metacountregressor 0.1.73__py3-none-any.whl → 0.1.88__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: metacountregressor
3
- Version: 0.1.73
3
+ Version: 0.1.88
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -11,12 +11,18 @@ Description-Content-Type: text/markdown
11
11
  License-File: LICENSE.txt
12
12
  Requires-Dist: numpy >=1.13.1
13
13
  Requires-Dist: scipy >=1.0.0
14
+ Requires-Dist: requests
14
15
 
15
16
  <div style="display: flex; align-items: center;">
16
- <img src="https://github.com/zahern/data/raw/main/m.png" alt="My Image" style="width: 200px; margin-right: 20px;">
17
+ <img src="https://github.com/zahern/data/raw/main/m.png" alt="My Image" style="width: 100px; margin-right: 20px;">
17
18
  <p><span style="font-size: 60px;"><strong>MetaCountRegressor</strong></span></p>
18
19
  </div>
19
20
 
21
+ # Tutorial also available as a jupyter notebook
22
+ [Download Example Notebook](https://github.com/zahern/CountDataEstimation/blob/main/Tutorial.ipynb)
23
+
24
+ The tutorial provides more extensive examples on how to run the code and perform experiments. Further documentation is currently in development.
25
+
20
26
  ##### Quick Setup
21
27
  The Below code demonstrates how to set up automatic optimization assisted by the harmony search algorithm. References to the Differential Evolution and Simulated Annealing has been mentioned (change accordingly)
22
28
 
@@ -35,8 +41,15 @@ from metacountregressor.solution import ObjectiveFunction
35
41
  from metacountregressor.metaheuristics import (harmony_search,
36
42
  differential_evolution,
37
43
  simulated_annealing)
44
+
45
+
38
46
  ```
39
47
 
48
+ loaded standard packages
49
+ loaded helper
50
+ testing
51
+
52
+
40
53
  #### Basic setup.
41
54
  The initial setup involves reading in the data and selecting an optimization algorithm. As the runtime progresses, new solutions will be continually evaluated. Finally, at the end of the runtime, the best solution will be identified and printed out. In the case of multiple objectives all of the best solutions will be printed out that belong to the Pareto frontier.
42
55
 
@@ -53,7 +66,7 @@ X = df.drop(columns=['FREQ', 'ID', 'AADT'])
53
66
 
54
67
  #some example argument, these are defualt so the following line is just for claritity. See the later agruments section for detials.
55
68
  arguments = {'algorithm': 'hs', 'test_percentage': 0.15, 'test_complexity': 6, 'instance_number':1,
56
- 'val_percentage':0.15, 'obj_1': 'bic', '_obj_2': 'RMSE_TEST', "MAX_TIME": 6}
69
+ 'val_percentage':0.15, 'obj_1': 'bic', '_obj_2': 'RMSE_TEST', "_max_time": 6}
57
70
  # Fit the model with metacountregressor
58
71
  obj_fun = ObjectiveFunction(X, y, **arguments)
59
72
  #replace with other metaheuristics if desired
@@ -71,7 +84,7 @@ Note: Please Consider the main arguments to change.
71
84
  - `val_percentage`: This parameter represents the percentage of data used to validate the model. The value 0.15 corresponds to 15% of the data.
72
85
  - `test_complexity`: This parameter defines the complexity level for testing. The value 6 tests all complexities. Alternatively, you can provide a list of numbers to consider different complexities. The complexities are further explained later in this document.
73
86
  - `instance_number`: This parameter is used to give a name to the outputs.
74
- - `obj_1`: This parameter has multiple choices for obj_1, such as 'bic', 'aic', and 'hqic'. Only one choice should be defined as a string value.
87
+ - `_obj_1`: This parameter has multiple choices for obj_1, such as 'bic', 'aic', and 'hqic'. Only one choice should be defined as a string value.
75
88
  - `_obj_2`: This parameter has multiple choices for objective 2, such as 'RMSE_TEST', 'MSE_TEST', and 'MAE_TEST'.
76
89
  - `_max_time`: This parameter specifies the maximum number of seconds for the total estimation before stopping.
77
90
  - `distribution`: This parameter is a list of distributions to consider. Please select all of the available options and put them into a list of valid options if you want to to consider the distribution type for use when modellign with random parameters. The valid options include: 'Normal', 'LnNormal', 'Triangular', and 'Uniform'.
@@ -80,7 +93,7 @@ Note: Please Consider the main arguments to change.
80
93
 
81
94
 
82
95
 
83
- ### An Example of changing the arguments.
96
+ ### Example of changing the arguments:
84
97
  Modify the arguments according to your preferences using the commented code as a guide.
85
98
 
86
99
 
@@ -108,16 +121,18 @@ Listed below is an example of how to specify an initial solution within the fram
108
121
 
109
122
 
110
123
  ```python
111
- #Model Decisions, Specify for Intial Optimization
124
+ #Model Decisions, Specify for initial solution that will be optimised.
112
125
  manual_fit_spec = {
113
126
  'fixed_terms': ['SINGLE', 'LENGTH'],
114
127
  'rdm_terms': ['AADT:normal'],
115
- 'rdm_cor_terms': ['GRADEBR:uniform', 'CURVES:triangular'],
128
+ 'rdm_cor_terms': ['GRADEBR:normal', 'CURVES:normal'],
116
129
  'grouped_terms': [],
117
130
  'hetro_in_means': ['ACCESS:normal', 'MINRAD:normal'],
118
131
  'transformations': ['no', 'no', 'log', 'no', 'no', 'no', 'no'],
119
- 'dispersion': 1
132
+ 'dispersion': 0
120
133
  }
134
+
135
+
121
136
  #Search Arguments
122
137
  arguments = {
123
138
  'algorithm': 'hs',
@@ -129,7 +144,47 @@ arguments = {
129
144
  obj_fun = ObjectiveFunction(X, y, **arguments)
130
145
  ```
131
146
 
132
- simarly to return the results feed the objective function into a metaheuristic solution algorithm. An example of this is provided below:
147
+ Setup Complete...
148
+ Benchmaking test with Seed 42
149
+ --------------------------------------------------------------------------------
150
+ Log-Likelihood: -1339.1862434675106
151
+ --------------------------------------------------------------------------------
152
+ bic: 2732.31
153
+ --------------------------------------------------------------------------------
154
+ MSE: 650856.32
155
+ +--------------------------+--------+-------+----------+----------+------------+
156
+ | Effect | $\tau$ | Coeff | Std. Err | z-values | Prob |z|>Z |
157
+ +==========================+========+=======+==========+==========+============+
158
+ | LENGTH | no | -0.15 | 0.01 | -12.98 | 0.00*** |
159
+ +--------------------------+--------+-------+----------+----------+------------+
160
+ | SINGLE | no | -2.46 | 0.04 | -50.00 | 0.00*** |
161
+ +--------------------------+--------+-------+----------+----------+------------+
162
+ | GRADEBR | log | 4.23 | 0.10 | 42.17 | 0.00*** |
163
+ +--------------------------+--------+-------+----------+----------+------------+
164
+ | CURVES | no | 0.51 | 0.01 | 34.78 | 0.00*** |
165
+ +--------------------------+--------+-------+----------+----------+------------+
166
+ | Chol: GRADEBR (Std. | | 2.21 | 0.00 | 50.00 | 0.00*** |
167
+ | Dev. normal) ) | | | | | |
168
+ +--------------------------+--------+-------+----------+----------+------------+
169
+ | Chol: CURVES (Std. Dev. | | -0.51 | 0.00 | -50.00 | 0.00*** |
170
+ | normal) ) | | | | | |
171
+ +--------------------------+--------+-------+----------+----------+------------+
172
+ | Chol: CURVES (Std. Dev. | no | 0.55 | 0.00 | 50.00 | 0.00*** |
173
+ | normal) . GRADEBR (Std. | | | | | |
174
+ | Dev. normal ) | | | | | |
175
+ +--------------------------+--------+-------+----------+----------+------------+
176
+ | main: MINRAD: hetro | no | -0.00 | 0.00 | -44.36 | 0.00*** |
177
+ | group 0 | | | | | |
178
+ +--------------------------+--------+-------+----------+----------+------------+
179
+ | ACCESS: hetro group 0 | | 0.68 | 0.09 | 7.68 | 0.00*** |
180
+ +--------------------------+--------+-------+----------+----------+------------+
181
+ | main: MINRAD: hetro | | -0.00 | 0.00 | -44.86 | 0.00*** |
182
+ | group 0:normal:sd hetro | | | | | |
183
+ | group 0 | | | | | |
184
+ +--------------------------+--------+-------+----------+----------+------------+
185
+
186
+
187
+ Simarly to return the results feed the objective function into a metaheuristic solution algorithm. An example of this is provided below:
133
188
 
134
189
 
135
190
  ```python
@@ -137,7 +192,7 @@ results = harmony_search(obj_fun)
137
192
  print(results)
138
193
  ```
139
194
 
140
- ## Notes:
195
+ # Notes:
141
196
  ### Capabilities of the software include:
142
197
  * Handling of Panel Data
143
198
  * Support for Data Transformations
@@ -155,11 +210,11 @@ Capability to handle heterogeneity in the means of the random parameters
155
210
  * Customization of Hyper-parameters to solve problems tailored to your dataset
156
211
  * Out-of-the-box optimization capability using default metaheuristics
157
212
 
158
- ### Intreting the output of the model:
213
+ ### Intepreting the output of the model:
159
214
  A regression table is produced. The following text elements are explained:
160
215
  - Std. Dev.: This column appears for effects that are related to random paramters and displays the assument distributional assumption next to it
161
216
  - Chol: This term refers to Cholesky decomposition element, to show the correlation between two random paramaters. The combination of the cholesky element on iyself is equivalent to a normal random parameter.
162
- - hetro group #: This term represents the heterogeneity group number, which refers all of the contributing factors that share hetrogentiy in the means to each other under the same numbered value.
217
+ - hetro group: This term represents the heterogeneity group number, which refers all of the contributing factors that share hetrogentiy in the means to each other under the same numbered value.
163
218
  - $\tau$: This column, displays the type of transformation that was applied to the specific contributing factor in the data.
164
219
 
165
220
 
@@ -211,10 +266,10 @@ The following list describes the arguments available in this function. By defaul
211
266
 
212
267
  8. **`_max_time`**: This argument is used to add a termination time in the algorithm. It takes values as seconds. Note the time is only dependenant on the time after intial population of solutions are generated.
213
268
 
214
- # Example
269
+ ## Example: Assistance by Harmony Search
215
270
 
216
271
 
217
- Let's start by fitting very simple models, use those model sto help and define the objectives, then perform more of an extensive search on the variables that are identified more commonly
272
+ Let's begin by fitting very simple models and use the structure of these models to define our objectives. Then, we can conduct a more extensive search on the variables that are more frequently identified. For instance, in the case below, the complexity is level 3, indicating that we will consider, at most randomly correlated parameters. This approach is useful for initially identifying a suitable set of contributing factors for our search.
218
273
 
219
274
 
220
275
 
@@ -241,27 +296,30 @@ arguments = {
241
296
  '_max_time': 10000
242
297
  }
243
298
  obj_fun = ObjectiveFunction(X, y, **arguments)
244
-
245
299
  results = harmony_search(obj_fun)
246
300
  print(results)
247
301
  ```
248
302
 
303
+ ## Paper
304
+
305
+ The following tutorial is in conjunction with our latest paper. A link the current paper can be found here [MetaCountRegressor](https://www.overleaf.com/read/mszwpwzcxsng#c5eb0c)
306
+
249
307
  ## Contact
250
308
  If you have any questions, ideas to improve MetaCountRegressor, or want to report a bug, just open a new issue in [GitHub repository](https://github.com/zahern/CountDataEstimation).
251
309
 
252
310
  ## Citing MetaCountRegressor
253
311
  Please cite MetaCountRegressor as follows:
254
312
 
255
- Ahern, Z., Corry P., Paz A. (2023). MetaCountRegressor [Computer software]. [https://pypi.org/project/metacounregressor/](https://pypi.org/project/metacounregressor/)
313
+ Ahern, Z., Corry P., Paz A. (2024). MetaCountRegressor [Computer software]. [https://pypi.org/project/metacounregressor/](https://pypi.org/project/metacounregressor/)
256
314
 
257
315
  Or using BibTex as follows:
258
316
 
259
317
  ```bibtex
260
- @misc{Ahern2023,
261
- author = {Zeke Ahern and Paul Corry and Alexander Paz},
318
+ @misc{Ahern2024Meta,
319
+ author = {Zeke Ahern, Paul Corry and Alexander Paz},
262
320
  journal = {PyPi},
263
321
  title = {metacountregressor · PyPI},
264
- url = {https://pypi.org/project/metacountregressor/0.1.47/},
265
- year = {2023},
322
+ url = {https://pypi.org/project/metacountregressor/0.1.80/},
323
+ year = {2024},
266
324
  }
267
325
 
@@ -1,18 +1,19 @@
1
1
  metacountregressor/__init__.py,sha256=UM4zaqoAcZVWyx3SeL9bRS8xpQ_iLZU9fIIARWmfjis,2937
2
2
  metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0PltKc,2047
3
+ metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
3
4
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
4
- metacountregressor/helperprocess.py,sha256=nlabPUz_hf8SbFONn2wBKwcVJusTKcynPaxkEYvTWlU,9052
5
- metacountregressor/main.py,sha256=RCi4ZM4AOP-bauiYFqkaMIkEiGFBje1Z2q8z3OUsc3A,17153
5
+ metacountregressor/helperprocess.py,sha256=Sc5gJ7ffFlkya5B5KQwE33xxXuIQyF6OaYtSikLa3pQ,12968
6
+ metacountregressor/main.py,sha256=RKddYRv3UKkszbWD-d2-u8yqcYeniCB5vL3vmj7am5I,16700
6
7
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
7
- metacountregressor/metaheuristics.py,sha256=l2fsbT2HTI1Bo6XtsZVnw0MK1bGlvRY-e4hirpLy6ZE,105448
8
+ metacountregressor/metaheuristics.py,sha256=2MW3qlgs7BFbe_w64snLSKc4Y0-e_9sa3s_96rUm_SE,105887
8
9
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
9
10
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
10
11
  metacountregressor/setup.py,sha256=8w6IqX0tJsbYrOI1BJLIJCIvOnunKli5I9fsF5PhHv4,919
11
12
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
12
- metacountregressor/solution.py,sha256=fQaoo71zIxfOKLC6oTE9BnAm5OJRqRZnQ7a9nPIc9cM,284973
13
+ metacountregressor/solution.py,sha256=6UFri1O62X5GGEmrhMTpi2PQdtbtbJoc02uKixfYXGo,266195
13
14
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
14
- metacountregressor-0.1.73.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
15
- metacountregressor-0.1.73.dist-info/METADATA,sha256=uW0ZHMKl4srC4MFjY9QBQ8WaUvXLBFqh_tv6dPbvT78,14341
16
- metacountregressor-0.1.73.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
17
- metacountregressor-0.1.73.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
18
- metacountregressor-0.1.73.dist-info/RECORD,,
15
+ metacountregressor-0.1.88.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
16
+ metacountregressor-0.1.88.dist-info/METADATA,sha256=BLyeZoC1G7i0pMCkJBmsop3EFSg_QFYKH0nWPjWFkHE,18165
17
+ metacountregressor-0.1.88.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
18
+ metacountregressor-0.1.88.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
19
+ metacountregressor-0.1.88.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.1.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5