metacountregressor 0.1.73__py3-none-any.whl → 0.1.83__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,26 +1,60 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.73
4
- Summary: Extensions for a Python package for estimation of count models.
3
+ Version: 0.1.83
4
+ Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
7
- Author-email: zeke.ahern@hdr.qut.edu.au
8
- License: QUT
7
+ Author-email: z.ahern@qut.edu.au
8
+ License: MIT
9
9
  Requires-Python: >=3.10
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE.txt
12
- Requires-Dist: numpy >=1.13.1
13
- Requires-Dist: scipy >=1.0.0
12
+ Requires-Dist: numpy>=1.13.1
13
+ Requires-Dist: scipy>=1.0.0
14
+ Requires-Dist: requests
15
+ Requires-Dist: latextable
16
+ Requires-Dist: pandas
17
+ Requires-Dist: scikit_learn>=1.4.1.post1
18
+ Requires-Dist: statsmodels
19
+ Requires-Dist: psustil
20
+ Dynamic: author
21
+ Dynamic: author-email
22
+ Dynamic: description
23
+ Dynamic: description-content-type
24
+ Dynamic: home-page
25
+ Dynamic: license
26
+ Dynamic: requires-dist
27
+ Dynamic: requires-python
28
+ Dynamic: summary
14
29
 
15
30
  <div style="display: flex; align-items: center;">
16
- <img src="https://github.com/zahern/data/raw/main/m.png" alt="My Image" style="width: 200px; margin-right: 20px;">
31
+ <img src="https://github.com/zahern/data/raw/main/m.png" alt="My Image" style="width: 100px; margin-right: 20px;">
17
32
  <p><span style="font-size: 60px;"><strong>MetaCountRegressor</strong></span></p>
18
33
  </div>
19
34
 
20
- ##### Quick Setup
35
+ # Tutorial also available as a jupyter notebook
36
+ [Download Example Notebook](https://github.com/zahern/CountDataEstimation/blob/main/Tutorial.ipynb)
37
+
38
+ The tutorial provides more extensive examples on how to run the code and perform experiments. Further documentation is currently in development.
39
+
40
+ # For an Application Setup Download the following GUI
41
+ [Download Application](https://github.com/zahern/MetaCount/tree/master/metacountregressor/application_gui/dist/meta_app)
42
+
43
+ The application involves setting up a problem instance to run the models.
44
+
45
+ ### Entire [Git Repository](https://github.com/zahern/MetaCount.git) is available to clone.
46
+ #### Steps
47
+ 1. Clone Project
48
+ 2. Navigate to "metacountregressor/application_gui/dist/meta_app"
49
+ 3. Run meta_app.exe
50
+ 4. Navigate to metacountregressor/app_main.py
51
+ 5. Run app_main.py
52
+
53
+
54
+ ## Setup For Python Package Approach
21
55
  The Below code demonstrates how to set up automatic optimization assisted by the harmony search algorithm. References to the Differential Evolution and Simulated Annealing has been mentioned (change accordingly)
22
56
 
23
- ## Quick install: Requires Python 3.10
57
+ ## Install: Requires Python 3.10
24
58
 
25
59
  Install `metacountregressor` using pip as follows:
26
60
 
@@ -35,8 +69,15 @@ from metacountregressor.solution import ObjectiveFunction
35
69
  from metacountregressor.metaheuristics import (harmony_search,
36
70
  differential_evolution,
37
71
  simulated_annealing)
72
+
73
+
38
74
  ```
39
75
 
76
+ loaded standard packages
77
+ loaded helper
78
+ testing
79
+
80
+
40
81
  #### Basic setup.
41
82
  The initial setup involves reading in the data and selecting an optimization algorithm. As the runtime progresses, new solutions will be continually evaluated. Finally, at the end of the runtime, the best solution will be identified and printed out. In the case of multiple objectives all of the best solutions will be printed out that belong to the Pareto frontier.
42
83
 
@@ -53,7 +94,7 @@ X = df.drop(columns=['FREQ', 'ID', 'AADT'])
53
94
 
54
95
  #some example argument, these are defualt so the following line is just for claritity. See the later agruments section for detials.
55
96
  arguments = {'algorithm': 'hs', 'test_percentage': 0.15, 'test_complexity': 6, 'instance_number':1,
56
- 'val_percentage':0.15, 'obj_1': 'bic', '_obj_2': 'RMSE_TEST', "MAX_TIME": 6}
97
+ 'val_percentage':0.15, 'obj_1': 'bic', '_obj_2': 'RMSE_TEST', "_max_time": 6}
57
98
  # Fit the model with metacountregressor
58
99
  obj_fun = ObjectiveFunction(X, y, **arguments)
59
100
  #replace with other metaheuristics if desired
@@ -71,7 +112,7 @@ Note: Please Consider the main arguments to change.
71
112
  - `val_percentage`: This parameter represents the percentage of data used to validate the model. The value 0.15 corresponds to 15% of the data.
72
113
  - `test_complexity`: This parameter defines the complexity level for testing. The value 6 tests all complexities. Alternatively, you can provide a list of numbers to consider different complexities. The complexities are further explained later in this document.
73
114
  - `instance_number`: This parameter is used to give a name to the outputs.
74
- - `obj_1`: This parameter has multiple choices for obj_1, such as 'bic', 'aic', and 'hqic'. Only one choice should be defined as a string value.
115
+ - `_obj_1`: This parameter has multiple choices for obj_1, such as 'bic', 'aic', and 'hqic'. Only one choice should be defined as a string value.
75
116
  - `_obj_2`: This parameter has multiple choices for objective 2, such as 'RMSE_TEST', 'MSE_TEST', and 'MAE_TEST'.
76
117
  - `_max_time`: This parameter specifies the maximum number of seconds for the total estimation before stopping.
77
118
  - `distribution`: This parameter is a list of distributions to consider. Please select all of the available options and put them into a list of valid options if you want to to consider the distribution type for use when modellign with random parameters. The valid options include: 'Normal', 'LnNormal', 'Triangular', and 'Uniform'.
@@ -80,7 +121,7 @@ Note: Please Consider the main arguments to change.
80
121
 
81
122
 
82
123
 
83
- ### An Example of changing the arguments.
124
+ ### Example of changing the arguments:
84
125
  Modify the arguments according to your preferences using the commented code as a guide.
85
126
 
86
127
 
@@ -108,16 +149,18 @@ Listed below is an example of how to specify an initial solution within the fram
108
149
 
109
150
 
110
151
  ```python
111
- #Model Decisions, Specify for Intial Optimization
152
+ #Model Decisions, Specify for initial solution that will be optimised.
112
153
  manual_fit_spec = {
113
154
  'fixed_terms': ['SINGLE', 'LENGTH'],
114
155
  'rdm_terms': ['AADT:normal'],
115
- 'rdm_cor_terms': ['GRADEBR:uniform', 'CURVES:triangular'],
156
+ 'rdm_cor_terms': ['GRADEBR:normal', 'CURVES:normal'],
116
157
  'grouped_terms': [],
117
158
  'hetro_in_means': ['ACCESS:normal', 'MINRAD:normal'],
118
159
  'transformations': ['no', 'no', 'log', 'no', 'no', 'no', 'no'],
119
- 'dispersion': 1
160
+ 'dispersion': 0
120
161
  }
162
+
163
+
121
164
  #Search Arguments
122
165
  arguments = {
123
166
  'algorithm': 'hs',
@@ -129,7 +172,47 @@ arguments = {
129
172
  obj_fun = ObjectiveFunction(X, y, **arguments)
130
173
  ```
131
174
 
132
- simarly to return the results feed the objective function into a metaheuristic solution algorithm. An example of this is provided below:
175
+ Setup Complete...
176
+ Benchmaking test with Seed 42
177
+ --------------------------------------------------------------------------------
178
+ Log-Likelihood: -1339.1862434675106
179
+ --------------------------------------------------------------------------------
180
+ bic: 2732.31
181
+ --------------------------------------------------------------------------------
182
+ MSE: 650856.32
183
+ +--------------------------+--------+-------+----------+----------+------------+
184
+ | Effect | $\tau$ | Coeff | Std. Err | z-values | Prob |z|>Z |
185
+ +==========================+========+=======+==========+==========+============+
186
+ | LENGTH | no | -0.15 | 0.01 | -12.98 | 0.00*** |
187
+ +--------------------------+--------+-------+----------+----------+------------+
188
+ | SINGLE | no | -2.46 | 0.04 | -50.00 | 0.00*** |
189
+ +--------------------------+--------+-------+----------+----------+------------+
190
+ | GRADEBR | log | 4.23 | 0.10 | 42.17 | 0.00*** |
191
+ +--------------------------+--------+-------+----------+----------+------------+
192
+ | CURVES | no | 0.51 | 0.01 | 34.78 | 0.00*** |
193
+ +--------------------------+--------+-------+----------+----------+------------+
194
+ | Chol: GRADEBR (Std. | | 2.21 | 0.00 | 50.00 | 0.00*** |
195
+ | Dev. normal) ) | | | | | |
196
+ +--------------------------+--------+-------+----------+----------+------------+
197
+ | Chol: CURVES (Std. Dev. | | -0.51 | 0.00 | -50.00 | 0.00*** |
198
+ | normal) ) | | | | | |
199
+ +--------------------------+--------+-------+----------+----------+------------+
200
+ | Chol: CURVES (Std. Dev. | no | 0.55 | 0.00 | 50.00 | 0.00*** |
201
+ | normal) . GRADEBR (Std. | | | | | |
202
+ | Dev. normal ) | | | | | |
203
+ +--------------------------+--------+-------+----------+----------+------------+
204
+ | main: MINRAD: hetro | no | -0.00 | 0.00 | -44.36 | 0.00*** |
205
+ | group 0 | | | | | |
206
+ +--------------------------+--------+-------+----------+----------+------------+
207
+ | ACCESS: hetro group 0 | | 0.68 | 0.09 | 7.68 | 0.00*** |
208
+ +--------------------------+--------+-------+----------+----------+------------+
209
+ | main: MINRAD: hetro | | -0.00 | 0.00 | -44.86 | 0.00*** |
210
+ | group 0:normal:sd hetro | | | | | |
211
+ | group 0 | | | | | |
212
+ +--------------------------+--------+-------+----------+----------+------------+
213
+
214
+
215
+ Simarly to return the results feed the objective function into a metaheuristic solution algorithm. An example of this is provided below:
133
216
 
134
217
 
135
218
  ```python
@@ -137,7 +220,7 @@ results = harmony_search(obj_fun)
137
220
  print(results)
138
221
  ```
139
222
 
140
- ## Notes:
223
+ # Notes:
141
224
  ### Capabilities of the software include:
142
225
  * Handling of Panel Data
143
226
  * Support for Data Transformations
@@ -155,11 +238,11 @@ Capability to handle heterogeneity in the means of the random parameters
155
238
  * Customization of Hyper-parameters to solve problems tailored to your dataset
156
239
  * Out-of-the-box optimization capability using default metaheuristics
157
240
 
158
- ### Intreting the output of the model:
241
+ ### Intepreting the output of the model:
159
242
  A regression table is produced. The following text elements are explained:
160
243
  - Std. Dev.: This column appears for effects that are related to random paramters and displays the assument distributional assumption next to it
161
244
  - Chol: This term refers to Cholesky decomposition element, to show the correlation between two random paramaters. The combination of the cholesky element on iyself is equivalent to a normal random parameter.
162
- - hetro group #: This term represents the heterogeneity group number, which refers all of the contributing factors that share hetrogentiy in the means to each other under the same numbered value.
245
+ - hetro group: This term represents the heterogeneity group number, which refers all of the contributing factors that share hetrogentiy in the means to each other under the same numbered value.
163
246
  - $\tau$: This column, displays the type of transformation that was applied to the specific contributing factor in the data.
164
247
 
165
248
 
@@ -211,14 +294,16 @@ The following list describes the arguments available in this function. By defaul
211
294
 
212
295
  8. **`_max_time`**: This argument is used to add a termination time in the algorithm. It takes values as seconds. Note the time is only dependenant on the time after intial population of solutions are generated.
213
296
 
214
- # Example
297
+ ## Example: Assistance by Harmony Search
215
298
 
216
299
 
217
- Let's start by fitting very simple models, use those model sto help and define the objectives, then perform more of an extensive search on the variables that are identified more commonly
300
+ Let's begin by fitting very simple models and use the structure of these models to define our objectives. Then, we can conduct a more extensive search on the variables that are more frequently identified. For instance, in the case below, the complexity is level 3, indicating that we will consider, at most randomly correlated parameters. This approach is useful for initially identifying a suitable set of contributing factors for our search.
218
301
 
219
302
 
220
303
 
221
304
  ```python
305
+
306
+ '''Setup Data'''
222
307
  df = pd.read_csv(
223
308
  "https://raw.githubusercontent.com/zahern/data/main/Ex-16-3.csv")
224
309
  X = df
@@ -226,42 +311,178 @@ y = df['FREQ'] # Frequency of crashes
226
311
  X['Offset'] = np.log(df['AADT']) # Explicitley define how to offset the data, no offset otherwise
227
312
  # Drop Y, selected offset term and ID as there are no panels
228
313
  X = df.drop(columns=['FREQ', 'ID', 'AADT'])
229
-
314
+ '''Aguments for Solution'''
230
315
  arguments = {
231
- 'algorithm': 'hs', #alternatively input 'de', or 'sa'
232
- 'is_multi': 1,
316
+ 'is_multi': 1, #is two objectives considered
233
317
  'test_percentage': 0.2, # used in multi-objective optimisation only. Saves 20% of data for testing.
234
318
  'val_percentage:': 0.2, # Saves 20% of data for testing.
235
319
  'test_complexity': 3, # For Very simple Models
236
320
  'obj_1': 'BIC', '_obj_2': 'RMSE_TEST',
237
- 'instance_number': 'name', # used for creeating a named folder where your models are saved into from the directory
321
+ 'instance_number': 'hs_run', # used for creeating a named folder where your models are saved into from the directory
238
322
  'distribution': ['Normal'],
239
- 'Model': [0], # or equivalently ['POS', 'NB']
323
+ 'Model': [0, 1], # or equivalently ['POS', 'NB']
240
324
  'transformations': ['no', 'sqrt', 'archsinh'],
241
325
  '_max_time': 10000
242
- }
326
+ } '''Arguments for the solution algorithm'''
327
+ argument_hs = {
328
+ '_hms': 20, #harmony memory size,
329
+ '_mpai': 1, #adjustement inded
330
+ '_par': 0.3,
331
+ '_hmcr': .5
332
+ }
243
333
  obj_fun = ObjectiveFunction(X, y, **arguments)
244
-
245
- results = harmony_search(obj_fun)
334
+ results = harmony_search(obj_fun, None, argument_hs)
246
335
  print(results)
247
336
  ```
248
337
 
338
+ ## Example: Assistance by Differential Evololution and Simulated Annealing
339
+ Similiar to the above example we only need to change the hyperparamaters, the obj_fun can remane the same
340
+
341
+
342
+ ```python
343
+ argument_de = {'_AI': 2,
344
+ '_crossover_perc': .2,
345
+ '_max_iter': 1000,
346
+ '_pop_size': 25
347
+ }
348
+ de_results = differential_evolution(obj_fun, None, **argument_de)
349
+ print(de_results)
350
+
351
+
352
+ args_sa = {'alpha': .99,
353
+ 'STEPS_PER_TEMP': 10,
354
+ 'INTL_ACPT': 0.5,
355
+ '_crossover_perc': .3,
356
+ 'MAX_ITERATIONS': 1000,
357
+ '_num_intl_slns': 25,
358
+ }
359
+
360
+ sa_results = simulated_annealing(obj_fun, None, **args_sa)
361
+ print(sa_results)
362
+ ```
363
+
364
+ ## Comparing to statsmodels
365
+ The following example illustrates how the output compares to well-known packages, including Statsmodels."
366
+
367
+
368
+ ```python
369
+ # Load modules and data
370
+ import statsmodels.api as sm
371
+
372
+ data = sm.datasets.sunspots.load_pandas().data
373
+ #print(data.exog)
374
+ data_exog = data['YEAR']
375
+ data_exog = sm.add_constant(data_exog)
376
+ data_endog = data['SUNACTIVITY']
377
+
378
+ # Instantiate a gamma family model with the default link function.
379
+ import numpy as np
380
+
381
+ gamma_model = sm.NegativeBinomial(data_endog, data_exog)
382
+ gamma_results = gamma_model.fit()
383
+
384
+ print(gamma_results.summary())
385
+
386
+
387
+
388
+
389
+ #NOW LET's COMPARE THIS TO METACOUNTREGRESSOR
390
+
391
+
392
+
393
+
394
+ #Model Decisions,
395
+ manual_fit_spec = {
396
+ 'fixed_terms': ['const','YEAR'],
397
+ 'rdm_terms': [],
398
+ 'rdm_cor_terms': [],
399
+ 'grouped_terms': [],
400
+ 'hetro_in_means': [],
401
+ 'transformations': ['no', 'no'],
402
+ 'dispersion': 1 #Negative Binomial
403
+ }
404
+
405
+
406
+ #Arguments
407
+ arguments = {
408
+ 'algorithm': 'hs',
409
+ 'test_percentage': 0,
410
+ 'test_complexity': 6,
411
+ 'instance_number': 'name',
412
+ 'Manual_Fit': manual_fit_spec
413
+ }
414
+ obj_fun = ObjectiveFunction(data_exog, data_endog, **arguments)
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+ ```
423
+
424
+ Optimization terminated successfully.
425
+ Current function value: 4.877748
426
+ Iterations: 22
427
+ Function evaluations: 71
428
+ Gradient evaluations: 70
429
+ NegativeBinomial Regression Results
430
+ ==============================================================================
431
+ Dep. Variable: SUNACTIVITY No. Observations: 309
432
+ Model: NegativeBinomial Df Residuals: 307
433
+ Method: MLE Df Model: 1
434
+ Date: Tue, 13 Aug 2024 Pseudo R-squ.: 0.004087
435
+ Time: 14:13:22 Log-Likelihood: -1507.2
436
+ converged: True LL-Null: -1513.4
437
+ Covariance Type: nonrobust LLR p-value: 0.0004363
438
+ ==============================================================================
439
+ coef std err z P>|z| [0.025 0.975]
440
+ ------------------------------------------------------------------------------
441
+ const 0.2913 1.017 0.287 0.774 -1.701 2.284
442
+ YEAR 0.0019 0.001 3.546 0.000 0.001 0.003
443
+ alpha 0.7339 0.057 12.910 0.000 0.622 0.845
444
+ ==============================================================================
445
+ 0.1.88
446
+ Setup Complete...
447
+ Benchmaking test with Seed 42
448
+ 1
449
+ --------------------------------------------------------------------------------
450
+ Log-Likelihood: -1509.0683662284273
451
+ --------------------------------------------------------------------------------
452
+ bic: 3035.84
453
+ --------------------------------------------------------------------------------
454
+ MSE: 10000000.00
455
+ +--------+--------+-------+----------+----------+------------+
456
+ | Effect | $\tau$ | Coeff | Std. Err | z-values | Prob |z|>Z |
457
+ +========+========+=======+==========+==========+============+
458
+ | const | no | 0.10 | 0.25 | 0.39 | 0.70 |
459
+ +--------+--------+-------+----------+----------+------------+
460
+ | YEAR | no | 0.00 | 0.00 | 20.39 | 0.00*** |
461
+ +--------+--------+-------+----------+----------+------------+
462
+ | nb | | 1.33 | 0.00 | 50.00 | 0.00*** |
463
+ +--------+--------+-------+----------+----------+------------+
464
+
465
+
466
+ ## Paper
467
+
468
+ The following tutorial is in conjunction with our latest paper. A link the current paper can be found here [MetaCountRegressor](https://www.overleaf.com/read/mszwpwzcxsng#c5eb0c)
469
+
249
470
  ## Contact
250
471
  If you have any questions, ideas to improve MetaCountRegressor, or want to report a bug, just open a new issue in [GitHub repository](https://github.com/zahern/CountDataEstimation).
251
472
 
252
473
  ## Citing MetaCountRegressor
253
474
  Please cite MetaCountRegressor as follows:
254
475
 
255
- Ahern, Z., Corry P., Paz A. (2023). MetaCountRegressor [Computer software]. [https://pypi.org/project/metacounregressor/](https://pypi.org/project/metacounregressor/)
476
+ Ahern, Z., Corry P., Paz A. (2024). MetaCountRegressor [Computer software]. [https://pypi.org/project/metacounregressor/](https://pypi.org/project/metacounregressor/)
256
477
 
257
478
  Or using BibTex as follows:
258
479
 
259
480
  ```bibtex
260
- @misc{Ahern2023,
261
- author = {Zeke Ahern and Paul Corry and Alexander Paz},
481
+ @misc{Ahern2024Meta,
482
+ author = {Zeke Ahern, Paul Corry and Alexander Paz},
262
483
  journal = {PyPi},
263
484
  title = {metacountregressor · PyPI},
264
- url = {https://pypi.org/project/metacountregressor/0.1.47/},
265
- year = {2023},
485
+ url = {https://pypi.org/project/metacountregressor/0.1.80/},
486
+ year = {2024},
266
487
  }
267
488
 
@@ -0,0 +1,20 @@
1
+ metacountregressor/__init__.py,sha256=UM4zaqoAcZVWyx3SeL9bRS8xpQ_iLZU9fIIARWmfjis,2937
2
+ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0PltKc,2047
3
+ metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
+ metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
+ metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
+ metacountregressor/helperprocess.py,sha256=NmUT0COc9Snxaz9TCV_EQgD2duKuDq_-9673evzv8D4,21887
7
+ metacountregressor/main.py,sha256=xfpKN2w0kePHp_Q2HOPjtG15PLEN1L3sEnDw1PHBquw,23668
8
+ metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
+ metacountregressor/metaheuristics.py,sha256=rIdBa28EroIYqoE8ZI1isuj_o-tOWHo6jKi1HQJ06lU,106292
10
+ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
+ metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
+ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
+ metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
+ metacountregressor/solution.py,sha256=iBFew32bS1YZfEBc0USNbd3i0XKRNCTxXxbltHuJVAM,279244
15
+ metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
+ metacountregressor-0.1.83.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.83.dist-info/METADATA,sha256=0ilTof8Fh8zro-jsfys5YpzEDU4c-ux7m-ebmgYt1c4,23536
18
+ metacountregressor-0.1.83.dist-info/WHEEL,sha256=nn6H5-ilmfVryoAQl3ZQ2l8SH5imPWFpm1A5FgEuFV4,91
19
+ metacountregressor-0.1.83.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.83.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.1.0)
2
+ Generator: setuptools (75.8.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,18 +0,0 @@
1
- metacountregressor/__init__.py,sha256=UM4zaqoAcZVWyx3SeL9bRS8xpQ_iLZU9fIIARWmfjis,2937
2
- metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0PltKc,2047
3
- metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
4
- metacountregressor/helperprocess.py,sha256=nlabPUz_hf8SbFONn2wBKwcVJusTKcynPaxkEYvTWlU,9052
5
- metacountregressor/main.py,sha256=RCi4ZM4AOP-bauiYFqkaMIkEiGFBje1Z2q8z3OUsc3A,17153
6
- metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
7
- metacountregressor/metaheuristics.py,sha256=l2fsbT2HTI1Bo6XtsZVnw0MK1bGlvRY-e4hirpLy6ZE,105448
8
- metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
9
- metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
10
- metacountregressor/setup.py,sha256=8w6IqX0tJsbYrOI1BJLIJCIvOnunKli5I9fsF5PhHv4,919
11
- metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
12
- metacountregressor/solution.py,sha256=fQaoo71zIxfOKLC6oTE9BnAm5OJRqRZnQ7a9nPIc9cM,284973
13
- metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
14
- metacountregressor-0.1.73.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
15
- metacountregressor-0.1.73.dist-info/METADATA,sha256=uW0ZHMKl4srC4MFjY9QBQ8WaUvXLBFqh_tv6dPbvT78,14341
16
- metacountregressor-0.1.73.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
17
- metacountregressor-0.1.73.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
18
- metacountregressor-0.1.73.dist-info/RECORD,,