metacountregressor 0.1.65__py3-none-any.whl → 0.1.73__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. metacountregressor/main.py +1 -0
  2. metacountregressor/metaheuristics.py +2 -2
  3. {metacountregressor-0.1.65.dist-info → metacountregressor-0.1.73.dist-info}/METADATA +9 -16
  4. metacountregressor-0.1.73.dist-info/RECORD +18 -0
  5. {metacountregressor-0.1.65.dist-info → metacountregressor-0.1.73.dist-info}/WHEEL +2 -1
  6. metacountregressor-0.1.73.dist-info/top_level.txt +1 -0
  7. metacountregressor/data/1848.csv +0 -1849
  8. metacountregressor/data/4000.csv +0 -4746
  9. metacountregressor/data/Copy of 190613_HV Crash Data 2007-2017 Dates.xlsx +0 -0
  10. metacountregressor/data/Ex-16-3.csv +0 -276
  11. metacountregressor/data/Ex-16-3variables.csv +0 -276
  12. metacountregressor/data/Indiana_data.csv +0 -339
  13. metacountregressor/data/MichiganData.csv +0 -33972
  14. metacountregressor/data/Stage5A.csv +0 -1849
  15. metacountregressor/data/Stage5A_1848_All_Initial_Columns.csv +0 -1849
  16. metacountregressor/data/ThaiAccident.csv +0 -20230
  17. metacountregressor/data/artificial_1h_mixed_corr_2023_MOOF.csv +0 -1001
  18. metacountregressor/data/artificial_ZA.csv +0 -20001
  19. metacountregressor/data/artificial_mixed_corr_2023_MOOF.csv +0 -2001
  20. metacountregressor/data/artificial_mixed_corr_2023_MOOF_copy.csv +0 -2001
  21. metacountregressor/data/latex_summary_output.tex +0 -2034
  22. metacountregressor/data/rqc40516_MotorcycleQUT_engineer_crash.csv +0 -8287
  23. metacountregressor/data/rural_int.csv +0 -37081
  24. metacountregressor/data/sum_stats.R +0 -83
  25. metacountregressor/data/summary_output.txt +0 -302
  26. metacountregressor/plt_style.txt +0 -52
  27. metacountregressor/requirements.txt +0 -16
  28. metacountregressor/requirements_new.txt +0 -145
  29. metacountregressor/set_data.csv +0 -8440
  30. metacountregressor-0.1.65.dist-info/RECORD +0 -40
  31. {metacountregressor-0.1.65.dist-info → metacountregressor-0.1.73.dist-info}/LICENSE.txt +0 -0
@@ -1,83 +0,0 @@
1
- # Load necessary libraries
2
- library(tidyverse) # for data manipulation and summarization
3
- library(xtable) # for LaTeX table output
4
- library(knitr)
5
- # Set working directory to the script's directory
6
- setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
7
-
8
- # Set the path to the CSV file
9
- file_path <- "Stage5A.csv"
10
-
11
- # Read the dataset
12
- data <- read.csv(file_path)
13
- data
14
- data <- data %>%
15
- filter(PEAKHR >-1)
16
-
17
- # View the first few rows of the dataset to understand its structure
18
- print(head(data))
19
-
20
- # Summary statistics for the 'FREQ' column
21
- freq_summary <- summary(data$Headon)
22
- print(freq_summary)
23
-
24
- # Converting the summary to a data frame for better handling in xtable
25
- freq_summary_df <- data.frame(Statistic = names(freq_summary), Value = as.vector(freq_summary))
26
-
27
- # Create LaTeX code for the frequency summary
28
- latex_freq_summary <- xtable(freq_summary_df, caption = "Summary Statistics for Frequency", label = "tab:freq_summary")
29
- print(latex_freq_summary, type = "latex", include.rownames = FALSE)
30
-
31
- # Assuming other columns are categorical and represent contributing factors
32
- contributing_factors <- names(data)[names(data) != "Headon"] # Adjust based on your actual data structure
33
-
34
- # Loop through each factor and print a LaTeX table summary
35
- for (factor in contributing_factors) {
36
- factor_summary <- summary(as.factor(data[[factor]]))
37
- factor_summary_df <- data.frame(Level = names(factor_summary), Count = as.vector(factor_summary))
38
- latex_table <- xtable(factor_summary_df, caption = paste("Summary for", factor), label = paste("tab:", factor))
39
-
40
- print(latex_table, type = "latex", include.rownames = FALSE)
41
- }
42
-
43
- # Optionally, explore correlations or other statistical tests
44
- # Example placeholder: replace 'numeric_factor' with the actual column name if applicable
45
- # cor(data$FREQ, data$numeric_factor, use = "complete.obs") # Only if 'numeric_factor' is indeed numeric
46
-
47
- # Save the LaTeX tables to a file
48
- sink("latex_summary_output.tex")
49
- print(latex_freq_summary, type = "latex", include.rownames = FALSE)
50
- for (factor in contributing_factors) {
51
- factor_summary <- summary(as.factor(data[[factor]]))
52
- factor_summary_df <- data.frame(Level = names(factor_summary), Count = as.vector(factor_summary))
53
- latex_table <- xtable(factor_summary_df, caption = paste("Summary for", factor), label = paste("tab:", factor))
54
-
55
- print(latex_table, type = "latex", include.rownames = FALSE)
56
- }
57
- sink()
58
-
59
-
60
-
61
- # Summary function for continuous and categorical variables
62
- summarize_data <- function(data, var) {
63
- if (is.numeric(data[[var]])) {
64
- # Check if the range is between 0 to 5 or similar and treat as categorical
65
- if (all(data[[var]] %in% 0:5)) {
66
- return(c("Type" = "Categorical", "Categories" = toString(unique(data[[var]]))))
67
- } else {
68
- return(c("Type" = "Continuous", "Range" = paste(min(data[[var]]), "to", max(data[[var]]))))
69
- }
70
- } else {
71
- return(c("Type" = "Categorical", "Categories" = toString(unique(data[[var]]))))
72
- }
73
- }
74
-
75
- # Using lapply to apply the function across chosen variables
76
- summary_list <- lapply(names(data), function(x) summarize_data(data, x))
77
-
78
- # Convert the list to a data frame
79
- summary_df <- do.call(rbind, summary_list)
80
- rownames(summary_df) <- names(data)
81
-
82
- # Create a LaTeX table
83
- kable(summary_df, format = "latex", booktabs = TRUE, caption = "Summary of Contributing Factors")
@@ -1,302 +0,0 @@
1
- Min. 1st Qu. Median Mean 3rd Qu. Max.
2
- 0.00 4.00 10.00 16.87 20.00 140.00
3
-
4
- Summary for ID :
5
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
6
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7
- 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
8
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9
- 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
10
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11
- 70 71 72 73 74 75 76 77 78 79 80 82 83 84 85 86 87 88 89 90 91 92 93
12
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13
- 94 95 96 97 98 99 100 (Other)
14
- 1 1 1 1 1 1 1 176
15
-
16
- Summary for LENGTH :
17
- 0.52 0.53 0.56 0.61 0.57 0.91 1.47 1.96 0.58 0.72 0.9 0.94 1.01 1.23 1.3 1.6 2.68 0.5 0.51 0.59 0.6 0.63 0.66
18
- 5 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2
19
- 0.7 0.71 0.75 0.79 0.8 0.85 0.86 0.87 0.97 0.98 1.02 1.05 1.06 1.12 1.17 1.27 1.35 1.5 1.64 1.88 1.9 2.07 2.09
20
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21
- 2.18 2.27 2.31 2.41 2.47 3 3.02 3.58 3.78 0.54 0.64 0.65 0.67 0.68 0.69 0.73 0.74 0.77 0.78 0.84 0.92 0.93 0.95
22
- 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23
- 0.99 1 1.07 1.08 1.1 1.15 1.16 1.18 1.2 1.22 1.24 1.29 1.31 1.32 1.33 1.36 1.37 1.38 1.39 1.43 1.44 1.45 1.46
24
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25
- 1.48 1.49 1.52 1.53 1.56 1.58 1.62 (Other)
26
- 1 1 1 1 1 1 1 92
27
-
28
- Summary for INCLANES :
29
- 1 2 3 4
30
- 2 201 53 19
31
-
32
- Summary for DECLANES :
33
- 1 2 3 4
34
- 3 201 62 9
35
-
36
- Summary for WIDTH :
37
- 24 36 46 47 48 50 52 54 55 57 60 62 63 72 76 84 88 96 99 102 104 121
38
- 2 1 2 1 167 5 1 3 1 2 1 15 1 41 1 10 8 8 2 1 1 1
39
-
40
- Summary for MIMEDSH :
41
- 0 3 4 5 6 7 10
42
- 12 7 183 5 54 3 11
43
-
44
- Summary for MXMEDSH :
45
- 0 3 4 5 6 7 8 10 11 15 16 18
46
- 7 1 162 7 52 3 6 31 3 1 1 1
47
-
48
- Summary for SPEED :
49
- 35 40 45 50 55 65
50
- 1 1 1 4 133 135
51
-
52
- Summary for URB :
53
- 0 1
54
- 154 121
55
-
56
- Summary for FC :
57
- 1 2 5
58
- 84 2 189
59
-
60
- Summary for AADT :
61
- 9426 8297 11705 8116 8506 12159 18096 19053 19776 29967 40503 45088 144040 3347 4805 6224 7730 8161 8582 8726 9563 10532 10679
62
- 6 5 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2
63
- 10769 11626 12405 12598 13812 14472 14867 19911 23106 23790 28056 43706 46307 46361 52011 53070 54521 56998 66246 77379 88382 110272 145183
64
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
65
- 3917 4661 7470 7558 7601 8263 9094 9120 9156 9272 9292 9345 9802 9876 10000 10285 10482 10642 10955 11022 11157 11158 11209
66
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
67
- 11542 11654 11699 11924 11925 12320 12602 12643 12743 12857 13088 13263 13629 13946 14126 14365 14519 14684 15830 16170 16427 16428 16549
68
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
69
- 16610 17022 17301 17403 18695 19493 19629 (Other)
70
- 1 1 1 1 1 1 1 111
71
-
72
- Summary for SINGLE :
73
- 5.1 4.4 1.95 5 3.3 3 4.79 3.5 3.97 4.3 3.08 4.2 4.8 6.8 3.2 4.1 4.7 5.04 3.36 4.24 4.5 7 2.8
74
- 13 12 10 10 9 8 8 7 7 7 6 6 6 6 5 5 5 5 4 4 4 4 3
75
- 3.43 3.7 3.8 3.88 4.04 4.45 4.6 4.68 5.05 2.1 2.4 2.5 2.9 3.04 3.13 3.39 3.51 3.6 3.69 3.95 4.15 4.19 4.72
76
- 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
77
- 4.78 4.83 5.02 5.11 5.3 5.55 5.67 10 1.9 1.97 2.2 2.24 2.6 2.64 2.65 3.02 3.1 3.12 3.26 3.34 3.35 3.4 3.49
78
- 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
79
- 3.58 3.63 3.67 3.72 3.76 3.79 3.89 3.9 3.96 4 4.05 4.07 4.08 4.35 4.39 4.44 4.46 4.53 4.54 4.74 4.76 4.9 4.92
80
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
81
- 4.95 4.96 4.98 5.06 5.08 5.17 5.19 (Other)
82
- 1 1 1 1 1 1 1 5
83
-
84
- Summary for DOUBLE :
85
- 7.1 2.3 10.76 5.3 3.6 12.9 13.87 3.7 11.75 2.03 12.8 4.6 7.59 2.63 3.41 3.8 12.1 2.6 2.84 3.1 3.43 6 7.88
86
- 11 10 10 9 8 8 8 7 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3
87
- 9.58 12.68 12.75 13.6 13.69 14.6 17.8 1.74 2.4 2.46 2.7 3 3.14 3.3 3.59 3.69 4.02 4.9 5.46 6.19 7.33 7.5 8.55
88
- 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
89
- 9.21 9.9 11.82 12.18 12.67 12.77 13.2 13.26 13.5 13.7 13.73 14 14.3 14.67 15.6 0.55 0.57 0.7 1.4 1.51 1.61 1.67 1.7
90
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
91
- 1.8 1.9 2.09 2.33 2.45 2.62 2.64 2.94 3.02 3.13 3.37 3.4 3.5 3.91 4.1 4.16 4.28 4.3 4.35 4.76 5.26 6.54 6.85
92
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
93
- 6.87 6.9 7.14 7.53 7.84 7.93 8.1 (Other)
94
- 1 1 1 1 1 1 1 20
95
-
96
- Summary for TRAIN :
97
- 1.1 2.85 0.7 1.5 1.2 3.2 4.1 4.14 0.6 2.48 0.21 0.64 1.81 1 1.3 0.1 0.3 1.01 1.7 3.4 4.2 4.66 4.9
98
- 17 10 9 9 8 8 8 8 7 7 6 6 6 5 5 4 4 4 4 4 4 4 4
99
- 0.4 0.49 1.09 2 3.14 3.31 3.73 4.63 4.67 0 0.5 0.53 0.56 0.72 0.74 0.79 0.86 1.02 1.06 1.29 1.65 1.68 1.8
100
- 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
101
- 2.42 2.43 2.5 2.73 3.1 3.89 4.03 4.07 4.3 4.32 4.7 4.87 5 0.03 0.12 0.2 0.24 0.26 0.38 0.44 0.47 0.58 0.61
102
- 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
103
- 0.63 0.76 0.8 1.17 1.23 1.4 1.49 1.67 1.74 1.76 1.9 1.95 2.4 2.68 2.77 3.08 3.7 3.82 3.9 4.26 4.38 4.4 4.48
104
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
105
- 4.51 4.69 4.79 4.8 5.39 5.5 5.93 (Other)
106
- 1 1 1 1 1 1 1 3
107
-
108
- Summary for PEAKHR :
109
- -99 7.3 7.35 7.43 7.6 7.72 7.8 7.9 7.95 7.97 8 8.05 8.1 8.16 8.18 8.2 8.23 8.24 8.3 8.34 8.37 8.39 8.42 8.43 8.5 8.6 8.61 8.63 8.65 8.68 8.73
110
- 1 1 2 1 1 1 5 6 1 1 1 1 4 1 1 1 1 3 2 1 2 1 1 1 9 9 1 1 1 1 2
111
- 8.79 8.8 8.82 8.87 8.9 8.91 8.96 8.99 9 9.07 9.1 9.13 9.2 9.24 9.3 9.31 9.4 9.44 9.48 9.5 9.51 9.6 9.7 9.8 9.9 9.97 10 10.01 10.04 10.1 10.2
112
- 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 4 1 1 11 2 6 15 13 1 1 2 1 1 9 5
113
- 10.3 10.4 10.5 10.8 10.9 11.5 11.6 12.08 12.1 12.2 12.3 12.7 13.6 15.5 15.7 15.9 17 17.4 19.4
114
- 2 1 5 15 4 2 13 1 2 1 16 3 7 7 8 3 8 11 10
115
-
116
- Summary for GRADEBR :
117
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20 21 23 27 28
118
- 23 51 57 36 22 28 20 11 3 4 5 1 3 1 3 1 1 1 1 1 1 1
119
-
120
- Summary for MIGRADE :
121
- 0 0.5 -0.5 0.05 -0.1 1 -0.15 0.2 0.23 0.4 -0.6 -0.28 -0.2 -0.05 -0.04 -0.03 -0.01 0.02 0.1 0.29 0.3 0.35 0.37
122
- 39 10 8 7 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3
123
- 0.6 -4.22 -1.58 -0.55 -0.52 -0.44 -0.32 -0.31 -0.29 -0.12 -0.11 -0.08 -0.02 0.01 0.04 0.06 0.12 0.16 0.21 0.22 0.25 0.38 0.42
124
- 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
125
- 0.43 0.48 0.59 0.8 0.86 1.14 5 -5 -4.98 -4.8 -3.2 -3.08 -2.77 -2 -1.85 -1.8 -1.74 -1.7 -1.55 -1.5 -1.46 -1.26 -1.15
126
- 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
127
- -1.09 -1.08 -1.01 -0.96 -0.89 -0.88 -0.87 -0.8 -0.72 -0.69 -0.58 -0.49 -0.48 -0.46 -0.45 -0.43 -0.41 -0.4 -0.38 -0.37 -0.36 -0.33 -0.3
128
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
129
- -0.26 -0.25 -0.23 -0.22 -0.18 -0.16 -0.13 (Other)
130
- 1 1 1 1 1 1 1 39
131
-
132
- Summary for MXGRADE :
133
- 3 -3 -5 -2.5 3.02 4 5 -3.47 -2.9 -3.96 -3.4 -2 -4.98 -4.22 -4 -3.95 -3.71 -2.95 -2.8 -2.52 -2.43 -1.8 -1.73
134
- 12 8 5 5 5 5 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2
135
- -1.69 -1.09 -1.04 -0.54 0.42 0.93 1.18 1.8 2.2 2.74 2.9 2.93 3.01 3.82 4.5 6.05 -5.5 -5.1 -5.05 -5.01 -4.97 -4.88 -4.6
136
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
137
- -4.51 -4.5 -4.38 -4.3 -4.09 -3.99 -3.97 -3.94 -3.9 -3.8 -3.76 -3.75 -3.66 -3.5 -3.45 -3.39 -3.32 -3.29 -3.2 -3.17 -3.16 -3.14 -3.12
138
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
139
- -3.03 -2.94 -2.91 -2.89 -2.82 -2.76 -2.74 -2.73 -2.72 -2.7 -2.68 -2.6 -2.59 -2.58 -2.48 -2.4 -2.37 -2.32 -2.29 -2.26 -2.24 -2.2 -2.11
140
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141
- -2.06 -2.05 -1.98 -1.97 -1.94 -1.92 -1.82 (Other)
142
- 1 1 1 1 1 1 1 99
143
-
144
- Summary for MXGRDIFF :
145
- 0 3 2.95 0.51 1.68 2.9 2.98 3.3 3.8 3.92 5.7 0.48 0.54 0.7 0.92 1.03 1.19 1.97 2 2.33 2.6 2.68 2.71
146
- 10 5 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
147
- 2.87 3.02 3.03 3.19 3.36 3.58 3.9 4.53 4.9 5.79 0.08 0.17 0.19 0.21 0.23 0.24 0.25 0.4 0.41 0.44 0.47 0.49 0.52
148
- 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
149
- 0.67 0.68 0.72 0.73 0.74 0.76 0.8 0.83 0.85 0.87 0.93 0.94 1.01 1.1 1.11 1.14 1.15 1.2 1.25 1.26 1.3 1.31 1.34
150
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
151
- 1.41 1.44 1.45 1.46 1.5 1.51 1.52 1.54 1.55 1.56 1.59 1.61 1.64 1.67 1.73 1.76 1.77 1.78 1.79 1.86 1.91 1.92 1.93
152
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
153
- 1.95 2.03 2.08 2.15 2.16 2.2 2.22 (Other)
154
- 1 1 1 1 1 1 1 122
155
-
156
- Summary for TANGENT :
157
- 0.07 0.23 0.28 0.44 0.48 0.56 0.06 0.41 0.02 0.11 0.13 0.16 0.17 0.4 0.51 0.53 0.1 0.15 0.19 0.22 0.24 0.25 0.3
158
- 8 6 6 6 6 6 5 5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3
159
- 0.32 0.39 0.42 0.5 0.62 0.64 0.71 0.75 0.77 0.92 0 0.01 0.04 0.05 0.09 0.12 0.14 0.18 0.31 0.34 0.35 0.37 0.38
160
- 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2
161
- 0.43 0.49 0.57 0.59 0.61 0.63 0.66 0.68 0.84 0.85 0.9 0.95 1.08 1.22 1.27 1.29 1.33 1.54 1.73 1.95 -99 0.03 0.08
162
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1
163
- 0.2 0.21 0.26 0.27 0.29 0.33 0.36 0.45 0.46 0.47 0.52 0.54 0.55 0.6 0.65 0.67 0.69 0.78 0.79 0.81 0.86 0.87 0.88
164
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165
- 0.89 0.91 0.94 0.96 0.99 1.02 1.09 (Other)
166
- 1 1 1 1 1 1 1 45
167
-
168
- Summary for CURVES :
169
- 0 1 2 3 4 5 6 7 8 9 10 11 14 16 29
170
- 25 65 75 48 27 11 3 5 4 5 2 1 2 1 1
171
-
172
- Summary for MINRAD :
173
- 0 477 819 1010 1146 1200 1400 1433 1469 1500 1515 1600 1637 1700 1763 1800 1900 1910 1916 1920 1931 1952 1964 2000 2050 2076 2083 2084 2100 2200 2250
174
- 25 1 1 1 3 1 2 10 1 6 1 2 2 1 1 7 3 13 1 1 1 1 1 7 1 1 1 2 2 4 1
175
- 2292 2300 2324 2400 2456 2492 2500 2547 2600 2700 2728 2800 2865 2900 3000 3016 3077 3150 3200 3400 3500 3800 3820 3885 3900 4000 4100 4298 4400 4500 4584
176
- 5 1 1 2 1 1 4 1 5 2 1 3 19 1 2 1 2 1 6 1 2 1 3 1 1 8 1 2 1 4 1
177
- 5000 5500 5600 5730 5900 6000 6001 6367 6486 6854 7500 7639 7640 7672 8000 8186 9923 10000 11000 11459 11460 12000 16000 20000 21200 22918 22920 30000 38400
178
- 8 1 1 26 1 4 1 1 1 1 1 2 6 1 5 2 1 1 1 3 8 1 1 1 1 1 1 1 2
179
-
180
- Summary for ACCESS :
181
- 0 1 2
182
- 4 44 227
183
-
184
- Summary for MEDWIDTH :
185
- 1 2 3 4 5
186
- 13 76 32 16 138
187
-
188
- Summary for FRICTION :
189
- 50.5 53 48.5 52 46.5 51.5 44 45 47 49 49.5 50 46.8 47.5 48 51 51.8 53.5 42 45.5 49.8 52.5 54
190
- 12 9 8 8 7 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4
191
- 54.3 40.5 41 41.9 43.5 44.3 44.8 45.3 46 51.3 51.7 55.8 56 56.3 56.5 38.8 41.5 42.5 44.5 46.3 47.3 47.8 48.2
192
- 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2
193
- 49.7 50.6 50.8 52.3 52.4 52.8 53.1 54.5 54.8 55 55.5 57.5 58 58.5 60.5 40 40.3 42.8 43 43.6 43.7 43.8 43.9
194
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
195
- 44.2 44.4 44.6 44.9 45.1 45.4 45.8 46.1 46.2 46.6 47.2 47.9 48.1 48.6 49.6 50.3 50.7 51.6 52.1 52.6 52.9 53.2 53.7
196
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
197
- 53.8 54.4 54.7 55.2 55.3 55.6 56.2 (Other)
198
- 1 1 1 1 1 1 1 8
199
-
200
- Summary for ADTLANE :
201
- 2357 2074 2926 2029 2127 3040 4524 4763 4944 6751 7492 7515 18005 837 1201 1556 1933 2040 2146 2182 2391 2633 2670
202
- 6 5 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2
203
- 2692 2907 2981 3101 3150 3272 3399 3453 3618 3717 4107 4978 5777 7014 7284 7718 8669 9087 11590 13268 14250 16562 18148
204
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
205
- 18379 19345 22096 979 1165 1868 1890 1900 2066 2274 2280 2289 2318 2336 2451 2469 2500 2571 2621 2661 2739 2756 2790
206
- 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
207
- 2886 2914 2925 3080 3151 3161 3186 3214 3316 3407 3426 3487 3532 3591 3630 3671 3719 3958 3965 4043 4137 4153 4256
208
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
209
- 4322 4325 4351 4479 4646 4674 4873 (Other)
210
- 1 1 1 1 1 1 1 108
211
-
212
- Summary for SLOPE :
213
- 0 1 2 3
214
- 178 54 35 8
215
-
216
- Summary for INTECHAG :
217
- 0 1 2 3 4
218
- 107 114 45 7 2
219
-
220
- Summary for AVEPRE :
221
- 0.38 0.44 0.5 0.51 0.53 0.55 0.58 0.61 0.69 0.7 0.89 0.92 1.08 1.1 1.63 1.68 2.39 2.43 2.96 3.13 3.18 3.21 3.29 3.37 3.62 3.73 3.8 3.91 3.93 4.03 4.14
222
- 5 5 2 20 17 14 1 6 13 1 4 1 3 3 10 1 2 4 2 9 10 2 3 19 2 3 9 5 8 12 1
223
- 4.32 4.43 4.66 4.92 5.1 5.13 5.22 5.28 5.92 6.14 6.33 6.74 6.78 9.27 9.94 10.98
224
- 4 1 8 7 3 1 10 9 2 8 9 4 3 1 2 6
225
-
226
- Summary for AVESNOW :
227
- 0 0.04 0.06 0.1 0.17 0.19 0.28 0.33 0.38 0.39 0.55 0.58 0.67 0.72 0.73 0.75 0.83 0.88 0.92 1.04 1.09 1.12 1.13 1.2 1.25 1.48 1.8 2.59 2.63 2.8 4.16
228
- 75 5 4 2 5 1 20 6 3 2 15 1 10 2 1 4 1 8 4 9 6 26 3 9 1 3 3 1 9 3 10
229
- 6.35 6.75 6.78 9.63 54.33
230
- 2 6 4 9 2
231
-
232
- Summary for LOWPRE :
233
- 0 1
234
- 180 95
235
-
236
- Summary for GBRPM :
237
- 0 1.639344262 1.25 1.360544218 1.538461538 1.785714286 2.325581395 2.777777778 3.448275862 3.571428571 0.757575758 0.787401575 0.81300813 0.966183575 0.99009901
238
- 23 4 3 3 3 3 3 3 3 3 2 2 2 2 2
239
- 1.020408163 1.063829787 1.322751323 1.333333333 1.351351351 1.369863014 1.388888889 1.408450704 1.435406699 1.470588235 1.530612245 1.587301587 1.694915254 1.818181818 1.865671642
240
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
241
- 2 2.040816327 2.074688797 2.105263158 2.222222222 2.5 2.597402597 2.857142857 2.941176471 3.773584906 5.263157895 0.279329609 0.301204819 0.347222222 0.4048583
242
- 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
243
- 0.447761194 0.458715596 0.531914894 0.576368876 0.63559322 0.666666667 0.708215297 0.724637681 0.735294118 0.746268657 0.806451613 0.829875519 0.833333333 0.838574423 0.847457627
244
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
245
- 0.854700855 0.860832138 0.869565217 0.896860987 0.909090909 0.917431193 0.925925926 0.952380952 0.983606557 1 1.01010101 1.015228426 1.030927835 1.034482759 1.038062284
246
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
247
- 1.041666667 1.047120419 1.062215478 1.06870229 1.098901099 1.10864745 1.111111111 1.116071429 1.117318436 1.155115512 1.171875 1.176470588 1.19047619 1.203369434 1.230228471
248
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
249
- 1.231527094 1.234567901 1.238556812 1.265822785 1.272264631 1.282051282 1.295896328 1.318681319 1.320132013 (Other)
250
- 1 1 1 1 1 1 1 1 1 104
251
-
252
- Summary for EXPOSE :
253
- 0.007818592 0.00911989 0.013857736 0.01720245 0.017591832 0.017890548 0.020046494 0.020593154 0.02064294 0.021827876 0.021990119 0.022490497 0.02392502 0.024956839 0.025246722
254
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
255
- 0.027072014 0.028873544 0.029886383 0.030425962 0.030553128 0.030586891 0.032827516 0.03285 0.033324135 0.033918136 0.036141059 0.038256672 0.038309232 0.039419562 0.039672106
256
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
257
- 0.040584058 0.042878339 0.043150483 0.044517554 0.044698776 0.045117358 0.045267957 0.04537242 0.045519734 0.04627178 0.048286142 0.048628184 0.049201489 0.05058097 0.052913685
258
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
259
- 0.055511755 0.05563476 0.056463456 0.059807367 0.0600644 0.061252548 0.061275507 0.061892685 0.062404269 0.06290702 0.063351225 0.063637312 0.06430424 0.064681212 0.06620808
260
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
261
- 0.069432782 0.069971814 0.070010906 0.070659036 0.071392394 0.07441912 0.076216672 0.078753276 0.078916431 0.079196751 0.079677675 0.081209142 0.083372716 0.084131223 0.084549257
262
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
263
- 0.08479096 0.085175232 0.085357732 0.085577024 0.086091455 0.08661888 0.08746276 0.090042288 0.09017993 0.092580206 0.093149095 0.094024 0.095420052 0.095610801 0.096433584
264
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
265
- 0.099199408 0.099489729 0.100575093 0.1032147 0.103941525 0.105526428 0.10716181 0.10817797 0.10937955 (Other)
266
- 1 1 1 1 1 1 1 1 1 176
267
-
268
- Summary for INTPM :
269
- 0 1.886792453 0.373134328 0.680272109 1.020408163 1.063829787 1.176470588 1.724137931 0.264550265 0.331125828 0.4784689 0.495049505 0.625 0.632911392 0.653594771
270
- 107 4 3 3 3 3 3 3 2 2 2 2 2 2 2
271
- 0.787401575 0.81300813 0.847457627 1 1.052631579 1.075268817 1.098901099 1.149425287 1.333333333 1.515151515 1.538461538 1.639344262 1.754385965 1.923076923 0.065445026
272
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
273
- 0.076335878 0.105374078 0.141643059 0.149253731 0.151745068 0.155440415 0.173913043 0.189393939 0.192307692 0.211864407 0.213675214 0.215982721 0.21691974 0.22675737 0.240384615
274
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
275
- 0.240673887 0.246305419 0.272479564 0.286944046 0.288184438 0.294117647 0.308641975 0.313479624 0.322580645 0.327868852 0.330033003 0.333333333 0.337837838 0.338409475 0.346020761
276
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
277
- 0.350877193 0.352112676 0.355871886 0.363636364 0.365853659 0.366300366 0.378787879 0.380228137 0.411522634 0.414937759 0.43956044 0.446428571 0.454545455 0.458715596 0.464037123
278
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
279
- 0.465116279 0.468384075 0.483091787 0.491400491 0.510204082 0.512820513 0.517241379 0.520833333 0.531914894 0.558659218 0.591715976 0.602409639 0.641025641 0.643776824 0.657894737
280
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
281
- 0.666666667 0.67114094 0.689655172 0.694444444 0.71942446 0.735294118 0.740740741 0.751879699 0.769230769 (Other)
282
- 1 1 1 1 1 1 1 1 1 34
283
-
284
- Summary for CPM :
285
- 0 1.530612245 1.785714286 1.886792453 1.923076923 1.052631579 1.117318436 1.333333333 1.360544218 1.639344262 1.960784314 2.127659574 2.197802198 2.5 0.531914894
286
- 25 4 4 4 4 3 3 3 3 3 3 3 3 3 2
287
- 0.757575758 0.99009901 1.030927835 1.111111111 1.162790698 1.25 1.265822785 1.369863014 1.388888889 1.449275362 1.502145923 1.538461538 1.57480315 1.62601626 1.724137931
288
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
289
- 1.754385965 2.173913043 2.298850575 2.43902439 2.702702703 2.777777778 3.278688525 3.846153846 4 0.105374078 0.141643059 0.20746888 0.274725275 0.282485876 0.301204819
290
- 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
291
- 0.308641975 0.330033003 0.390625 0.408719346 0.419287212 0.44345898 0.446428571 0.447761194 0.448430493 0.454545455 0.466321244 0.491400491 0.5 0.519031142 0.529100529
292
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
293
- 0.538502962 0.568181818 0.576368876 0.595238095 0.625 0.632911392 0.641025641 0.644122383 0.660066007 0.666666667 0.675675676 0.676818951 0.694444444 0.721153846 0.725806452
294
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
295
- 0.735294118 0.740740741 0.746268657 0.763358779 0.769230769 0.78125 0.787401575 0.823045267 0.847457627 0.853658537 0.862068966 0.881834215 0.882352941 0.907029478 0.917431193
296
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
297
- 0.925925926 0.934579439 0.93676815 0.943396226 0.952380952 0.956937799 0.961538462 0.962695548 0.966183575 (Other)
298
- 1 1 1 1 1 1 1 1 1 97
299
-
300
- Summary for HISNOW :
301
- 0 1
302
- 169 106
@@ -1,52 +0,0 @@
1
- xtick.color: 323034
2
- ytick.color: 323034
3
- text.color: 323034
4
- lines.markeredgecolor: 'none'
5
- patch.facecolor : bc80bd
6
- patch.force_edgecolor : False
7
- patch.linewidth: 0.3
8
- scatter.edgecolors: black
9
- grid.color: b1afb5
10
- axes.titlesize: 20
11
- axes.xlabelsize: 20
12
- axes.ylabelsize: 20
13
- legend.title_fontsize: 8
14
- xtick.labelsize: 10
15
- ytick.labelsize: 10
16
- axes.labelsize: 12
17
- axes.markersize: 5
18
- scatter.s: 3
19
- scatter.alpha = .8
20
- scatter.edgecolors = 'none'
21
- lines.markersize: 3
22
- font.size: 16
23
- axes.prop_cycle : (cycler('color', ['bc80bd' ,'fb8072', 'b3de69','fdb462','fccde5','8dd3c7','ffed6f','bebada','80b1d3', 'ccebc5', 'd9d9d9']))
24
- mathtext.fontset: stix
25
- font.family: STIXGeneral
26
- lines.linewidth: 1
27
- legend.frameon: True
28
- legend.framealpha: 0.8
29
- legend.fontsize: 8
30
- legend.edgecolor: 0.9
31
- legend.borderpad: 0.2
32
- legend.labelsize:5
33
- legend.fontsize': 4
34
- legend.loc': 'center left'
35
- legend.frameon': False
36
- figure.autolayout': True
37
- legend.columnspacing: 1.5
38
- legend.labelspacing: 0.4
39
- text.usetex: False
40
- axes.titlelocation: left
41
- axes.formatter.use_mathtext: True
42
- axes.autolimit_mode: round_numbers
43
- axes.labelpad: 3
44
- axes.formatter.limits: -4, 4
45
- axes.labelcolor: black
46
- axes.color: 'none'
47
- axes.linewidth: 0.6
48
- axes.spines.right : False
49
- axes.spines.top : False
50
- axes.grid: False
51
- figure.titlesize: 18
52
- figure.dpi: 300
@@ -1,16 +0,0 @@
1
- cupy==13.1.0
2
- latextable==1.0.1
3
- matplotlib==3.9.0
4
- numpy==1.26.4
5
- pandas==2.2.2
6
- psutil==5.9.8
7
- rpy2==3.5.16
8
- scikit_learn==1.4.1.post1
9
- scipy==1.13.1
10
- seaborn==0.13.2
11
- setuptools==59.6.0
12
- shap==0.45.1
13
- statsmodels==0.14.2
14
- texttable==1.7.0
15
- tikzplotlib==0.10.1
16
- xgboost==2.0.3
@@ -1,145 +0,0 @@
1
- absl-py==1.2.0
2
- asttokens==2.0.5
3
- astunparse==1.6.3
4
- async-generator==1.10
5
- atomicwrites==1.4.1
6
- atpublic==3.0.1
7
- attrs==21.2.0
8
- autograd==1.4
9
- autograd-minimize==0.2.2
10
- autopep8==1.6.0
11
- backcall==0.2.0
12
- beautifulsoup4==4.11.1
13
- bs4==0.0.1
14
- cachetools==4.2.4
15
- certifi==2021.10.8
16
- cffi==1.15.0
17
- charset-normalizer==2.0.7
18
- colorama==0.4.5
19
- coverage==6.4.2
20
- cryptography==35.0.0
21
- cycler==0.11.0
22
- debugpy==1.6.2
23
- decorator==5.1.1
24
- docopt==0.6.2
25
- entrypoints==0.4
26
- et-xmlfile==1.1.0
27
- executing==0.8.3
28
- fastrlock==0.8
29
- flatbuffers==1.12
30
- fonttools==4.34.4
31
- funcsigs==1.0.2
32
- future==0.18.2
33
- gast==0.4.0
34
- google-auth==2.3.3
35
- google-auth-oauthlib==0.4.6
36
- google-pasta==0.2.0
37
- grpcio==1.47.0
38
- gspread==4.0.1
39
- h11==0.12.0
40
- h5py==3.7.0
41
- httplib2==0.20.2
42
- idna==3.3
43
- importlib-metadata==4.12.0
44
- importlib-resources==5.8.0
45
- iniconfig==1.1.1
46
- ipykernel==6.15.1
47
- ipython==8.4.0
48
- jedi==0.18.1
49
- Jinja2==3.1.2
50
- joblib==1.1.0
51
- jupyter-client==7.3.4
52
- jupyter-core==4.11.1
53
- keras==2.9.0
54
- Keras-Preprocessing==1.1.2
55
- kiwisolver==1.4.3
56
- latextable==0.3.0
57
- lcov==1.15.5a0
58
- libclang==14.0.6
59
- Markdown==3.4.1
60
- MarkupSafe==2.1.1
61
- matplotlib==3.5.2
62
- matplotlib-inline==0.1.3
63
- mizani==0.7.4
64
- nest-asyncio==1.5.5
65
- numpy==1.23.1
66
- oauth2client==4.1.3
67
- oauthlib==3.1.1
68
- openpyxl==3.0.10
69
- opt-einsum==3.3.0
70
- outcome==1.1.0
71
- packaging==21.3
72
- palettable==3.3.0
73
- pandas==1.4.3
74
- parso==0.8.3
75
- patsy==0.5.2
76
- pep8==1.7.1
77
- pickleshare==0.7.5
78
- Pillow==9.2.0
79
- pipreqs==0.4.11
80
- pkg-about==1.0.4
81
- plotnine==0.9.0
82
- pluggy==1.0.0
83
- prompt-toolkit==3.0.30
84
- protobuf==3.19.4
85
- psutil==5.9.1
86
- pure-eval==0.2.2
87
- py==1.11.0
88
- pyasn1==0.4.8
89
- pyasn1-modules==0.2.8
90
- pycodestyle==2.8.0
91
- pycparser==2.21
92
- Pygments==2.12.0
93
- pyOpenSSL==21.0.0
94
- pyparsing==3.0.6
95
- pytest==7.1.2
96
- pytest-cov==3.0.0
97
- python-dateutil==2.8.2
98
- pytz==2022.1
99
- pytz-deprecation-shim==0.1.0.post0
100
- pywin32==304
101
- pyzmq==23.2.0
102
- requests==2.26.0
103
- requests-oauthlib==1.3.0
104
- rpy2==3.5.3
105
- rsa==4.7.2
106
- scikit-learn==1.1.2
107
- scipy==1.8.1
108
- seaborn==0.11.2
109
- searchlogit==0.2.63
110
- selenium==4.0.0
111
- six==1.16.0
112
- sklearn==0.0
113
- sniffio==1.2.0
114
- sortedcontainers==2.4.0
115
- soupsieve==2.3.2.post1
116
- stack-data==0.3.0
117
- statsmodels==0.13.2
118
- tabulate==0.8.10
119
- tensorboard==2.9.1
120
- tensorboard-data-server==0.6.1
121
- tensorboard-plugin-wit==1.8.1
122
- tensorflow==2.9.1
123
- tensorflow-estimator==2.9.0
124
- tensorflow-io-gcs-filesystem==0.26.0
125
- termcolor==1.1.0
126
- texttable==1.6.4
127
- threadpoolctl==3.1.0
128
- toml==0.10.2
129
- tomli==2.0.1
130
- tornado==6.2
131
- traitlets==5.3.0
132
- trio==0.19.0
133
- trio-websocket==0.9.2
134
- typing_extensions==4.3.0
135
- tzdata==2022.1
136
- tzlocal==4.2
137
- undetected-chromedriver==3.1.5.post4
138
- urllib3==1.26.7
139
- wcwidth==0.2.5
140
- websockets==10.3
141
- Werkzeug==2.2.1
142
- wrapt==1.14.1
143
- wsproto==1.0.0
144
- yarg==0.1.9
145
- zipp==3.8.1