metacountregressor 0.1.89__py3-none-any.whl → 0.1.97__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -271,7 +271,17 @@ def guess_low_medium_high(column_name, series):
271
271
  # Compute the tertiles (33rd and 66th percentiles)
272
272
  #print('did it make it...')
273
273
  #mode_value = st.mode(series) # Get the most frequent value
274
- #print('good')
274
+ #i dont think this works cayse its not a seriers any other way
275
+ is_binary = series.isin([0, 1]).all()
276
+ if is_binary:
277
+ return {
278
+ 'type': 'binary',
279
+ 'bins': [0,1],
280
+ 'labels': ['Off', 'On'],
281
+ 'prefix': f'{column_name}'
282
+
283
+ }
284
+
275
285
  # series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
276
286
  low_threshold = np.quantile(series, 0.33)
277
287
  high_threshold = np.quantile(series,0.66)
@@ -256,10 +256,11 @@ class ObjectiveFunction(object):
256
256
  self.is_multi = False
257
257
 
258
258
  if 'panels' in kwargs and not (kwargs.get('panels') == None):
259
- self.group_names = np.asarray(x_data[kwargs['group']].astype('category').cat._parent.dtype.categories)
259
+ if kwargs.get('group') is not None:
260
+ self.group_names = np.asarray(x_data[kwargs['group']].astype('category').cat._parent.dtype.categories)
260
261
 
261
- x_data[kwargs['group']] = x_data[kwargs['group']].astype(
262
- 'category').cat.codes
262
+ x_data[kwargs['group']] = x_data[kwargs['group']].astype(
263
+ 'category').cat.codes
263
264
  self.complexity_level = 6
264
265
  # create test dataset
265
266
 
@@ -309,10 +310,13 @@ class ObjectiveFunction(object):
309
310
  df_train[kwargs['panels']]) if kwargs['panels'] is not None else None
310
311
  self.ids_test = np.asarray(
311
312
  df_test[kwargs['panels']]) if kwargs['panels'] is not None else None
312
- groupll = np.asarray(df_train[kwargs['group']].astype(
313
- 'category').cat.codes)
314
- group_test = np.asarray(df_test[kwargs['group']].astype(
315
- 'category').cat.codes)
313
+ if kwargs.get('group') is not None:
314
+ groupll = np.asarray(df_train[kwargs['group']].astype(
315
+ 'category').cat.codes)
316
+ group_test = np.asarray(df_test[kwargs['group']].astype(
317
+ 'category').cat.codes)
318
+ else:
319
+ groupll = None
316
320
  X, Y, panel, group = self._arrange_long_format(
317
321
  df_train, y_train, self.ids, self.ids, groupll)
318
322
  self.group_halton = group.copy()
@@ -501,7 +505,7 @@ class ObjectiveFunction(object):
501
505
  self._max_hurdle = 4
502
506
 
503
507
  #Manually fit from analyst specification
504
- manual_fit = kwargs.get('Manual_Fit')
508
+ manual_fit = kwargs.get('Manual_Fit', None)
505
509
  if manual_fit is not None:
506
510
  print('fitting manual')
507
511
  self.process_manual_fit(manual_fit)
@@ -538,7 +542,7 @@ class ObjectiveFunction(object):
538
542
  if self.is_multi:
539
543
  self._offsets_test = self._x_data_test[:, :, val_od]
540
544
  self._x_data_test = self.remove_offset(self._x_data_test, val_od)
541
- print(self._offsets)
545
+ #print(self._offsets)
542
546
  else:
543
547
  self.initialize_empty_offsets()
544
548
 
@@ -2361,7 +2365,7 @@ class ObjectiveFunction(object):
2361
2365
  sorted(my_dict, key=lambda x: x[0]['pval_percentage'])
2362
2366
 
2363
2367
  def get_fitness(self, vector, multi=False, verbose=False, max_routine=3):
2364
- obj_1 = 10.0 ** 5
2368
+ obj_1 = 10.0 ** 4
2365
2369
  obj_best = None
2366
2370
  sub_slns = list()
2367
2371
 
@@ -2453,7 +2457,7 @@ class ObjectiveFunction(object):
2453
2457
 
2454
2458
 
2455
2459
  if not self.is_quanitifiable_num(obj_1[self._obj_1]):
2456
- obj_1[self._obj_1] = 10 ** 9
2460
+ obj_1[self._obj_1] = 10 ** 5
2457
2461
  else:
2458
2462
  if obj_1[self._obj_1] <= 0:
2459
2463
  obj_1[self._obj_1] = 10 ** 9
@@ -3561,8 +3565,10 @@ class ObjectiveFunction(object):
3561
3565
  # Compute: betas = mean + sd*draws
3562
3566
  if len(br_sd) != draws.shape[1]:
3563
3567
  #get the same size as the mean
3564
- betas_random = self.Br.copy()
3565
-
3568
+ #if hasattr(self.Br):
3569
+ # betas_random = self.Br.copy()
3570
+ #else:
3571
+ betas_random = br_mean[None, :, None] + draws * br_sd[None, :, None]
3566
3572
  '''
3567
3573
  c = self.get_num_params()[3:5]
3568
3574
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.89
3
+ Version: 0.1.97
4
4
  Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=NmUT0COc9Snxaz9TCV_EQgD2duKuDq_-9673evzv8D4,21887
6
+ metacountregressor/helperprocess.py,sha256=dfNLJzsl58YHWPa_--m1Wg6ttPubHc-m_DAxFI0rouA,22157
7
7
  metacountregressor/main.py,sha256=xfpKN2w0kePHp_Q2HOPjtG15PLEN1L3sEnDw1PHBquw,23668
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=rIdBa28EroIYqoE8ZI1isuj_o-tOWHo6jKi1HQJ06lU,106292
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=iBFew32bS1YZfEBc0USNbd3i0XKRNCTxXxbltHuJVAM,279244
14
+ metacountregressor/solution.py,sha256=PgGPqxIJhXV5kAOrhPrhY2HC3LtjW7qOkFByh9rpvUc,279566
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.89.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.89.dist-info/METADATA,sha256=YpFeRa-wo-cTtD2cs0zKH43w157RR5guLU_mJnZnrfw,23535
18
- metacountregressor-0.1.89.dist-info/WHEEL,sha256=nn6H5-ilmfVryoAQl3ZQ2l8SH5imPWFpm1A5FgEuFV4,91
19
- metacountregressor-0.1.89.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.89.dist-info/RECORD,,
16
+ metacountregressor-0.1.97.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.97.dist-info/METADATA,sha256=yJTPnzZKd1Ncg8tV3yTqwiLjp2CgAnqkED5bMGhrQsE,23535
18
+ metacountregressor-0.1.97.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
19
+ metacountregressor-0.1.97.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.97.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.1)
2
+ Generator: setuptools (75.8.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5