metaxy 0.0.1.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (111) hide show
  1. metaxy/__init__.py +170 -0
  2. metaxy/_packaging.py +96 -0
  3. metaxy/_testing/__init__.py +55 -0
  4. metaxy/_testing/config.py +43 -0
  5. metaxy/_testing/metaxy_project.py +780 -0
  6. metaxy/_testing/models.py +111 -0
  7. metaxy/_testing/parametric/__init__.py +13 -0
  8. metaxy/_testing/parametric/metadata.py +664 -0
  9. metaxy/_testing/pytest_helpers.py +74 -0
  10. metaxy/_testing/runbook.py +533 -0
  11. metaxy/_utils.py +35 -0
  12. metaxy/_version.py +1 -0
  13. metaxy/cli/app.py +97 -0
  14. metaxy/cli/console.py +13 -0
  15. metaxy/cli/context.py +167 -0
  16. metaxy/cli/graph.py +610 -0
  17. metaxy/cli/graph_diff.py +290 -0
  18. metaxy/cli/list.py +46 -0
  19. metaxy/cli/metadata.py +317 -0
  20. metaxy/cli/migrations.py +999 -0
  21. metaxy/cli/utils.py +268 -0
  22. metaxy/config.py +680 -0
  23. metaxy/entrypoints.py +296 -0
  24. metaxy/ext/__init__.py +1 -0
  25. metaxy/ext/dagster/__init__.py +54 -0
  26. metaxy/ext/dagster/constants.py +10 -0
  27. metaxy/ext/dagster/dagster_type.py +156 -0
  28. metaxy/ext/dagster/io_manager.py +200 -0
  29. metaxy/ext/dagster/metaxify.py +512 -0
  30. metaxy/ext/dagster/observable.py +115 -0
  31. metaxy/ext/dagster/resources.py +27 -0
  32. metaxy/ext/dagster/selection.py +73 -0
  33. metaxy/ext/dagster/table_metadata.py +417 -0
  34. metaxy/ext/dagster/utils.py +462 -0
  35. metaxy/ext/sqlalchemy/__init__.py +23 -0
  36. metaxy/ext/sqlalchemy/config.py +29 -0
  37. metaxy/ext/sqlalchemy/plugin.py +353 -0
  38. metaxy/ext/sqlmodel/__init__.py +13 -0
  39. metaxy/ext/sqlmodel/config.py +29 -0
  40. metaxy/ext/sqlmodel/plugin.py +499 -0
  41. metaxy/graph/__init__.py +29 -0
  42. metaxy/graph/describe.py +325 -0
  43. metaxy/graph/diff/__init__.py +21 -0
  44. metaxy/graph/diff/diff_models.py +446 -0
  45. metaxy/graph/diff/differ.py +769 -0
  46. metaxy/graph/diff/models.py +443 -0
  47. metaxy/graph/diff/rendering/__init__.py +18 -0
  48. metaxy/graph/diff/rendering/base.py +323 -0
  49. metaxy/graph/diff/rendering/cards.py +188 -0
  50. metaxy/graph/diff/rendering/formatter.py +805 -0
  51. metaxy/graph/diff/rendering/graphviz.py +246 -0
  52. metaxy/graph/diff/rendering/mermaid.py +326 -0
  53. metaxy/graph/diff/rendering/rich.py +169 -0
  54. metaxy/graph/diff/rendering/theme.py +48 -0
  55. metaxy/graph/diff/traversal.py +247 -0
  56. metaxy/graph/status.py +329 -0
  57. metaxy/graph/utils.py +58 -0
  58. metaxy/metadata_store/__init__.py +32 -0
  59. metaxy/metadata_store/_ducklake_support.py +419 -0
  60. metaxy/metadata_store/base.py +1792 -0
  61. metaxy/metadata_store/bigquery.py +354 -0
  62. metaxy/metadata_store/clickhouse.py +184 -0
  63. metaxy/metadata_store/delta.py +371 -0
  64. metaxy/metadata_store/duckdb.py +446 -0
  65. metaxy/metadata_store/exceptions.py +61 -0
  66. metaxy/metadata_store/ibis.py +542 -0
  67. metaxy/metadata_store/lancedb.py +391 -0
  68. metaxy/metadata_store/memory.py +292 -0
  69. metaxy/metadata_store/system/__init__.py +57 -0
  70. metaxy/metadata_store/system/events.py +264 -0
  71. metaxy/metadata_store/system/keys.py +9 -0
  72. metaxy/metadata_store/system/models.py +129 -0
  73. metaxy/metadata_store/system/storage.py +957 -0
  74. metaxy/metadata_store/types.py +10 -0
  75. metaxy/metadata_store/utils.py +104 -0
  76. metaxy/metadata_store/warnings.py +36 -0
  77. metaxy/migrations/__init__.py +32 -0
  78. metaxy/migrations/detector.py +291 -0
  79. metaxy/migrations/executor.py +516 -0
  80. metaxy/migrations/generator.py +319 -0
  81. metaxy/migrations/loader.py +231 -0
  82. metaxy/migrations/models.py +528 -0
  83. metaxy/migrations/ops.py +447 -0
  84. metaxy/models/__init__.py +0 -0
  85. metaxy/models/bases.py +12 -0
  86. metaxy/models/constants.py +139 -0
  87. metaxy/models/feature.py +1335 -0
  88. metaxy/models/feature_spec.py +338 -0
  89. metaxy/models/field.py +263 -0
  90. metaxy/models/fields_mapping.py +307 -0
  91. metaxy/models/filter_expression.py +297 -0
  92. metaxy/models/lineage.py +285 -0
  93. metaxy/models/plan.py +232 -0
  94. metaxy/models/types.py +475 -0
  95. metaxy/py.typed +0 -0
  96. metaxy/utils/__init__.py +1 -0
  97. metaxy/utils/constants.py +2 -0
  98. metaxy/utils/exceptions.py +23 -0
  99. metaxy/utils/hashing.py +230 -0
  100. metaxy/versioning/__init__.py +31 -0
  101. metaxy/versioning/engine.py +656 -0
  102. metaxy/versioning/feature_dep_transformer.py +151 -0
  103. metaxy/versioning/ibis.py +249 -0
  104. metaxy/versioning/lineage_handler.py +205 -0
  105. metaxy/versioning/polars.py +189 -0
  106. metaxy/versioning/renamed_df.py +35 -0
  107. metaxy/versioning/types.py +63 -0
  108. metaxy-0.0.1.dev3.dist-info/METADATA +96 -0
  109. metaxy-0.0.1.dev3.dist-info/RECORD +111 -0
  110. metaxy-0.0.1.dev3.dist-info/WHEEL +4 -0
  111. metaxy-0.0.1.dev3.dist-info/entry_points.txt +4 -0
@@ -0,0 +1,151 @@
1
+ from collections.abc import Sequence
2
+ from functools import cached_property
3
+
4
+ import narwhals as nw
5
+ from narwhals.typing import FrameT
6
+
7
+ from metaxy.models.constants import (
8
+ METAXY_DATA_VERSION_BY_FIELD,
9
+ METAXY_PROVENANCE,
10
+ METAXY_PROVENANCE_BY_FIELD,
11
+ )
12
+ from metaxy.models.feature_spec import FeatureDep, FeatureSpec
13
+ from metaxy.models.plan import FeaturePlan
14
+ from metaxy.models.types import FeatureKey
15
+ from metaxy.versioning.renamed_df import RenamedDataFrame
16
+
17
+
18
+ class FeatureDepTransformer:
19
+ def __init__(self, dep: FeatureDep, plan: FeaturePlan):
20
+ """A class responsible for applying transformations that live on the [metaxy.models.feature_spec.FeatureDep][]:
21
+
22
+ - Filters (from FeatureDep.filters)
23
+ - Renames
24
+ - Selections
25
+
26
+ This is supposed to always run before the upstream metadata is joined.
27
+
28
+ Will also inject Metaxy system columns.
29
+ """
30
+ self.plan = plan
31
+ self.dep = dep
32
+
33
+ # allow adding more in the future
34
+ self.metaxy_columns_to_load = [
35
+ METAXY_PROVENANCE_BY_FIELD,
36
+ METAXY_PROVENANCE,
37
+ METAXY_DATA_VERSION_BY_FIELD,
38
+ ]
39
+
40
+ @cached_property
41
+ def upstream_feature_key(self) -> FeatureKey:
42
+ return self.dep.feature
43
+
44
+ @cached_property
45
+ def upstream_feature_spec(self) -> FeatureSpec:
46
+ return self.plan.parent_features_by_key[self.dep.feature]
47
+
48
+ def transform(
49
+ self, df: FrameT, filters: Sequence[nw.Expr] | None = None
50
+ ) -> RenamedDataFrame[FrameT]:
51
+ """Apply the transformation specified by the feature dependency.
52
+
53
+ Args:
54
+ df: The dataframe to transform, it's expected to represent the raw upstream feature metadata
55
+ as it resides in the metadata store.
56
+ filters: Optional sequence of additional filters to apply to the dataframe **after renames**.
57
+ These are combined with the static filters from FeatureDep.filters.
58
+
59
+ Returns:
60
+ The transformed dataframe coupled with the renamed ID columns
61
+
62
+ """
63
+ # Combine static filters from FeatureDep with any additional filters passed as arguments
64
+ combined_filters: list[nw.Expr] = []
65
+ if self.dep.filters is not None:
66
+ combined_filters.extend(self.dep.filters)
67
+ if filters:
68
+ combined_filters.extend(filters)
69
+
70
+ return (
71
+ RenamedDataFrame(
72
+ df=df, id_columns=list(self.upstream_feature_spec.id_columns)
73
+ )
74
+ .rename(self.renames)
75
+ .filter(combined_filters if combined_filters else None)
76
+ .select(self.renamed_columns)
77
+ )
78
+
79
+ def rename_upstream_metaxy_column(self, column_name: str) -> str:
80
+ """Insert the upstream feature key suffix into the column name.
81
+
82
+ Is typically applied to Metaxy's system columns since they have to be loaded and do not have user-defined renames."""
83
+ return f"{column_name}{self.upstream_feature_key.to_column_suffix()}"
84
+
85
+ @cached_property
86
+ def renamed_provenance_col(self) -> str:
87
+ return self.rename_upstream_metaxy_column(METAXY_PROVENANCE)
88
+
89
+ @cached_property
90
+ def renamed_provenance_by_field_col(self) -> str:
91
+ return self.rename_upstream_metaxy_column(METAXY_PROVENANCE_BY_FIELD)
92
+
93
+ @cached_property
94
+ def renamed_data_version_by_field_col(self) -> str:
95
+ return self.rename_upstream_metaxy_column(METAXY_DATA_VERSION_BY_FIELD)
96
+
97
+ @cached_property
98
+ def renamed_metaxy_cols(self) -> list[str]:
99
+ return list(
100
+ map(self.rename_upstream_metaxy_column, self.metaxy_columns_to_load)
101
+ )
102
+
103
+ @cached_property
104
+ def renames(self) -> dict[str, str]:
105
+ """Get column renames for an upstream feature.
106
+
107
+ Returns:
108
+ Dictionary of column renames
109
+ """
110
+ # TODO: potentially include more system columns here?
111
+ return {
112
+ **(self.dep.rename or {}),
113
+ **{
114
+ col: self.rename_upstream_metaxy_column(col)
115
+ for col in self.metaxy_columns_to_load
116
+ },
117
+ }
118
+
119
+ @cached_property
120
+ def renamed_id_columns(self) -> list[str]:
121
+ return [
122
+ self.renames.get(col, col) for col in self.upstream_feature_spec.id_columns
123
+ ]
124
+
125
+ @cached_property
126
+ def renamed_columns(
127
+ self,
128
+ ) -> list[str] | None:
129
+ """Get columns to select from an upstream feature.
130
+
131
+ There include both original and metaxy-injected columns, all already renamed.
132
+ Users are expected to use renamed column names in their columns specification.
133
+
134
+ Returns:
135
+ List of column names to select, or None to select all columns
136
+ """
137
+
138
+ # If no specific columns requested (None), return None to keep all columns
139
+ # If empty tuple, return only ID columns and system columns
140
+ if self.dep.columns is None:
141
+ return None
142
+ else:
143
+ # Apply renames to the selected columns since selection happens after renaming
144
+ renamed_selected_cols = [
145
+ self.renames.get(col, col) for col in self.dep.columns
146
+ ]
147
+ return [
148
+ *self.renamed_id_columns,
149
+ *renamed_selected_cols,
150
+ *self.renamed_metaxy_cols,
151
+ ]
@@ -0,0 +1,249 @@
1
+ """Ibis implementation of VersioningEngine.
2
+
3
+ CRITICAL: This implementation NEVER materializes lazy expressions.
4
+ All operations stay in the lazy Ibis world for SQL execution.
5
+ """
6
+
7
+ from typing import Protocol, cast
8
+
9
+ import narwhals as nw
10
+ from ibis import Expr as IbisExpr
11
+ from narwhals.typing import FrameT
12
+
13
+ from metaxy.models.plan import FeaturePlan
14
+ from metaxy.versioning.engine import VersioningEngine
15
+ from metaxy.versioning.types import HashAlgorithm
16
+
17
+
18
+ class IbisHashFn(Protocol):
19
+ def __call__(self, expr: IbisExpr) -> IbisExpr: ...
20
+
21
+
22
+ class IbisVersioningEngine(VersioningEngine):
23
+ """Provenance engine using Ibis for SQL databases.
24
+
25
+ Only implements hash_string_column and build_struct_column.
26
+ All logic lives in the base class.
27
+
28
+ CRITICAL: This implementation NEVER leaves the lazy world.
29
+ All operations stay as Ibis expressions that compile to SQL.
30
+ """
31
+
32
+ def __init__(
33
+ self,
34
+ plan: FeaturePlan,
35
+ hash_functions: dict[HashAlgorithm, IbisHashFn],
36
+ ) -> None:
37
+ """Initialize the Ibis engine.
38
+
39
+ Args:
40
+ plan: Feature plan to track provenance for
41
+ backend: Ibis backend instance (e.g., ibis.duckdb.connect())
42
+ hash_functions: Mapping from HashAlgorithm to Ibis hash functions.
43
+ Each function takes an Ibis expression and returns an Ibis expression.
44
+ """
45
+ super().__init__(plan)
46
+ self.hash_functions: dict[HashAlgorithm, IbisHashFn] = hash_functions
47
+
48
+ @classmethod
49
+ def implementation(cls) -> nw.Implementation:
50
+ return nw.Implementation.IBIS
51
+
52
+ def hash_string_column(
53
+ self,
54
+ df: FrameT,
55
+ source_column: str,
56
+ target_column: str,
57
+ hash_algo: HashAlgorithm,
58
+ ) -> FrameT:
59
+ """Hash a string column using Ibis hash functions.
60
+
61
+ Args:
62
+ df: Narwhals DataFrame backed by Ibis
63
+ source_column: Name of string column to hash
64
+ target_column: Name for the new column containing the hash
65
+ hash_algo: Hash algorithm to use
66
+
67
+ Returns:
68
+ Narwhals DataFrame with new hashed column added, backed by Ibis.
69
+ The source column remains unchanged.
70
+ """
71
+ if hash_algo not in self.hash_functions:
72
+ raise ValueError(
73
+ f"Hash algorithm {hash_algo} not supported by this Ibis backend. "
74
+ f"Supported: {list(self.hash_functions.keys())}"
75
+ )
76
+
77
+ # Import ibis lazily (module-level import restriction)
78
+ import ibis.expr.types
79
+
80
+ # Convert to Ibis table
81
+ assert df.implementation == nw.Implementation.IBIS, (
82
+ "Only Ibis DataFrames are accepted"
83
+ )
84
+ ibis_table: ibis.expr.types.Table = cast(ibis.expr.types.Table, df.to_native())
85
+
86
+ # Get hash function
87
+ hash_fn = self.hash_functions[hash_algo]
88
+
89
+ # Apply hash to source column
90
+ # Hash functions are responsible for returning strings
91
+ hashed = hash_fn(ibis_table[source_column])
92
+
93
+ # Add new column with the hash
94
+ result_table = ibis_table.mutate(**{target_column: hashed}) # pyright: ignore[reportArgumentType]
95
+
96
+ # Convert back to Narwhals
97
+ return cast(FrameT, nw.from_native(result_table))
98
+
99
+ @staticmethod
100
+ def build_struct_column(
101
+ df: FrameT,
102
+ struct_name: str,
103
+ field_columns: dict[str, str],
104
+ ) -> FrameT:
105
+ """Build a struct column from existing columns.
106
+
107
+ Args:
108
+ df: Narwhals DataFrame backed by Ibis
109
+ struct_name: Name for the new struct column
110
+ field_columns: Mapping from struct field names to column names
111
+
112
+ Returns:
113
+ Narwhals DataFrame with new struct column added, backed by Ibis.
114
+ The source columns remain unchanged.
115
+ """
116
+ # Import ibis lazily
117
+ import ibis.expr.types
118
+
119
+ # Convert to Ibis table
120
+ assert df.implementation == nw.Implementation.IBIS, (
121
+ "Only Ibis DataFrames are accepted"
122
+ )
123
+ ibis_table: ibis.expr.types.Table = cast(ibis.expr.types.Table, df.to_native())
124
+
125
+ # Build struct expression - reference columns by name
126
+ struct_expr = ibis.struct(
127
+ {
128
+ field_name: ibis_table[col_name]
129
+ for field_name, col_name in field_columns.items()
130
+ }
131
+ )
132
+
133
+ # Add struct column
134
+ result_table = ibis_table.mutate(**{struct_name: struct_expr})
135
+
136
+ # Convert back to Narwhals
137
+ return cast(FrameT, nw.from_native(result_table))
138
+
139
+ @staticmethod
140
+ def aggregate_with_string_concat(
141
+ df: FrameT,
142
+ group_by_columns: list[str],
143
+ concat_column: str,
144
+ concat_separator: str,
145
+ exclude_columns: list[str],
146
+ ) -> FrameT:
147
+ """Aggregate DataFrame by grouping and concatenating strings.
148
+
149
+ Args:
150
+ df: Narwhals DataFrame backed by Ibis
151
+ group_by_columns: Columns to group by
152
+ concat_column: Column containing strings to concatenate within groups
153
+ concat_separator: Separator to use when concatenating strings
154
+ exclude_columns: Columns to exclude from aggregation
155
+
156
+ Returns:
157
+ Narwhals DataFrame with one row per group.
158
+ """
159
+ # Import ibis lazily
160
+ import ibis
161
+ import ibis.expr.types
162
+
163
+ # Convert to Ibis table
164
+ assert df.implementation == nw.Implementation.IBIS, (
165
+ "Only Ibis DataFrames are accepted"
166
+ )
167
+ ibis_table: ibis.expr.types.Table = cast(ibis.expr.types.Table, df.to_native())
168
+
169
+ # Build aggregation expressions
170
+ agg_exprs = {}
171
+
172
+ # Concatenate the concat_column with separator
173
+ agg_exprs[concat_column] = ibis_table[concat_column].group_concat(
174
+ concat_separator
175
+ )
176
+
177
+ # Take first value for all other columns (except group_by and exclude)
178
+ all_columns = set(ibis_table.columns)
179
+ columns_to_aggregate = (
180
+ all_columns - set(group_by_columns) - {concat_column} - set(exclude_columns)
181
+ )
182
+
183
+ for col in columns_to_aggregate:
184
+ agg_exprs[col] = ibis_table[
185
+ col
186
+ ].arbitrary() # Take any value (like first())
187
+
188
+ # Perform groupby and aggregate
189
+ result_table = ibis_table.group_by(group_by_columns).aggregate(**agg_exprs)
190
+
191
+ # Convert back to Narwhals
192
+ return cast(FrameT, nw.from_native(result_table))
193
+
194
+ @staticmethod
195
+ def keep_latest_by_group(
196
+ df: FrameT,
197
+ group_columns: list[str],
198
+ timestamp_column: str,
199
+ ) -> FrameT:
200
+ """Keep only the latest row per group based on a timestamp column.
201
+
202
+ Uses argmax aggregation to get the value from each column where the
203
+ timestamp is maximum. This is simpler and more semantically clear than
204
+ window functions.
205
+
206
+ Args:
207
+ df: Narwhals DataFrame/LazyFrame backed by Ibis
208
+ group_columns: Columns to group by (typically ID columns)
209
+ timestamp_column: Column to use for determining "latest" (typically metaxy_created_at)
210
+
211
+ Returns:
212
+ Narwhals DataFrame/LazyFrame with only the latest row per group
213
+
214
+ Raises:
215
+ ValueError: If timestamp_column doesn't exist in df
216
+ """
217
+ # Import ibis lazily
218
+ import ibis.expr.types
219
+
220
+ # Convert to Ibis table
221
+ assert df.implementation == nw.Implementation.IBIS, (
222
+ "Only Ibis DataFrames are accepted"
223
+ )
224
+
225
+ # Check if timestamp_column exists
226
+ if timestamp_column not in df.columns:
227
+ raise ValueError(
228
+ f"Timestamp column '{timestamp_column}' not found in DataFrame. "
229
+ f"Available columns: {df.columns}"
230
+ )
231
+
232
+ ibis_table: ibis.expr.types.Table = cast(ibis.expr.types.Table, df.to_native())
233
+
234
+ # Use argmax aggregation: for each column, get the value where timestamp is maximum
235
+ # This directly expresses "get the row with the latest timestamp per group"
236
+ all_columns = set(ibis_table.columns)
237
+ non_group_columns = all_columns - set(group_columns)
238
+
239
+ # Build aggregation dict: for each non-group column, use argmax(timestamp)
240
+ agg_exprs = {
241
+ col: ibis_table[col].argmax(ibis_table[timestamp_column])
242
+ for col in non_group_columns
243
+ }
244
+
245
+ # Perform groupby and aggregate
246
+ result_table = ibis_table.group_by(group_columns).aggregate(**agg_exprs)
247
+
248
+ # Convert back to Narwhals
249
+ return cast(FrameT, nw.from_native(result_table))
@@ -0,0 +1,205 @@
1
+ """Handler for normalizing provenance based on lineage relationships.
2
+
3
+ This module provides abstractions for handling different lineage relationship types
4
+ (identity, aggregation, expansion) when comparing expected vs current provenance.
5
+ """
6
+
7
+ from __future__ import annotations
8
+
9
+ from abc import ABC, abstractmethod
10
+ from typing import TYPE_CHECKING
11
+
12
+ import narwhals as nw
13
+ from narwhals.typing import FrameT
14
+
15
+ from metaxy.models.constants import METAXY_PROVENANCE, METAXY_PROVENANCE_BY_FIELD
16
+ from metaxy.models.lineage import ExpansionRelationship
17
+ from metaxy.utils.hashing import get_hash_truncation_length
18
+
19
+ if TYPE_CHECKING:
20
+ from metaxy.models.plan import FeaturePlan
21
+ from metaxy.versioning.engine import VersioningEngine
22
+ from metaxy.versioning.types import HashAlgorithm
23
+
24
+
25
+ class LineageHandler(ABC):
26
+ """Base class for handling lineage-based provenance normalization."""
27
+
28
+ def __init__(self, feature_plan: FeaturePlan, engine: VersioningEngine):
29
+ """Initialize handler with feature plan and engine.
30
+
31
+ Args:
32
+ feature_plan: The feature plan containing lineage information
33
+ engine: The provenance engine instance
34
+ """
35
+ self.plan = feature_plan
36
+ self.feature_spec = feature_plan.feature
37
+ self.engine = engine
38
+
39
+ @abstractmethod
40
+ def normalize_for_comparison(
41
+ self,
42
+ expected: FrameT,
43
+ current: FrameT,
44
+ hash_algorithm: HashAlgorithm,
45
+ ) -> tuple[FrameT, FrameT, list[str]]:
46
+ """Normalize expected and current DataFrames for provenance comparison.
47
+
48
+ Args:
49
+ expected: Expected metadata computed from upstream
50
+ current: Current metadata from store
51
+ hash_algorithm: Hash algorithm to use
52
+ hash_length: Hash truncation length
53
+
54
+ Returns:
55
+ Tuple of (normalized_expected, normalized_current, join_columns)
56
+ """
57
+ pass
58
+
59
+
60
+ class IdentityLineageHandler(LineageHandler):
61
+ """Handler for 1:1 identity lineage relationships.
62
+
63
+ No normalization needed - each upstream row maps to exactly one downstream row.
64
+ """
65
+
66
+ def normalize_for_comparison(
67
+ self,
68
+ expected: FrameT,
69
+ current: FrameT,
70
+ hash_algorithm: HashAlgorithm,
71
+ ) -> tuple[FrameT, FrameT, list[str]]:
72
+ """No normalization needed for identity relationships."""
73
+ id_columns = list(self.feature_spec.id_columns)
74
+ return expected, current, id_columns
75
+
76
+
77
+ class AggregationLineageHandler(LineageHandler):
78
+ """Handler for N:1 aggregation lineage relationships.
79
+
80
+ Multiple upstream rows aggregate to one downstream row. We need to:
81
+ 1. Group expected metadata by aggregation columns (sorted within group)
82
+ 2. Concatenate provenance values deterministically
83
+ 3. Hash the concatenated result using engine's hash method
84
+ """
85
+
86
+ def normalize_for_comparison(
87
+ self,
88
+ expected: FrameT,
89
+ current: FrameT,
90
+ hash_algorithm: HashAlgorithm,
91
+ ) -> tuple[FrameT, FrameT, list[str]]:
92
+ """Aggregate expected provenance by grouping."""
93
+ id_columns = list(self.feature_spec.id_columns)
94
+ agg_result = self.feature_spec.lineage.get_aggregation_columns(id_columns)
95
+ assert agg_result is not None, (
96
+ "Aggregation relationship must have aggregation columns"
97
+ )
98
+ agg_columns = list(agg_result)
99
+
100
+ # Aggregate expected provenance
101
+ expected_agg = self._aggregate_provenance(expected, agg_columns, hash_algorithm)
102
+
103
+ return expected_agg, current, agg_columns
104
+
105
+ def _aggregate_provenance(
106
+ self,
107
+ expected: FrameT,
108
+ agg_columns: list[str],
109
+ hash_algorithm: HashAlgorithm,
110
+ ) -> FrameT:
111
+ """Aggregate provenance for N:1 relationships.
112
+
113
+ Strategy:
114
+ 1. Sort by id_columns within each group for deterministic ordering
115
+ 2. Group by aggregation columns and concatenate provenance with engine's method
116
+ 3. Hash the concatenated result using engine's hash_string_column
117
+
118
+ Args:
119
+ expected: Expected metadata with upstream provenance
120
+ agg_columns: Columns to group by
121
+ hash_algorithm: Hash algorithm to use
122
+ hash_length: Length to truncate hash to
123
+
124
+ Returns:
125
+ Aggregated DataFrame with one row per group
126
+ """
127
+ # Sort by all id_columns for deterministic ordering within groups
128
+ id_columns = list(self.feature_spec.id_columns)
129
+ expected_sorted = expected.sort(id_columns)
130
+
131
+ # Use engine's aggregate_with_string_concat method
132
+ # This concatenates provenance strings and stores in a temporary column
133
+ grouped = self.engine.aggregate_with_string_concat(
134
+ df=expected_sorted,
135
+ group_by_columns=agg_columns,
136
+ concat_column=METAXY_PROVENANCE,
137
+ concat_separator="|",
138
+ exclude_columns=[METAXY_PROVENANCE_BY_FIELD],
139
+ )
140
+
141
+ # Hash the concatenated provenance using engine's method
142
+ # Note: the concat column still has name METAXY_PROVENANCE after aggregation
143
+ hashed = self.engine.hash_string_column(
144
+ grouped, METAXY_PROVENANCE, "__hashed_prov", hash_algorithm
145
+ )
146
+
147
+ # Replace METAXY_PROVENANCE with truncated hash
148
+ hashed = hashed.drop(METAXY_PROVENANCE).rename(
149
+ {"__hashed_prov": METAXY_PROVENANCE}
150
+ )
151
+ hashed = hashed.with_columns(
152
+ nw.col(METAXY_PROVENANCE).str.slice(0, get_hash_truncation_length())
153
+ )
154
+
155
+ # Create placeholder provenance_by_field struct using engine's method
156
+ field_names = [f.key.to_struct_key() for f in self.plan.feature.fields]
157
+ field_map = {name: "__aggregated_placeholder" for name in field_names}
158
+
159
+ # Add placeholder column
160
+ hashed = hashed.with_columns(
161
+ nw.lit("aggregated").alias("__aggregated_placeholder")
162
+ )
163
+
164
+ # Build struct using engine's method
165
+ result = self.engine.build_struct_column(
166
+ hashed, METAXY_PROVENANCE_BY_FIELD, field_map
167
+ )
168
+
169
+ # Drop placeholder
170
+ result = result.drop("__aggregated_placeholder")
171
+
172
+ return result
173
+
174
+
175
+ class ExpansionLineageHandler(LineageHandler):
176
+ """Handler for 1:N expansion lineage relationships.
177
+
178
+ One upstream row expands to many downstream rows. All downstream rows
179
+ with the same parent ID should have the same provenance. We group
180
+ current by parent columns and take any representative row.
181
+ """
182
+
183
+ def normalize_for_comparison(
184
+ self,
185
+ expected: FrameT,
186
+ current: FrameT,
187
+ hash_algorithm: HashAlgorithm,
188
+ ) -> tuple[FrameT, FrameT, list[str]]:
189
+ """Group current by parent ID columns."""
190
+ # Access the ExpansionRelationship to get the .on attribute
191
+ assert isinstance(self.feature_spec.lineage.relationship, ExpansionRelationship)
192
+ parent_columns = list(self.feature_spec.lineage.relationship.on)
193
+
194
+ # Group current by parent columns and take any representative row
195
+ current_grouped = (
196
+ current.with_columns(nw.lit(True).alias("_dummy"))
197
+ .filter(
198
+ nw.col("_dummy")
199
+ .is_first_distinct()
200
+ .over(*parent_columns, order_by="_dummy")
201
+ )
202
+ .drop("_dummy")
203
+ )
204
+
205
+ return expected, current_grouped, parent_columns