metacountregressor 1.0.11__py3-none-any.whl → 1.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -186,13 +186,21 @@ def main(args, **kwargs):
186
186
  }
187
187
  a_des, df = helperprocess.set_up_analyst_constraints(df, model_terms)
188
188
  # some example argument, these are defualt so the following line is just for claritity
189
- args = {'algorithm': 'hs', 'test_percentage': 0.15, 'test_complexity': 6, 'instance_number': 1,
189
+ AMALAN = False
190
+ if AMALAN:
191
+
192
+ args = {'algorithm': 'hs', 'test_percentage': 0.15, 'test_complexity': 6, 'instance_number': 1,
190
193
  'val_percentage': 0.15, 'obj_1': 'bic', '_obj_2': 'RMSE_TEST', "MAX_TIME": 600, 'desicions':a_des, 'is_multi': 1}
194
+ else:
195
+
196
+ args = {'algorithm': 'hs', 'test_percentage': 0, 'test_complexity': 2, 'instance_number': 1,
197
+ 'val_percentage': 0, 'obj_1': 'bic', '_obj_2': 'RMSE_TEST', "MAX_TIME": 600, 'desicions': a_des,
198
+ 'is_multi': False, 'grad_est': True, 'non_sig_prints':True, 'model_types': [[0]], 'run_bootstrap':0, 'r_nu_hess':0, '_transformations': ["no", "no", "nil", 'log']}
191
199
  # Fit the model with metacountregressor
192
200
  # Step 5: Transform the dataset based on the configuration
193
201
  #data_new = helperprocess.transform_dataframe(dataset, config)
194
202
  y = df[['Y']]
195
- X = df.drop(columns=['Y'])
203
+ X = df.drop(columns=['Y', 'ID', 'TRAIN', 'MXMEDSH', 'DECLANES', 'DOUBLE', 'INTECHAG', 'MINRAD', 'PEAKHR', 'AVESNOW', 'FC', 'SINGLE', 'WIDTH', 'MEDWIDTH', 'CURVES', 'URB', 'ADTLANE', 'GRADEBR', 'SLOPE', 'MIMEDSH', 'TANGENT', 'AVEPRE', 'ACCESS'])
196
204
  obj_fun = ObjectiveFunction(X, y, **args)
197
205
  # replace with other metaheuristics if desired
198
206
  results = harmony_search(obj_fun)