),int(nlat/2))
|
|
859
|
+
else:
|
|
860
|
+
out_grid_lat = np.arange(int(-(nlat-1)/2),int((nlat-1)/2)+1)
|
|
861
|
+
|
|
862
|
+
if nlon % 2 == 0:
|
|
863
|
+
out_grid_lon = np.arange(int(-nlon/2),int(nlon/2))
|
|
864
|
+
else:
|
|
865
|
+
out_grid_lon = np.arange(int(-(nlon-1)/2),int((nlon-1)/2)+1)
|
|
866
|
+
|
|
867
|
+
# 将ougrid转换为经纬度坐标
|
|
868
|
+
out_lon,out_lat = geotrans.cartesian_to_geographic_aeqd(out_grid_lat*lat_reso,out_grid_lon*lon_reso,dic_scfg['lon'],dic_scfg['lat'])
|
|
869
|
+
|
|
870
|
+
data = xr.DataArray(np.flipud(data2),coords=[out_lat,out_lon],dims=['lat','lon'],name='cref')
|
|
871
|
+
data.attrs['units'] = 'dBZ'
|
|
872
|
+
data.attrs['standard_name'] = 'composite_reflectivity_factor'
|
|
873
|
+
data.attrs['long_name'] = 'composite_reflectivity_factor'
|
|
874
|
+
data.attrs['radar_lat'] = dic_scfg['lat']
|
|
875
|
+
data.attrs['radar_lon'] = dic_scfg['lon']
|
|
876
|
+
data.attrs['ana_height'] = dic_scfg['ana_height']
|
|
877
|
+
data.attrs['lat_grid_num'] = nlat
|
|
878
|
+
data.attrs['lon_grid_num'] = nlon
|
|
879
|
+
data.attrs['lat_grid_reso'] = dic_grid_header['row_resolution']
|
|
880
|
+
data.attrs['lon_grid_reso'] = dic_grid_header['col_resolution']
|
|
881
|
+
data.attrs['distance_unit'] = 'meter'
|
|
882
|
+
data.attrs['missing_value'] = -32
|
|
883
|
+
data.attrs['datatype'] = 'float32'
|
|
884
|
+
# data.attrs['decode_method'] = 'dbz = (data - %d) / %d'%(dic_grid_header['offset'],dic_grid_header['scale'])
|
|
885
|
+
data.attrs['task_name'] = dic_tcfg['task_name'].decode('utf-8').strip('\x00')
|
|
886
|
+
data.attrs['radar_type'] = dic_scfg['radar_type']
|
|
887
|
+
data.attrs['scan_time'] = datetime.fromtimestamp(dic_tcfg['scan_stime']).strftime('%Y-%m-%d %H:%M:%S')
|
|
888
|
+
try:
|
|
889
|
+
data.attrs['site_name'] = dic_scfg['site_name'].decode('utf-8').strip('\x00')
|
|
890
|
+
except:
|
|
891
|
+
data.attrs['site_name'] = 'Unknown'
|
|
892
|
+
data.attrs['site_id'] = dic_scfg['site_code'].decode('utf-8').strip('\x00')
|
|
893
|
+
|
|
894
|
+
return data
|
|
895
|
+
|
|
896
|
+
# 解析vil产品文件,栅格数据
|
|
897
|
+
def read_vil(self,filepath,filename):
|
|
898
|
+
'''
|
|
899
|
+
解析vil产品文件
|
|
900
|
+
'''
|
|
901
|
+
pass
|
|
902
|
+
|
|
903
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
904
|
+
buf = fin.read()
|
|
905
|
+
fin.close()
|
|
906
|
+
buf_length = len(buf)
|
|
907
|
+
pos = 0
|
|
908
|
+
|
|
909
|
+
# 获取通用信息头
|
|
910
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
911
|
+
# pprint(dic_gh)
|
|
912
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
913
|
+
print('源数据格式错误!')
|
|
914
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
915
|
+
|
|
916
|
+
# 获取站点信息
|
|
917
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
918
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
919
|
+
|
|
920
|
+
# 获取任务信息
|
|
921
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
922
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
923
|
+
|
|
924
|
+
# 获取扫描信息
|
|
925
|
+
cutinfo = []
|
|
926
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
927
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
928
|
+
cutinfo.append(dic_cutcfg)
|
|
929
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
930
|
+
|
|
931
|
+
# 获取产品头信息
|
|
932
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
933
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
934
|
+
|
|
935
|
+
# 获取产品参数信息
|
|
936
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
937
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
938
|
+
print('产品类型: %d-%s'%(dic_prod_header['product_type'],prod_type))
|
|
939
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
940
|
+
|
|
941
|
+
# 读取产品径向头信息
|
|
942
|
+
dic_grid_header = rs._unpack_from_buf(buf, pos, rs.GRID_HEADER)
|
|
943
|
+
pos = pos + rs._structure_size(rs.GRID_HEADER)
|
|
944
|
+
print('数据类型: %d-%s'%(dic_grid_header['data_type'],rs.PRODUCT_DATA_TYPE[dic_grid_header['data_type']]))
|
|
945
|
+
# Value=(Code-Offset)/Scale
|
|
946
|
+
# 读取栅格数据GRID_DATA
|
|
947
|
+
|
|
948
|
+
if dic_grid_header['bin_length'] == 1:
|
|
949
|
+
data1 = np.frombuffer(buf[pos:pos + dic_grid_header['row_side_len']*dic_grid_header['col_side_len']*dic_grid_header['bin_length']], '>u1')
|
|
950
|
+
data1 = data1.astype('uint8')
|
|
951
|
+
data2 = np.reshape(data1,(dic_grid_header['row_side_len'],dic_grid_header['col_side_len']))
|
|
952
|
+
# data2[data2<dic_grid_header['min_value']]=255
|
|
953
|
+
# 根据offset和scale进行解码
|
|
954
|
+
data2 = (data2 - dic_grid_header['offset']) / dic_grid_header['scale']
|
|
955
|
+
data2[data2 > 120] = 0
|
|
956
|
+
data2[data2 < 0] = 0
|
|
957
|
+
nlat = dic_grid_header['row_side_len']
|
|
958
|
+
nlon = dic_grid_header['col_side_len']
|
|
959
|
+
# print(nlat,nlon)
|
|
960
|
+
lat_reso = dic_grid_header['row_resolution']
|
|
961
|
+
lon_reso = dic_grid_header['col_resolution']
|
|
962
|
+
|
|
963
|
+
# 将data由list转成二维numpy数组
|
|
964
|
+
|
|
965
|
+
|
|
966
|
+
# 将直角坐标转换成经纬度坐标
|
|
967
|
+
|
|
968
|
+
if nlat % 2 == 0:
|
|
969
|
+
out_grid_lat = np.arange(int(-nlat/2),int(nlat/2))
|
|
970
|
+
else:
|
|
971
|
+
out_grid_lat = np.arange(int(-(nlat-1)/2),int((nlat-1)/2)+1)
|
|
972
|
+
|
|
973
|
+
if nlon % 2 == 0:
|
|
974
|
+
out_grid_lon = np.arange(int(-nlon/2),int(nlon/2))
|
|
975
|
+
else:
|
|
976
|
+
out_grid_lon = np.arange(int(-(nlon-1)/2),int((nlon-1)/2)+1)
|
|
977
|
+
|
|
978
|
+
# 将ougrid转换为经纬度坐标
|
|
979
|
+
out_lon,out_lat = geotrans.cartesian_to_geographic_aeqd(out_grid_lat*lat_reso,out_grid_lon*lon_reso,dic_scfg['lon'],dic_scfg['lat'])
|
|
980
|
+
|
|
981
|
+
data = xr.DataArray(np.flipud(data2),coords=[out_lat,out_lon],dims=['lat','lon'],name='vil')
|
|
982
|
+
data.attrs['units'] = 'kg/m^2'
|
|
983
|
+
data.attrs['standard_name'] = 'vertically_integrated_liquid_water'
|
|
984
|
+
data.attrs['long_name'] = 'vertically_integrated_liquid_water'
|
|
985
|
+
data.attrs['radar_lat'] = dic_scfg['lat']
|
|
986
|
+
data.attrs['radar_lon'] = dic_scfg['lon']
|
|
987
|
+
data.attrs['ana_height'] = dic_scfg['ana_height']
|
|
988
|
+
data.attrs['lat_grid_num'] = nlat
|
|
989
|
+
data.attrs['lon_grid_num'] = nlon
|
|
990
|
+
data.attrs['lat_grid_reso'] = dic_grid_header['row_resolution']
|
|
991
|
+
data.attrs['lon_grid_reso'] = dic_grid_header['col_resolution']
|
|
992
|
+
data.attrs['distance_unit'] = 'meter'
|
|
993
|
+
data.attrs['missing_value'] = 0
|
|
994
|
+
data.attrs['datatype'] = 'float32'
|
|
995
|
+
# data.attrs['decode_method'] = 'dbz = (data - %d) / %d'%(dic_grid_header['offset'],dic_grid_header['scale'])
|
|
996
|
+
data.attrs['task_name'] = dic_tcfg['task_name'].decode('utf-8').strip('\x00')
|
|
997
|
+
data.attrs['radar_type'] = dic_scfg['radar_type']
|
|
998
|
+
data.attrs['scan_time'] = datetime.fromtimestamp(dic_tcfg['scan_stime']).strftime('%Y-%m-%d %H:%M:%S')
|
|
999
|
+
try:
|
|
1000
|
+
data.attrs['site_name'] = dic_scfg['site_name'].decode('utf-8').strip('\x00')
|
|
1001
|
+
except:
|
|
1002
|
+
data.attrs['site_name'] = 'Unknown'
|
|
1003
|
+
data.attrs['site_id'] = dic_scfg['site_code'].decode('utf-8').strip('\x00')
|
|
1004
|
+
|
|
1005
|
+
return data
|
|
1006
|
+
|
|
1007
|
+
# 解析tops产品文件,栅格数据,回波顶高
|
|
1008
|
+
def read_tops(self,filepath,filename):
|
|
1009
|
+
'''
|
|
1010
|
+
解析tops产品文件
|
|
1011
|
+
'''
|
|
1012
|
+
pass
|
|
1013
|
+
|
|
1014
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
1015
|
+
buf = fin.read()
|
|
1016
|
+
fin.close()
|
|
1017
|
+
buf_length = len(buf)
|
|
1018
|
+
pos = 0
|
|
1019
|
+
|
|
1020
|
+
# 获取通用信息头
|
|
1021
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
1022
|
+
# pprint(dic_gh)
|
|
1023
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
1024
|
+
print('源数据格式错误!')
|
|
1025
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
1026
|
+
|
|
1027
|
+
# 获取站点信息
|
|
1028
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
1029
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
1030
|
+
|
|
1031
|
+
# 获取任务信息
|
|
1032
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
1033
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
1034
|
+
|
|
1035
|
+
# 获取扫描信息
|
|
1036
|
+
cutinfo = []
|
|
1037
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
1038
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
1039
|
+
cutinfo.append(dic_cutcfg)
|
|
1040
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
1041
|
+
|
|
1042
|
+
# 获取产品头信息
|
|
1043
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
1044
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
1045
|
+
|
|
1046
|
+
# 获取产品参数信息
|
|
1047
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
1048
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
1049
|
+
print('产品类型: %d-%s'%(dic_prod_header['product_type'],prod_type))
|
|
1050
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
1051
|
+
|
|
1052
|
+
# 读取产品径向头信息
|
|
1053
|
+
dic_grid_header = rs._unpack_from_buf(buf, pos, rs.GRID_HEADER)
|
|
1054
|
+
pos = pos + rs._structure_size(rs.GRID_HEADER)
|
|
1055
|
+
print('数据类型: %d-%s'%(dic_grid_header['data_type'],rs.PRODUCT_DATA_TYPE[dic_grid_header['data_type']]))
|
|
1056
|
+
# Value=(Code-Offset)/Scale
|
|
1057
|
+
# 读取栅格数据GRID_DATA
|
|
1058
|
+
|
|
1059
|
+
if dic_grid_header['bin_length'] == 1:
|
|
1060
|
+
data1 = np.frombuffer(buf[pos:pos + dic_grid_header['row_side_len']*dic_grid_header['col_side_len']*dic_grid_header['bin_length']], '>u1')
|
|
1061
|
+
data1 = data1.astype('uint8')
|
|
1062
|
+
data2 = np.reshape(data1,(dic_grid_header['row_side_len'],dic_grid_header['col_side_len']))
|
|
1063
|
+
# data2[data2<dic_grid_header['min_value']]=255
|
|
1064
|
+
# 根据offset和scale进行解码
|
|
1065
|
+
|
|
1066
|
+
|
|
1067
|
+
|
|
1068
|
+
data2[data2 > dic_grid_header['max_value']] = 0
|
|
1069
|
+
data2 = (data2 - dic_grid_header['offset']) / dic_grid_header['scale']
|
|
1070
|
+
maxv = (dic_grid_header['max_value'] - dic_grid_header['offset']) / dic_grid_header['scale']
|
|
1071
|
+
data2[data2 > maxv] = 0
|
|
1072
|
+
|
|
1073
|
+
nlat = dic_grid_header['row_side_len']
|
|
1074
|
+
nlon = dic_grid_header['col_side_len']
|
|
1075
|
+
# print(nlat,nlon)
|
|
1076
|
+
lat_reso = dic_grid_header['row_resolution']
|
|
1077
|
+
lon_reso = dic_grid_header['col_resolution']
|
|
1078
|
+
|
|
1079
|
+
# 将data由list转成二维numpy数组
|
|
1080
|
+
|
|
1081
|
+
|
|
1082
|
+
# 将直角坐标转换成经纬度坐标
|
|
1083
|
+
|
|
1084
|
+
if nlat % 2 == 0:
|
|
1085
|
+
out_grid_lat = np.arange(int(-nlat/2),int(nlat/2))
|
|
1086
|
+
else:
|
|
1087
|
+
out_grid_lat = np.arange(int(-(nlat-1)/2),int((nlat-1)/2)+1)
|
|
1088
|
+
|
|
1089
|
+
if nlon % 2 == 0:
|
|
1090
|
+
out_grid_lon = np.arange(int(-nlon/2),int(nlon/2))
|
|
1091
|
+
else:
|
|
1092
|
+
out_grid_lon = np.arange(int(-(nlon-1)/2),int((nlon-1)/2)+1)
|
|
1093
|
+
|
|
1094
|
+
# 将ougrid转换为经纬度坐标
|
|
1095
|
+
out_lon,out_lat = geotrans.cartesian_to_geographic_aeqd(out_grid_lat*lat_reso,out_grid_lon*lon_reso,dic_scfg['lon'],dic_scfg['lat'])
|
|
1096
|
+
|
|
1097
|
+
data = xr.DataArray(np.flipud(data2),coords=[out_lat,out_lon],dims=['lat','lon'],name='et')
|
|
1098
|
+
data.attrs['units'] = 'km'
|
|
1099
|
+
data.attrs['standard_name'] = 'echo_top'
|
|
1100
|
+
data.attrs['long_name'] = 'echo_top'
|
|
1101
|
+
data.attrs['radar_lat'] = dic_scfg['lat']
|
|
1102
|
+
data.attrs['radar_lon'] = dic_scfg['lon']
|
|
1103
|
+
data.attrs['ana_height'] = dic_scfg['ana_height']
|
|
1104
|
+
data.attrs['lat_grid_num'] = nlat
|
|
1105
|
+
data.attrs['lon_grid_num'] = nlon
|
|
1106
|
+
data.attrs['lat_grid_reso'] = dic_grid_header['row_resolution']
|
|
1107
|
+
data.attrs['lon_grid_reso'] = dic_grid_header['col_resolution']
|
|
1108
|
+
data.attrs['distance_unit'] = 'kilometer'
|
|
1109
|
+
data.attrs['missing_value'] = 0
|
|
1110
|
+
data.attrs['datatype'] = 'float32'
|
|
1111
|
+
# data.attrs['decode_method'] = 'dbz = (data - %d) / %d'%(dic_grid_header['offset'],dic_grid_header['scale'])
|
|
1112
|
+
data.attrs['task_name'] = dic_tcfg['task_name'].decode('utf-8').strip('\x00')
|
|
1113
|
+
data.attrs['radar_type'] = dic_scfg['radar_type']
|
|
1114
|
+
data.attrs['scan_time'] = datetime.fromtimestamp(dic_tcfg['scan_stime']).strftime('%Y-%m-%d %H:%M:%S')
|
|
1115
|
+
try:
|
|
1116
|
+
data.attrs['site_name'] = dic_scfg['site_name'].decode('utf-8').strip('\x00')
|
|
1117
|
+
except:
|
|
1118
|
+
data.attrs['site_name'] = 'Unknown'
|
|
1119
|
+
data.attrs['site_id'] = dic_scfg['site_code'].decode('utf-8').strip('\x00')
|
|
1120
|
+
|
|
1121
|
+
return data
|
|
1122
|
+
|
|
1123
|
+
|
|
1124
|
+
# 解析stp产品文件,栅格数据
|
|
1125
|
+
def read_stp(self,filepath,filename):
|
|
1126
|
+
'''
|
|
1127
|
+
解析stp产品文件
|
|
1128
|
+
'''
|
|
1129
|
+
pass
|
|
1130
|
+
|
|
1131
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
1132
|
+
buf = fin.read()
|
|
1133
|
+
fin.close()
|
|
1134
|
+
buf_length = len(buf)
|
|
1135
|
+
pos = 0
|
|
1136
|
+
|
|
1137
|
+
# 获取通用信息头
|
|
1138
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
1139
|
+
# pprint(dic_gh)
|
|
1140
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
1141
|
+
print('源数据格式错误!')
|
|
1142
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
1143
|
+
|
|
1144
|
+
# 获取站点信息
|
|
1145
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
1146
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
1147
|
+
|
|
1148
|
+
# 获取任务信息
|
|
1149
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
1150
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
1151
|
+
|
|
1152
|
+
# 获取扫描信息
|
|
1153
|
+
cutinfo = []
|
|
1154
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
1155
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
1156
|
+
cutinfo.append(dic_cutcfg)
|
|
1157
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
1158
|
+
|
|
1159
|
+
# 获取产品头信息
|
|
1160
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
1161
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
1162
|
+
|
|
1163
|
+
# 获取产品参数信息
|
|
1164
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
1165
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
1166
|
+
print('产品类型: %d-%s'%(dic_prod_header['product_type'],prod_type))
|
|
1167
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
1168
|
+
|
|
1169
|
+
# 读取产品径向头信息
|
|
1170
|
+
dic_radial_header = rs._unpack_from_buf(buf, pos, rs.RADIAL_HEADER)
|
|
1171
|
+
pos = pos + rs._structure_size(rs.RADIAL_HEADER)
|
|
1172
|
+
print('数据类型: %d-%s'%(dic_radial_header['data_type'],rs.PRODUCT_DATA_TYPE[dic_radial_header['data_type']]))
|
|
1173
|
+
# Value=(Code-Offset)/Scale
|
|
1174
|
+
# 读取径向数据RADIAL_DATA
|
|
1175
|
+
data=[]
|
|
1176
|
+
data_azi=[]
|
|
1177
|
+
binnum = None
|
|
1178
|
+
for nn in np.arange(dic_radial_header['radial_number']):
|
|
1179
|
+
radial_data_info = rs._unpack_from_buf(buf, pos, rs.RADIAL_DATA)
|
|
1180
|
+
pos = pos + rs._structure_size(rs.RADIAL_DATA)
|
|
1181
|
+
binnum = radial_data_info['num_bins']
|
|
1182
|
+
# rdata = buf[pos:pos+dic_radial_header['bin_length']*radial_data_info['num_bins']]
|
|
1183
|
+
rdata = np.frombuffer(buf[pos:pos+dic_radial_header['bin_length']*radial_data_info['num_bins']], '<u2')
|
|
1184
|
+
data.extend(rdata)
|
|
1185
|
+
pos = pos + dic_radial_header['bin_length']*radial_data_info['num_bins']
|
|
1186
|
+
# print(radial_data_info['start_azi'])
|
|
1187
|
+
data_azi.append(radial_data_info['start_azi'])
|
|
1188
|
+
pass
|
|
1189
|
+
data = np.array(data)
|
|
1190
|
+
# data[data > dic_radial_header['max_value']] = 0
|
|
1191
|
+
# data[data < dic_radial_header['min_value']] = 0
|
|
1192
|
+
|
|
1193
|
+
data = data.astype('uint16')
|
|
1194
|
+
nx = dic_radial_header['radial_number']
|
|
1195
|
+
ny = binnum
|
|
1196
|
+
print(nx,ny)
|
|
1197
|
+
# 将data转成numpy数组
|
|
1198
|
+
data = data.reshape((nx,ny))
|
|
1199
|
+
|
|
1200
|
+
# 将方位角坐标转换成经纬度坐标
|
|
1201
|
+
sweep_azimuths =np.array(data_azi)
|
|
1202
|
+
|
|
1203
|
+
range_reso = dic_radial_header['resolution']
|
|
1204
|
+
# 输出的距离库只保留一半
|
|
1205
|
+
ngates = int(ny//2*2) #//2*2
|
|
1206
|
+
grid_x = np.arange(-1*ngates,ngates+1,1)
|
|
1207
|
+
grid_y = np.arange(-1*ngates,ngates+1,1)
|
|
1208
|
+
total_gates = len(grid_x)
|
|
1209
|
+
|
|
1210
|
+
aa = np.meshgrid(grid_x,grid_y)
|
|
1211
|
+
azi_grid = np.arctan2(aa[0],aa[1])*180/np.pi
|
|
1212
|
+
azi_grid[azi_grid<0]+=360
|
|
1213
|
+
|
|
1214
|
+
azi_reso = 360/len(sweep_azimuths)
|
|
1215
|
+
|
|
1216
|
+
# 求方位角索引
|
|
1217
|
+
new_azi = azi_grid.flatten()
|
|
1218
|
+
t = new_azi-sweep_azimuths[0]
|
|
1219
|
+
t[t<0]+=360
|
|
1220
|
+
ray_number = np.round(t/azi_reso,0).astype(int)
|
|
1221
|
+
ray_number[ray_number==len(sweep_azimuths)]=0
|
|
1222
|
+
ray_number = np.reshape(ray_number,(total_gates,total_gates))
|
|
1223
|
+
|
|
1224
|
+
# 求距离索引
|
|
1225
|
+
dis_grid = np.sqrt(aa[0]**2 + aa[1]**2)
|
|
1226
|
+
dis_grid = np.round(dis_grid.flatten(),0).astype(int)
|
|
1227
|
+
dis_grid = np.reshape(dis_grid,(total_gates,total_gates))
|
|
1228
|
+
|
|
1229
|
+
# 对数据进行截断,在径向方向上
|
|
1230
|
+
data = data[:,0:ngates]
|
|
1231
|
+
|
|
1232
|
+
data_grid = np.zeros((total_gates,total_gates),dtype='uint16') + 0
|
|
1233
|
+
new_data = data_grid.flatten()
|
|
1234
|
+
new_spdata = data.flatten()
|
|
1235
|
+
# decode data
|
|
1236
|
+
new_spdata = (new_spdata - dic_radial_header['offset']) / dic_radial_header['scale']
|
|
1237
|
+
pos_out = [i+j*total_gates for i in range(total_gates) for j in range(total_gates) if dis_grid[i,j] < ngates]
|
|
1238
|
+
d_out = [rn*ngates+dg for rn,dg in zip(ray_number.flatten(),dis_grid.flatten()) if dg < ngates]
|
|
1239
|
+
|
|
1240
|
+
new_data[pos_out]=new_spdata[d_out]
|
|
1241
|
+
|
|
1242
|
+
data_grid = np.reshape(new_data,(total_gates,total_gates))
|
|
1243
|
+
|
|
1244
|
+
|
|
1245
|
+
if total_gates % 2 == 0:
|
|
1246
|
+
out_grid = np.arange(int(-total_gates/2),int(total_gates/2))
|
|
1247
|
+
else:
|
|
1248
|
+
out_grid = np.arange(int(-(total_gates-1)/2),int((total_gates-1)/2)+1)
|
|
1249
|
+
# 将ougrid转换为经纬度坐标
|
|
1250
|
+
out_lon,out_lat = geotrans.cartesian_to_geographic_aeqd(out_grid*range_reso,out_grid*range_reso,dic_scfg['lon'],dic_scfg['lat'])
|
|
1251
|
+
|
|
1252
|
+
data = xr.DataArray(np.array(data_grid.transpose()),coords=[out_lat,out_lon],dims=['lat','lon'],name='stp')
|
|
1253
|
+
data.attrs['units'] = 'mm'
|
|
1254
|
+
data.attrs['standard_name'] = 'storm total precipitation'
|
|
1255
|
+
data.attrs['long_name'] = 'storm total precipitation'
|
|
1256
|
+
data.attrs['radar_lat'] = dic_scfg['lat']
|
|
1257
|
+
data.attrs['radar_lon'] = dic_scfg['lon']
|
|
1258
|
+
data.attrs['ana_height'] = dic_scfg['ana_height']
|
|
1259
|
+
data.attrs['grid_num'] = total_gates
|
|
1260
|
+
data.attrs['grid_reso'] = range_reso
|
|
1261
|
+
data.attrs['obs_range'] = int(range_reso * (total_gates-1)/2)
|
|
1262
|
+
data.attrs['distance_unit'] = 'meter'
|
|
1263
|
+
data.attrs['missing_value'] = 0
|
|
1264
|
+
data.attrs['datatype'] = 'uint16'
|
|
1265
|
+
# data.attrs['decode_method'] = 'qpe = (data - %d) / %d'%(dic_radial_header['offset'],dic_radial_header['scale'])
|
|
1266
|
+
data.attrs['task_name'] = dic_tcfg['task_name'].decode('utf-8').strip('\x00')
|
|
1267
|
+
data.attrs['radar_type'] = dic_scfg['radar_type']
|
|
1268
|
+
data.attrs['scan_time'] = datetime.fromtimestamp(dic_tcfg['scan_stime']).strftime('%Y-%m-%d %H:%M:%S')
|
|
1269
|
+
try:
|
|
1270
|
+
data.attrs['site_name'] = dic_scfg['site_name'].decode('utf-8').strip('\x00')
|
|
1271
|
+
except:
|
|
1272
|
+
data.attrs['site_name'] = 'Unknown'
|
|
1273
|
+
data.attrs['site_id'] = dic_scfg['site_code'].decode('utf-8').strip('\x00')
|
|
1274
|
+
# data.attrs['offset'] = dic_radial_header['offset']
|
|
1275
|
+
# data.attrs['scale'] = dic_radial_header['scale']
|
|
1276
|
+
|
|
1277
|
+
return data
|
|
1278
|
+
|
|
1279
|
+
# 解析ohp产品文件,栅格数据
|
|
1280
|
+
def read_ohp(self,filepath,filename):
|
|
1281
|
+
'''
|
|
1282
|
+
解析ohp产品文件
|
|
1283
|
+
'''
|
|
1284
|
+
pass
|
|
1285
|
+
|
|
1286
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
1287
|
+
buf = fin.read()
|
|
1288
|
+
fin.close()
|
|
1289
|
+
buf_length = len(buf)
|
|
1290
|
+
pos = 0
|
|
1291
|
+
|
|
1292
|
+
# 获取通用信息头
|
|
1293
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
1294
|
+
# pprint(dic_gh)
|
|
1295
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
1296
|
+
print('源数据格式错误!')
|
|
1297
|
+
return None
|
|
1298
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
1299
|
+
|
|
1300
|
+
# 获取站点信息
|
|
1301
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
1302
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
1303
|
+
|
|
1304
|
+
# 获取任务信息
|
|
1305
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
1306
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
1307
|
+
|
|
1308
|
+
# 获取扫描信息
|
|
1309
|
+
cutinfo = []
|
|
1310
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
1311
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
1312
|
+
cutinfo.append(dic_cutcfg)
|
|
1313
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
1314
|
+
|
|
1315
|
+
# 获取产品头信息
|
|
1316
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
1317
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
1318
|
+
|
|
1319
|
+
# 获取产品参数信息
|
|
1320
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
1321
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
1322
|
+
print('产品类型: %d-%s'%(dic_prod_header['product_type'],prod_type))
|
|
1323
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
1324
|
+
|
|
1325
|
+
# 读取产品径向头信息
|
|
1326
|
+
dic_radial_header = rs._unpack_from_buf(buf, pos, rs.RADIAL_HEADER)
|
|
1327
|
+
pos = pos + rs._structure_size(rs.RADIAL_HEADER)
|
|
1328
|
+
print('数据类型: %d-%s'%(dic_radial_header['data_type'],rs.PRODUCT_DATA_TYPE[dic_radial_header['data_type']]))
|
|
1329
|
+
# Value=(Code-Offset)/Scale
|
|
1330
|
+
# 读取径向数据RADIAL_DATA
|
|
1331
|
+
data=[]
|
|
1332
|
+
data_azi=[]
|
|
1333
|
+
binnum = None
|
|
1334
|
+
for nn in np.arange(dic_radial_header['radial_number']):
|
|
1335
|
+
radial_data_info = rs._unpack_from_buf(buf, pos, rs.RADIAL_DATA)
|
|
1336
|
+
pos = pos + rs._structure_size(rs.RADIAL_DATA)
|
|
1337
|
+
binnum = radial_data_info['num_bins']
|
|
1338
|
+
# rdata = buf[pos:pos+dic_radial_header['bin_length']*radial_data_info['num_bins']]
|
|
1339
|
+
rdata = np.frombuffer(buf[pos:pos+dic_radial_header['bin_length']*radial_data_info['num_bins']], '<u2')
|
|
1340
|
+
data.extend(rdata)
|
|
1341
|
+
pos = pos + dic_radial_header['bin_length']*radial_data_info['num_bins']
|
|
1342
|
+
# print(radial_data_info['start_azi'])
|
|
1343
|
+
data_azi.append(radial_data_info['start_azi'])
|
|
1344
|
+
pass
|
|
1345
|
+
data = np.array(data)
|
|
1346
|
+
data[data > dic_radial_header['max_value']] = 0
|
|
1347
|
+
data[data < dic_radial_header['min_value']] = 0
|
|
1348
|
+
|
|
1349
|
+
data = data.astype('uint16')
|
|
1350
|
+
nx = dic_radial_header['radial_number']
|
|
1351
|
+
ny = binnum
|
|
1352
|
+
print(nx,ny)
|
|
1353
|
+
# 将data转成numpy数组
|
|
1354
|
+
data = data.reshape((nx,ny))
|
|
1355
|
+
|
|
1356
|
+
# decode data
|
|
1357
|
+
# ppiarray = (ppiarray - dic_radial_header['offset']) / dic_radial_header['scale']
|
|
1358
|
+
|
|
1359
|
+
|
|
1360
|
+
# 将方位角坐标转换成经纬度坐标
|
|
1361
|
+
sweep_azimuths =np.array(data_azi)
|
|
1362
|
+
|
|
1363
|
+
range_reso = dic_radial_header['resolution']
|
|
1364
|
+
# 输出的距离库只保留一半
|
|
1365
|
+
ngates = int(ny//2*2) #//2*2
|
|
1366
|
+
grid_x = np.arange(-1*ngates,ngates+1,1)
|
|
1367
|
+
grid_y = np.arange(-1*ngates,ngates+1,1)
|
|
1368
|
+
total_gates = len(grid_x)
|
|
1369
|
+
|
|
1370
|
+
aa = np.meshgrid(grid_x,grid_y)
|
|
1371
|
+
azi_grid = np.arctan2(aa[0],aa[1])*180/np.pi
|
|
1372
|
+
azi_grid[azi_grid<0]+=360
|
|
1373
|
+
|
|
1374
|
+
azi_reso = 360/len(sweep_azimuths)
|
|
1375
|
+
|
|
1376
|
+
# 求方位角索引
|
|
1377
|
+
new_azi = azi_grid.flatten()
|
|
1378
|
+
t = new_azi-sweep_azimuths[0]
|
|
1379
|
+
t[t<0]+=360
|
|
1380
|
+
ray_number = np.round(t/azi_reso,0).astype(int)
|
|
1381
|
+
ray_number[ray_number==len(sweep_azimuths)]=0
|
|
1382
|
+
ray_number = np.reshape(ray_number,(total_gates,total_gates))
|
|
1383
|
+
|
|
1384
|
+
# 求距离索引
|
|
1385
|
+
dis_grid = np.sqrt(aa[0]**2 + aa[1]**2)
|
|
1386
|
+
dis_grid = np.round(dis_grid.flatten(),0).astype(int)
|
|
1387
|
+
dis_grid = np.reshape(dis_grid,(total_gates,total_gates))
|
|
1388
|
+
|
|
1389
|
+
# 对数据进行截断,在径向方向上
|
|
1390
|
+
data = data[:,0:ngates]
|
|
1391
|
+
|
|
1392
|
+
data_grid = np.zeros((total_gates,total_gates),dtype='uint16') + 0
|
|
1393
|
+
new_data = data_grid.flatten()
|
|
1394
|
+
new_spdata = data.flatten()
|
|
1395
|
+
|
|
1396
|
+
new_spdata = (new_spdata - dic_radial_header['offset']) / dic_radial_header['scale']
|
|
1397
|
+
|
|
1398
|
+
pos_out = [i+j*total_gates for i in range(total_gates) for j in range(total_gates) if dis_grid[i,j] < ngates]
|
|
1399
|
+
d_out = [rn*ngates+dg for rn,dg in zip(ray_number.flatten(),dis_grid.flatten()) if dg < ngates]
|
|
1400
|
+
|
|
1401
|
+
new_data[pos_out]=new_spdata[d_out]
|
|
1402
|
+
|
|
1403
|
+
data_grid = np.reshape(new_data,(total_gates,total_gates))
|
|
1404
|
+
|
|
1405
|
+
|
|
1406
|
+
if total_gates % 2 == 0:
|
|
1407
|
+
out_grid = np.arange(int(-total_gates/2),int(total_gates/2))
|
|
1408
|
+
else:
|
|
1409
|
+
out_grid = np.arange(int(-(total_gates-1)/2),int((total_gates-1)/2)+1)
|
|
1410
|
+
# 将ougrid转换为经纬度坐标
|
|
1411
|
+
out_lon,out_lat = geotrans.cartesian_to_geographic_aeqd(out_grid*range_reso,out_grid*range_reso,dic_scfg['lon'],dic_scfg['lat'])
|
|
1412
|
+
|
|
1413
|
+
data = xr.DataArray(np.array(data_grid.transpose()),coords=[out_lat,out_lon],dims=['lat','lon'],name='ohp')
|
|
1414
|
+
data.attrs['units'] = 'mm'
|
|
1415
|
+
data.attrs['standard_name'] = 'one hour precipitation'
|
|
1416
|
+
data.attrs['long_name'] = 'one hour precipitation'
|
|
1417
|
+
data.attrs['radar_lat'] = dic_scfg['lat']
|
|
1418
|
+
data.attrs['radar_lon'] = dic_scfg['lon']
|
|
1419
|
+
data.attrs['ana_height'] = dic_scfg['ana_height']
|
|
1420
|
+
data.attrs['grid_num'] = total_gates
|
|
1421
|
+
data.attrs['grid_reso'] = range_reso
|
|
1422
|
+
data.attrs['obs_range'] = int(range_reso * (total_gates-1)/2)
|
|
1423
|
+
data.attrs['distance_unit'] = 'meter'
|
|
1424
|
+
data.attrs['missing_value'] = 0
|
|
1425
|
+
data.attrs['datatype'] = 'uint16'
|
|
1426
|
+
# data.attrs['decode_method'] = 'qpe = (data - %d) / %d'%(dic_radial_header['offset'],dic_radial_header['scale'])
|
|
1427
|
+
data.attrs['task_name'] = dic_tcfg['task_name'].decode('utf-8').strip('\x00')
|
|
1428
|
+
data.attrs['radar_type'] = dic_scfg['radar_type']
|
|
1429
|
+
data.attrs['scan_time'] = datetime.fromtimestamp(dic_tcfg['scan_stime']).strftime('%Y-%m-%d %H:%M:%S')
|
|
1430
|
+
try:
|
|
1431
|
+
data.attrs['site_name'] = dic_scfg['site_name'].decode('utf-8').strip('\x00')
|
|
1432
|
+
except:
|
|
1433
|
+
data.attrs['site_name'] = 'Unknown'
|
|
1434
|
+
data.attrs['site_id'] = dic_scfg['site_code'].decode('utf-8').strip('\x00')
|
|
1435
|
+
# data.attrs['offset'] = dic_radial_header['offset']
|
|
1436
|
+
# data.attrs['scale'] = dic_radial_header['scale']
|
|
1437
|
+
|
|
1438
|
+
return data
|
|
1439
|
+
|
|
1440
|
+
|
|
1441
|
+
# 解析冰雹指数产品
|
|
1442
|
+
def read_hda(self,filepath,filename):
|
|
1443
|
+
'''
|
|
1444
|
+
解析hail产品文件
|
|
1445
|
+
'''
|
|
1446
|
+
fin = open(filepath + os.sep + filename,'rb')
|
|
1447
|
+
buf = fin.read()
|
|
1448
|
+
fin.close()
|
|
1449
|
+
buf_length = len(buf)
|
|
1450
|
+
pos = 0
|
|
1451
|
+
|
|
1452
|
+
# 获取通用信息头
|
|
1453
|
+
dic_gh = rs._unpack_from_buf(buf, pos, rs.GENERIC_HEADER)
|
|
1454
|
+
# pprint(dic_gh)
|
|
1455
|
+
if dic_gh['magic_number'] != 0x4D545352:
|
|
1456
|
+
print('源数据格式错误!')
|
|
1457
|
+
pos = pos + rs._structure_size(rs.GENERIC_HEADER)
|
|
1458
|
+
|
|
1459
|
+
# 获取站点信息
|
|
1460
|
+
dic_scfg = rs._unpack_from_buf(buf, pos, rs.SITE_CONFIG)
|
|
1461
|
+
pos = pos + rs._structure_size(rs.SITE_CONFIG)
|
|
1462
|
+
|
|
1463
|
+
# 获取任务信息
|
|
1464
|
+
dic_tcfg = rs._unpack_from_buf(buf, pos, rs.TASK_CONFIG)
|
|
1465
|
+
pos = pos + rs._structure_size(rs.TASK_CONFIG)
|
|
1466
|
+
|
|
1467
|
+
# 获取扫描信息
|
|
1468
|
+
cutinfo = []
|
|
1469
|
+
for im in np.arange(dic_tcfg['cut_number']):
|
|
1470
|
+
dic_cutcfg = rs._unpack_from_buf(buf, pos, rs.SCAN_CONFIG)
|
|
1471
|
+
cutinfo.append(dic_cutcfg)
|
|
1472
|
+
pos = pos + rs._structure_size(rs.SCAN_CONFIG)
|
|
1473
|
+
|
|
1474
|
+
# 获取产品头信息
|
|
1475
|
+
dic_prod_header = rs._unpack_from_buf(buf, pos, rs.PRODUCT_HEADER_BLOCK)
|
|
1476
|
+
pos = pos + rs._structure_size(rs.PRODUCT_HEADER_BLOCK)
|
|
1477
|
+
|
|
1478
|
+
# 获取产品参数信息
|
|
1479
|
+
prod_type = rs.PRODUCT_ID_NAME_MAP[dic_prod_header['product_type']]
|
|
1480
|
+
# pprint(prod_type)
|
|
1481
|
+
dic_prod_param = rs._unpack_from_buf(buf, pos, rs.PRODUCT_DEPENDENT_PARAMETER[prod_type])
|
|
1482
|
+
pos = pos + 64 # 产品参数长度固定为64个
|
|
1483
|
+
|
|
1484
|
+
# 获取产品数据块
|
|
1485
|
+
# 冰雹个数
|
|
1486
|
+
hail_number = rs._unpack_from_buf(buf, pos, rs.HAIL_NUMBER)
|
|
1487
|
+
pos = pos + rs._structure_size(rs.HAIL_NUMBER)
|
|
1488
|
+
|
|
1489
|
+
# TVS表块
|
|
1490
|
+
hail_tab=[]
|
|
1491
|
+
for nn in np.arange(hail_number['hail_number']):
|
|
1492
|
+
hail_tab.append(rs._unpack_from_buf(buf, pos, rs.HAIL_TAB))
|
|
1493
|
+
pos = pos + rs._structure_size(rs.HAIL_TAB)
|
|
1494
|
+
|
|
1495
|
+
# TVS适配数据
|
|
1496
|
+
dic_hail_adapt_param = rs._unpack_from_buf(buf, pos, rs.HAIL_ADAPTATION_DATA)
|
|
1497
|
+
pos = pos + rs._structure_size(rs.HAIL_ADAPTATION_DATA)
|
|
1498
|
+
|
|
1499
|
+
# 将所有的方位角和距离转换成经纬度
|
|
1500
|
+
for nn in np.arange(hail_number['hail_number']):
|
|
1501
|
+
pass
|
|
1502
|
+
x,y,z = geotrans.antenna_to_cartesian(hail_tab[nn]['range']/1000.0,hail_tab[nn]['azi'],0)
|
|
1503
|
+
clon,clat = geotrans.cartesian_to_geographic_aeqd(x,y,dic_scfg['lon'],dic_scfg['lat'])
|
|
1504
|
+
hail_tab[nn]['lon'] = clon[0]
|
|
1505
|
+
hail_tab[nn]['lat'] = clat[0]
|
|
1506
|
+
|
|
1507
|
+
# 将数字序号转换成字母数字组合
|
|
1508
|
+
hail_tab[nn]['hail_id_char'] = self.get_id_char(hail_tab[nn]['hail_id'])
|
|
1509
|
+
|
|
1510
|
+
|
|
1511
|
+
allresult={}
|
|
1512
|
+
allresult['hail'] = hail_tab
|
|
1513
|
+
|
|
1514
|
+
self.hailinfo = allresult
|
|
1515
|
+
return allresult
|
|
1516
|
+
|
|
1517
|
+
# 将风暴追踪产品转换为gr2格式
|
|
1518
|
+
def trans_sti_gr2(self,outpath_gr2=None,outname_gr2=None,m_pret=None,time_type='UTC',bhistory=False,bdebug=False):
|
|
1519
|
+
|
|
1520
|
+
if self.stiinfo is None:
|
|
1521
|
+
print('mesoinfo is None, please run read_sti first!')
|
|
1522
|
+
return False
|
|
1523
|
+
|
|
1524
|
+
# try:
|
|
1525
|
+
# duration 代表该时次产品的可视时间段
|
|
1526
|
+
if not os.path.exists(outpath_gr2):
|
|
1527
|
+
os.makedirs(outpath_gr2)
|
|
1528
|
+
|
|
1529
|
+
|
|
1530
|
+
if outpath_gr2 is None or outname_gr2 is None:
|
|
1531
|
+
print('outpath_gr2 and outname_gr2 params should be set')
|
|
1532
|
+
return False
|
|
1533
|
+
|
|
1534
|
+
if not os.path.exists(outpath_gr2):
|
|
1535
|
+
try:
|
|
1536
|
+
os.makedirs(outpath_gr2)
|
|
1537
|
+
except:
|
|
1538
|
+
print(outpath_gr2 + ' not exist, and fail to create this path!')
|
|
1539
|
+
return False
|
|
1540
|
+
|
|
1541
|
+
of = open(outpath_gr2 + os.sep + outname_gr2,'wt',encoding='GBK')
|
|
1542
|
+
|
|
1543
|
+
# 单个文件就不用信息头了
|
|
1544
|
+
if bdebug and not bhistory:
|
|
1545
|
+
of.write('Title: ROSE2风暴追踪信息\n')
|
|
1546
|
+
of.write('Refreshseconds: 30\n')
|
|
1547
|
+
of.write('Threshold: 500\n')
|
|
1548
|
+
of.write('Font: 1, 20, 1, "Courier New"\n')
|
|
1549
|
+
# of.write('IconFile: 1, 18, 18, 9, 9, 2016_144dpi.png\n')
|
|
1550
|
+
of.write('IconFile: 1, 24, 24, 12, 12, 2016_192dpi.png\n')
|
|
1551
|
+
|
|
1552
|
+
# 这里直接用m_pret 可以保证不会出现重叠的记录
|
|
1553
|
+
if not bdebug:
|
|
1554
|
+
if not m_pret is None and bhistory:
|
|
1555
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1556
|
+
endtime = m_pret + timedelta(minutes=1*int(6/2))
|
|
1557
|
+
elif not bhistory:
|
|
1558
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1559
|
+
endtime = m_pret + timedelta(minutes=30)
|
|
1560
|
+
pass
|
|
1561
|
+
|
|
1562
|
+
|
|
1563
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1564
|
+
|
|
1565
|
+
# 实时模式下,改时间一定要放到timerange后面
|
|
1566
|
+
if time_type == "BJT":
|
|
1567
|
+
pre_time = pre_time + timedelta(hours=8)
|
|
1568
|
+
endtime = endtime + timedelta(hours=8)
|
|
1569
|
+
|
|
1570
|
+
if bhistory:
|
|
1571
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1572
|
+
|
|
1573
|
+
of.write(timerangestr + '\n')
|
|
1574
|
+
|
|
1575
|
+
for dd in self.stiinfo['track']:
|
|
1576
|
+
if len(dd) > 1:
|
|
1577
|
+
of.write('Line: 2,0\n')
|
|
1578
|
+
for nn in dd:
|
|
1579
|
+
of.write('%.4f,%.4f\n'%(nn[0],nn[1]))
|
|
1580
|
+
of.write('End:\n\n')
|
|
1581
|
+
|
|
1582
|
+
for dd in self.stiinfo['marker_past']:
|
|
1583
|
+
of.write('Icon: %.4f,%.4f,0,1,88\n'%(dd[0],dd[1]))
|
|
1584
|
+
for dd in self.stiinfo['marker_fst']:
|
|
1585
|
+
of.write('Icon: %.4f,%.4f,0,1,91\n'%(dd[0],dd[1]))
|
|
1586
|
+
|
|
1587
|
+
for nn in np.arange(len(self.stiinfo['all_storm_prop'])):
|
|
1588
|
+
|
|
1589
|
+
curstorm = self.stiinfo['all_storm_prop'][nn]
|
|
1590
|
+
clon = curstorm['lon']
|
|
1591
|
+
clat = curstorm['lat']
|
|
1592
|
+
|
|
1593
|
+
lbstr=r'数据来源: ROSE风暴识别产品\n'
|
|
1594
|
+
lbstr += r'风暴编号: %s\n'%curstorm['id_char']
|
|
1595
|
+
lbstr += r'方位角/距离: %.1f度/%.1f公里\n'%(curstorm['azi'],curstorm['range']/1000.0)
|
|
1596
|
+
lbstr += r'风暴移动方向 : %s\n'%(self.get_wind_dir_name((curstorm['mv_dir']+180)%360))
|
|
1597
|
+
lbstr += r'风暴移动速度 : %.1f 公里/小时\n'%(curstorm['mv_spd']*3.6)
|
|
1598
|
+
|
|
1599
|
+
lbstr += r'风暴低高: %.1f 公里\n'%(curstorm['base_height']/1000)
|
|
1600
|
+
lbstr += r'风暴顶高: %.1f 公里\n'%(curstorm['top_height']/1000)
|
|
1601
|
+
lbstr += r'风暴体VIL: %.1f 千克/平方米\n'%(curstorm['vil'])
|
|
1602
|
+
lbstr += r'最大反射率: %d dBZ\n'%(curstorm['max_ref'])
|
|
1603
|
+
lbstr += r'最大反射率高度 : %.1f 公里\n'%(curstorm['max_ref_height']/1000)
|
|
1604
|
+
|
|
1605
|
+
of.write('Icon: %.4f,%.4f,0,1,40,"%s"\n'%(clat,clon,lbstr))
|
|
1606
|
+
|
|
1607
|
+
|
|
1608
|
+
of.write('End:\n\n')
|
|
1609
|
+
|
|
1610
|
+
of.close()
|
|
1611
|
+
print(outpath_gr2 + os.sep + outname_gr2 + ' saved!')
|
|
1612
|
+
return outpath_gr2 + os.sep + outname_gr2
|
|
1613
|
+
# except:
|
|
1614
|
+
# return False
|
|
1615
|
+
|
|
1616
|
+
|
|
1617
|
+
# 将中气旋的信息转换为gr2格式
|
|
1618
|
+
def trans_mda_gr2(self,outpath_gr2=None,outname_gr2=None,m_pret=None,time_type='UTC',bhistory=False,bdebug=False):
|
|
1619
|
+
if self.mesoinfo is None:
|
|
1620
|
+
print('mesoinfo is None, please run read_mda first!')
|
|
1621
|
+
return False
|
|
1622
|
+
try:
|
|
1623
|
+
# duration 代表该时次产品的可视时间段
|
|
1624
|
+
if not os.path.exists(outpath_gr2):
|
|
1625
|
+
os.makedirs(outpath_gr2)
|
|
1626
|
+
|
|
1627
|
+
|
|
1628
|
+
if outpath_gr2 is None or outname_gr2 is None:
|
|
1629
|
+
print('outpath_gr2 and outname_gr2 params should be set')
|
|
1630
|
+
return False
|
|
1631
|
+
|
|
1632
|
+
if not os.path.exists(outpath_gr2):
|
|
1633
|
+
try:
|
|
1634
|
+
os.makedirs(outpath_gr2)
|
|
1635
|
+
except:
|
|
1636
|
+
print(outpath_gr2 + ' not exist, and fail to create this path!')
|
|
1637
|
+
return False
|
|
1638
|
+
|
|
1639
|
+
of = open(outpath_gr2 + os.sep + outname_gr2,'wt',encoding='GBK')
|
|
1640
|
+
|
|
1641
|
+
# 单个文件就不用信息头了
|
|
1642
|
+
if bdebug and not bhistory:
|
|
1643
|
+
of.write('Title: ROSE2中气旋识别产品\n')
|
|
1644
|
+
of.write('Refreshseconds: 30\n')
|
|
1645
|
+
of.write('Threshold: 500\n')
|
|
1646
|
+
of.write('Font: 1, 20, 1, "Courier New"\n')
|
|
1647
|
+
# of.write('IconFile: 1, 47, 47, 23, 23, mda_icons_144.png\n')
|
|
1648
|
+
of.write('IconFile: 1, 63, 63, 31, 31, mda_icons_192.png\n')
|
|
1649
|
+
|
|
1650
|
+
# 这里直接用m_pret 可以保证不会出现重叠的记录
|
|
1651
|
+
if not bdebug:
|
|
1652
|
+
if not m_pret is None and bhistory:
|
|
1653
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1654
|
+
endtime = m_pret + timedelta(minutes=1*int(6/2))
|
|
1655
|
+
elif not bhistory:
|
|
1656
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1657
|
+
endtime = m_pret + timedelta(minutes=30)
|
|
1658
|
+
pass
|
|
1659
|
+
|
|
1660
|
+
|
|
1661
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1662
|
+
|
|
1663
|
+
# 实时模式下,改时间一定要放到timerange后面
|
|
1664
|
+
if time_type == "BJT":
|
|
1665
|
+
pre_time = pre_time + timedelta(hours=8)
|
|
1666
|
+
endtime = endtime + timedelta(hours=8)
|
|
1667
|
+
|
|
1668
|
+
if bhistory:
|
|
1669
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1670
|
+
|
|
1671
|
+
of.write(timerangestr + '\n')
|
|
1672
|
+
|
|
1673
|
+
for nn in range(len(self.mesoinfo['meso'])):
|
|
1674
|
+
curitem = self.mesoinfo['meso'][nn]
|
|
1675
|
+
clon = curitem['lon']
|
|
1676
|
+
clat = curitem['lat']
|
|
1677
|
+
lbstr=''
|
|
1678
|
+
icon_index=0
|
|
1679
|
+
baseindex=0
|
|
1680
|
+
if curitem['base'] > 1500: # 米
|
|
1681
|
+
baseindex = 0
|
|
1682
|
+
else:
|
|
1683
|
+
baseindex = 1*4
|
|
1684
|
+
'''
|
|
1685
|
+
关于风切变的单位换算问题
|
|
1686
|
+
https://www.theweatherprediction.com/habyhints/193/
|
|
1687
|
+
The wind speed is 20 knots at 850 mb while the wind speed is 30 knots at 700 mb. The distance between 850 and 700 mb is 1,600 meters. What is the value of wind shear?
|
|
1688
|
+
|
|
1689
|
+
The change in wind speed is 30 - 20 = 10 knots = 5 m/s
|
|
1690
|
+
The change is distance is 1,600 m
|
|
1691
|
+
|
|
1692
|
+
The change in wind speed over distance = 5/1,600 s^-1 = 0.003125 s^-1
|
|
1693
|
+
|
|
1694
|
+
'''
|
|
1695
|
+
shear_ms = curitem['ave_shear'] * (curitem['azi_diam'] + curitem['radial_diam'])/2/1000.0/2
|
|
1696
|
+
mrank = self.get_mda_rank(curitem['range']/1000,shear_ms)
|
|
1697
|
+
|
|
1698
|
+
if mrank is None:
|
|
1699
|
+
continue
|
|
1700
|
+
else:
|
|
1701
|
+
icon_index = baseindex + mrank
|
|
1702
|
+
|
|
1703
|
+
mlevel =''
|
|
1704
|
+
if mrank==1:
|
|
1705
|
+
mlevel = '弱切变'
|
|
1706
|
+
elif mrank == 2:
|
|
1707
|
+
mlevel = '弱中气旋'
|
|
1708
|
+
elif mrank == 3:
|
|
1709
|
+
mlevel = '中等强度中气旋'
|
|
1710
|
+
elif mrank == 4:
|
|
1711
|
+
mlevel = '强中气旋'
|
|
1712
|
+
|
|
1713
|
+
mtype='未知'
|
|
1714
|
+
if curitem['feature_type'] == 1:
|
|
1715
|
+
mtype = '中气旋'
|
|
1716
|
+
elif curitem['feature_type'] == 2:
|
|
1717
|
+
mtype = '3D相关切变'
|
|
1718
|
+
elif curitem['feature_type'] == 3:
|
|
1719
|
+
mtype = '非相关切变'
|
|
1720
|
+
|
|
1721
|
+
lbstr=''
|
|
1722
|
+
lbstr += r'数据来源: ROSE2中气旋识别产品\n'
|
|
1723
|
+
lbstr += r'所属风暴编号: %s\n'%curitem['storm_id_char']
|
|
1724
|
+
lbstr += r'中气旋编号: %s\n'%curitem['feature_id_char']
|
|
1725
|
+
lbstr += r'类型: %s\n'%mtype
|
|
1726
|
+
lbstr += r'中气旋所在方位/距离: %.1f度 / %.1f 公里\n'%(curitem['azi'],curitem['range']/1000.0)
|
|
1727
|
+
lbstr += r'强度等级: %s\n'%mlevel
|
|
1728
|
+
lbstr += r'中气旋底高: %.1f 公里\n'%(curitem['base']/1000.0)
|
|
1729
|
+
lbstr += r'中气旋顶高: %.1f 公里\n'%(curitem['top']/1000.0)
|
|
1730
|
+
lbstr += r'中气旋沿径向直径: %.1f 公里\n'%(curitem['radial_diam']/1000.0)
|
|
1731
|
+
lbstr += r'中气旋沿方位直径: %.1f 公里\n'%(curitem['azi_diam']/1000.0)
|
|
1732
|
+
lbstr += r'平均切变值: %.1f (E-3/S)\n'%(curitem['ave_shear'])
|
|
1733
|
+
|
|
1734
|
+
if shear_ms > 25:
|
|
1735
|
+
lbstr += r'===============提醒============\n换算后的切变值超过了25米/秒\n可能是很强的中气旋或者是错误数据\n可能是存在速度模糊对PUP算法的影响。\n'
|
|
1736
|
+
|
|
1737
|
+
of.write('Icon: %.4f,%.4f,0,1,%d,"%s"\n'%(clat,clon,icon_index, lbstr))
|
|
1738
|
+
pass
|
|
1739
|
+
of.write('End:\n\n')
|
|
1740
|
+
|
|
1741
|
+
of.close()
|
|
1742
|
+
print(outpath_gr2 + os.sep + outname_gr2 + ' saved!')
|
|
1743
|
+
return outpath_gr2 + os.sep + outname_gr2
|
|
1744
|
+
except:
|
|
1745
|
+
return False
|
|
1746
|
+
|
|
1747
|
+
|
|
1748
|
+
# 将tvs的信息转换为gr2格式
|
|
1749
|
+
def trans_tvs_gr2(self,outpath_gr2=None,outname_gr2=None,m_pret=None,time_type='UTC',bhistory=False,bdebug=False):
|
|
1750
|
+
|
|
1751
|
+
if self.tvsinfo is None:
|
|
1752
|
+
print('tvsinfo is None, please run read_tvs first')
|
|
1753
|
+
return False
|
|
1754
|
+
|
|
1755
|
+
try:
|
|
1756
|
+
# duration 代表该时次产品的可视时间段
|
|
1757
|
+
if not os.path.exists(outpath_gr2):
|
|
1758
|
+
os.makedirs(outpath_gr2)
|
|
1759
|
+
|
|
1760
|
+
|
|
1761
|
+
if outpath_gr2 is None or outname_gr2 is None:
|
|
1762
|
+
print('outpath_gr2 and outname_gr2 params should be set')
|
|
1763
|
+
return False
|
|
1764
|
+
|
|
1765
|
+
if not os.path.exists(outpath_gr2):
|
|
1766
|
+
try:
|
|
1767
|
+
os.makedirs(outpath_gr2)
|
|
1768
|
+
except:
|
|
1769
|
+
print(outpath_gr2 + ' not exist, and fail to create this path!')
|
|
1770
|
+
return False
|
|
1771
|
+
|
|
1772
|
+
of = open(outpath_gr2 + os.sep + outname_gr2,'wt',encoding='GBK')
|
|
1773
|
+
|
|
1774
|
+
# 单个文件就不用信息头了
|
|
1775
|
+
if bdebug and not bhistory:
|
|
1776
|
+
of.write('Title: ROSE2龙卷涡旋特征识别产品\n')
|
|
1777
|
+
of.write('Refreshseconds: 30\n')
|
|
1778
|
+
of.write('Threshold: 500\n')
|
|
1779
|
+
of.write('Font: 1, 20, 1, "Courier New"\n')
|
|
1780
|
+
of.write('IconFile: 1, 51, 51, 26, 26, lsr_icons_192.png\n')
|
|
1781
|
+
|
|
1782
|
+
# 这里直接用m_pret 可以保证不会出现重叠的记录
|
|
1783
|
+
if not bdebug:
|
|
1784
|
+
if not m_pret is None and bhistory:
|
|
1785
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1786
|
+
endtime = m_pret + timedelta(minutes=1*int(6/2))
|
|
1787
|
+
elif not bhistory:
|
|
1788
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1789
|
+
endtime = m_pret + timedelta(minutes=30)
|
|
1790
|
+
pass
|
|
1791
|
+
|
|
1792
|
+
|
|
1793
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1794
|
+
|
|
1795
|
+
# 实时模式下,改时间一定要放到timerange后面
|
|
1796
|
+
if time_type == "BJT":
|
|
1797
|
+
pre_time = pre_time + timedelta(hours=8)
|
|
1798
|
+
endtime = endtime + timedelta(hours=8)
|
|
1799
|
+
|
|
1800
|
+
if bhistory:
|
|
1801
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1802
|
+
|
|
1803
|
+
of.write(timerangestr + '\n')
|
|
1804
|
+
|
|
1805
|
+
for nn in range(len(self.tvsinfo['tvs'])):
|
|
1806
|
+
curitem = self.tvsinfo['tvs'][nn]
|
|
1807
|
+
clon = curitem['lon']
|
|
1808
|
+
clat = curitem['lat']
|
|
1809
|
+
curtype = '未知'
|
|
1810
|
+
if curitem['type'] == 1:
|
|
1811
|
+
curtype = 'TVS'
|
|
1812
|
+
elif curitem['type'] == 2:
|
|
1813
|
+
curtype = 'ETVS'
|
|
1814
|
+
icon_index=1
|
|
1815
|
+
|
|
1816
|
+
lbstr=''
|
|
1817
|
+
lbstr += r'数据来源: ROSE2龙卷涡旋识别产品\n'
|
|
1818
|
+
lbstr += r'所属风暴编号: %s\n'%curitem['storm_id_char']
|
|
1819
|
+
lbstr += r'类型: %s\n'%curtype
|
|
1820
|
+
lbstr += r'TVS所在方位/距离: %.1f度 / %.1f 公里\n'%(curitem['azi'],curitem['range']/1000.0)
|
|
1821
|
+
|
|
1822
|
+
lbstr += r'TVS底高: %.1f 公里\n'%(curitem['base']/1000.0)
|
|
1823
|
+
lbstr += r'TVS顶高: %.1f 公里\n'%(curitem['top']/1000.0)
|
|
1824
|
+
lbstr += r'TVS厚度: %.1f 公里\n'%(curitem['depth']/1000.0)
|
|
1825
|
+
lbstr += r'低层速度差LLDV: %.1f 米/秒\n'%(curitem['lldv']) # *1.609344/3.6
|
|
1826
|
+
lbstr += r'最大速度差MXDV: %.1f 米/秒\n'%(curitem['mxdv']) # *1.609344/3.6
|
|
1827
|
+
lbstr += r'最大速度差所在高度: %.1f 公里\n'%(curitem['hmdv']/1000.0)
|
|
1828
|
+
|
|
1829
|
+
lbstr += r'最大切变值MASHR: %.1f (E-3/S)\n'%(curitem['max_shear'])
|
|
1830
|
+
lbstr += r'最大切变值所在高度: %.1f 公里\n'%(curitem['h_max_shear']/1000.0)
|
|
1831
|
+
|
|
1832
|
+
if curtype=='ETVS':
|
|
1833
|
+
icon_index=20
|
|
1834
|
+
of.write('Icon: %.4f,%.4f,0,1,%d,"%s"\n'%(clat,clon,icon_index, lbstr))
|
|
1835
|
+
else:
|
|
1836
|
+
icon_index=11
|
|
1837
|
+
of.write('Icon: %.4f,%.4f,0,1,%d,"%s"\n'%(clat,clon,icon_index, lbstr))
|
|
1838
|
+
|
|
1839
|
+
of.write('End:\n\n')
|
|
1840
|
+
|
|
1841
|
+
of.close()
|
|
1842
|
+
print(outpath_gr2 + os.sep + outname_gr2 + ' saved!')
|
|
1843
|
+
return outpath_gr2 + os.sep + outname_gr2
|
|
1844
|
+
except:
|
|
1845
|
+
return False
|
|
1846
|
+
|
|
1847
|
+
|
|
1848
|
+
# 将hail的信息转换为gr2格式
|
|
1849
|
+
def trans_hda_gr2(self,outpath_gr2=None,outname_gr2=None,m_pret=None,time_type='UTC',bhistory=False,bdebug=False):
|
|
1850
|
+
|
|
1851
|
+
if self.hailinfo is None:
|
|
1852
|
+
print('hailinfo is None, please run read_hda first!')
|
|
1853
|
+
return False
|
|
1854
|
+
|
|
1855
|
+
try:
|
|
1856
|
+
# duration 代表该时次产品的可视时间段
|
|
1857
|
+
if not os.path.exists(outpath_gr2):
|
|
1858
|
+
os.makedirs(outpath_gr2)
|
|
1859
|
+
|
|
1860
|
+
|
|
1861
|
+
if outpath_gr2 is None or outname_gr2 is None:
|
|
1862
|
+
print('outpath_gr2 and outname_gr2 params should be set')
|
|
1863
|
+
return False
|
|
1864
|
+
|
|
1865
|
+
if not os.path.exists(outpath_gr2):
|
|
1866
|
+
try:
|
|
1867
|
+
os.makedirs(outpath_gr2)
|
|
1868
|
+
except:
|
|
1869
|
+
print(outpath_gr2 + ' not exist, and fail to create this path!')
|
|
1870
|
+
return False
|
|
1871
|
+
|
|
1872
|
+
of = open(outpath_gr2 + os.sep + outname_gr2,'wt',encoding='GBK')
|
|
1873
|
+
|
|
1874
|
+
# 单个文件就不用信息头了
|
|
1875
|
+
if bdebug and not bhistory:
|
|
1876
|
+
of.write('Title: ROSE2冰雹指数产品\n')
|
|
1877
|
+
of.write('Refreshseconds: 30\n')
|
|
1878
|
+
of.write('Threshold: 500\n')
|
|
1879
|
+
of.write('Font: 1, 20, 1, "Courier New"\n')
|
|
1880
|
+
# of.write('IconFile: 1, 37, 37, 18, 18, hail_icons_144.png\n')
|
|
1881
|
+
of.write('IconFile: 1, 51, 51, 26, 26, hail_icons_192.png\n')
|
|
1882
|
+
|
|
1883
|
+
# 这里直接用m_pret 可以保证不会出现重叠的记录
|
|
1884
|
+
if not bdebug:
|
|
1885
|
+
if not m_pret is None and bhistory:
|
|
1886
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1887
|
+
endtime = m_pret + timedelta(minutes=1*int(6/2))
|
|
1888
|
+
elif not bhistory:
|
|
1889
|
+
pre_time = m_pret + timedelta(minutes=-1*int(6/2))
|
|
1890
|
+
endtime = m_pret + timedelta(minutes=30)
|
|
1891
|
+
pass
|
|
1892
|
+
|
|
1893
|
+
|
|
1894
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1895
|
+
|
|
1896
|
+
# 实时模式下,改时间一定要放到timerange后面
|
|
1897
|
+
if time_type == "BJT":
|
|
1898
|
+
pre_time = pre_time + timedelta(hours=8)
|
|
1899
|
+
endtime = endtime + timedelta(hours=8)
|
|
1900
|
+
|
|
1901
|
+
if bhistory:
|
|
1902
|
+
timerangestr = 'TimeRange: ' + pre_time.strftime('%Y-%m-%dT%H:%M:%S') + ' ' + endtime.strftime('%Y-%m-%dT%H:%M:%S')
|
|
1903
|
+
|
|
1904
|
+
of.write(timerangestr + '\n')
|
|
1905
|
+
|
|
1906
|
+
for nn in range(len(self.hailinfo['hail'])):
|
|
1907
|
+
curitem = self.hailinfo['hail'][nn]
|
|
1908
|
+
clon = curitem['lon']
|
|
1909
|
+
clat = curitem['lat']
|
|
1910
|
+
|
|
1911
|
+
lbstr=''
|
|
1912
|
+
lbstr=r'数据来源: ROSE2冰雹指数产品\n'
|
|
1913
|
+
lbstr += r'冰雹编号: %s\n'%curitem['hail_id_char']
|
|
1914
|
+
lbstr += r'大冰雹概率: %d%%\n'%curitem['psh']
|
|
1915
|
+
lbstr += r'冰雹概率: %d%%\n'%curitem['ph']
|
|
1916
|
+
lbstr += r'最大冰雹尺寸估计: %.1f 厘米 或 %.1f 英寸\n'%(curitem['hsize'],curitem['hsize']/2.54,)
|
|
1917
|
+
|
|
1918
|
+
icon_index=0
|
|
1919
|
+
hsize_inch = curitem['hsize']/2.54
|
|
1920
|
+
|
|
1921
|
+
if hsize_inch < 1:
|
|
1922
|
+
icon_index = 1
|
|
1923
|
+
elif hsize_inch < 2:
|
|
1924
|
+
icon_index = 5
|
|
1925
|
+
elif hsize_inch < 3:
|
|
1926
|
+
icon_index = 9
|
|
1927
|
+
elif hsize_inch < 4:
|
|
1928
|
+
icon_index = 13
|
|
1929
|
+
elif hsize_inch >= 4:
|
|
1930
|
+
icon_index = 17
|
|
1931
|
+
else:
|
|
1932
|
+
icon_index = 1
|
|
1933
|
+
if curitem['ph'] >= 30:
|
|
1934
|
+
of.write('Icon: %.4f,%.4f,0,1,%d,"%s"\n'%(clat,clon,icon_index, lbstr))
|
|
1935
|
+
|
|
1936
|
+
of.write('End:\n\n')
|
|
1937
|
+
|
|
1938
|
+
of.close()
|
|
1939
|
+
print(outpath_gr2 + os.sep + outname_gr2 + ' saved!')
|
|
1940
|
+
return outpath_gr2 + os.sep + outname_gr2
|
|
1941
|
+
except:
|
|
1942
|
+
return False
|
|
1943
|
+
|
|
1944
|
+
if __name__ == "__main__":
|
|
1945
|
+
rootpath = '/Users/wenjianzhu/Library/CloudStorage/OneDrive-个人/PythonCode/MyWork/nmc_met_radar/testdata/rose_product'
|
|
1946
|
+
staid = 'Z9852'
|
|
1947
|
+
# filepath = 'D:\Downloads\CMADAAS\pup\Z9852\STI'
|
|
1948
|
+
outpath_gr2 = 'output/gr2data/sti' + os.sep + staid
|
|
1949
|
+
if not os.path.exists(outpath_gr2):
|
|
1950
|
+
os.makedirs(outpath_gr2)
|
|
1951
|
+
|
|
1952
|
+
decoder = READ_ROSE()
|
|
1953
|
+
|
|
1954
|
+
# # ppi zdr
|
|
1955
|
+
# filepath_ppi = '/Users/wenjianzhu/Downloads/CMADAAS/pup/Z9852/SS'
|
|
1956
|
+
|
|
1957
|
+
# # ss
|
|
1958
|
+
# filepath_ss = rootpath + os.sep + staid + os.sep + 'SS'
|
|
1959
|
+
# filename_ss = 'Z_RADR_I_Z9852_20230421164954_P_DOR_CDD_SS_NUL_300_NUL_FMT.bin'
|
|
1960
|
+
# allresult_ss = decoder.read_ss(filepath_ss, filename_ss)
|
|
1961
|
+
|
|
1962
|
+
|
|
1963
|
+
# sti
|
|
1964
|
+
filepath_sti = rootpath + os.sep + staid + os.sep + 'STI'
|
|
1965
|
+
filename_sti = 'Z_RADR_I_Z9852_20230421164954_P_DOR_CDD_STI_NUL_300_NUL_FMT.bin'
|
|
1966
|
+
allresult_sti = decoder.read_sti(filepath_sti, filename_sti)
|
|
1967
|
+
outname_sti = 'pls_sti.txt'
|
|
1968
|
+
decoder.trans_sti_gr2(outpath_gr2,outname_sti,time_type='BJT',bdebug = True)
|
|
1969
|
+
|
|
1970
|
+
|
|
1971
|
+
# meso
|
|
1972
|
+
filepath_meso = rootpath + os.sep + staid + os.sep + 'M'
|
|
1973
|
+
filename_meso = 'Z_RADR_I_Z9852_20230421135042_P_DOR_CDD_M_NUL_200_NUL_FMT.bin'
|
|
1974
|
+
allresult_meso = decoder.read_mda(filepath_meso, filename_meso)
|
|
1975
|
+
outname_meso = 'pls_meso.txt'
|
|
1976
|
+
decoder.trans_mda_gr2(outpath_gr2,outname_meso,time_type='BJT',bdebug = True)
|
|
1977
|
+
|
|
1978
|
+
# tvs
|
|
1979
|
+
filepath_tvs = rootpath + os.sep + staid + os.sep + 'TVS'
|
|
1980
|
+
filename_tvs = 'Z_RADR_I_Z9852_20230421201451_P_DOR_CDD_TVS_NUL_200_NUL_FMT.bin'
|
|
1981
|
+
allresult_tvs = decoder.read_tvs(filepath_tvs, filename_tvs)
|
|
1982
|
+
outname_tvs = 'pls_tvs.txt'
|
|
1983
|
+
decoder.trans_tvs_gr2(outpath_gr2,outname_tvs,time_type='BJT',bdebug = True)
|
|
1984
|
+
|
|
1985
|
+
|
|
1986
|
+
# hail
|
|
1987
|
+
filepath_hail = rootpath + os.sep + staid + os.sep + 'HI'
|
|
1988
|
+
filename_hail = 'Z_RADR_I_Z9852_20230421181642_P_DOR_CDD_HI_NUL_200_NUL_FMT.bin'
|
|
1989
|
+
allresult_hail = decoder.read_hda(filepath_hail, filename_hail)
|
|
1990
|
+
outname_hail = 'pls_hail.txt'
|
|
1991
|
+
decoder.trans_hda_gr2(outpath_gr2,outname_hail,time_type='BJT',bdebug = True)
|
|
1992
|
+
|
|
1993
|
+
# %%
|