metacountregressor 0.1.33__py3-none-any.whl → 0.1.35__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -144,7 +144,8 @@ class ObjectiveFunction(object):
144
144
  self.MAE = None
145
145
  self.best_obj_1 = 100000000
146
146
  self._obj_1 = 'bic'
147
- self._obj_2 = 'MAE'
147
+ self._obj_2 = 'MSE'
148
+ self.numerical_hessian_calc = 1 # calculates hessian by statsmodels otherwise scipy
148
149
  self.full_model = None
149
150
  self.GP_pararameter = 0
150
151
  self.is_multi = 0
@@ -276,7 +277,7 @@ class ObjectiveFunction(object):
276
277
 
277
278
  self._characteristics_names = list(self._x_data.columns)
278
279
  #self._characteristics_names = [x for x in self._characteristics_names if not 'ID' in x]
279
- print('to do, drop the id and panels')
280
+
280
281
 
281
282
  self._max_group_all_means = 1
282
283
 
@@ -518,8 +519,8 @@ class ObjectiveFunction(object):
518
519
 
519
520
  for_testing_purposes = 0
520
521
  if "Manual_Fit" in kwargs and kwargs['Manual_Fit'] is not None:
521
- for_testing_purposes = 0
522
- print('off for now turn back on')
522
+ for_testing_purposes = 1
523
+
523
524
  if for_testing_purposes:
524
525
  self.initial_sig = 1 # pass the test of a single model
525
526
  self.pvalue_sig_value = 1
@@ -907,6 +908,10 @@ class ObjectiveFunction(object):
907
908
  def round_with_padding(self, value, round_digits):
908
909
  return(format(np.round(value, round_digits), "."+str(round_digits)+"f"))
909
910
 
911
+ def round_with_scientific(self, value, round_digits):
912
+ return(format(np.round(value, round_digits), "."+str(round_digits)+"f"))
913
+
914
+
910
915
  def get_dispersion_name(self, dispersion=0):
911
916
  if dispersion == 0:
912
917
  return []
@@ -960,15 +965,20 @@ class ObjectiveFunction(object):
960
965
  big_hetro = [item for sublist in hetro_names_for for item in sublist]
961
966
  name_hetro = list(model_nature['hetro_hold'].keys())
962
967
  hetro_long= []
968
+ hetro_std = []
963
969
 
964
- for i in name_hetro:
965
- hetro = [f"{j}: hetro" for j in model_nature['hetro_hold'][i]]
966
- hetro.append(f"{hetro[0]}:{i}:sd hetro")
970
+ for n, i in enumerate(name_hetro):
971
+ hetro = [f"{j}: hetro group {n}" for j in model_nature['hetro_hold'][i]]
972
+ hetro = [f"main: {j}: hetro group {n}" if idx == 0 else f"{j}: hetro group {n}" for idx, j in enumerate(model_nature['hetro_hold'][i])]
973
+ hetro_std.append(f"{hetro[0]}:{i}:sd hetro group {n}")
967
974
  hetro_long = hetro_long +hetro
968
975
 
969
976
  abct = []
977
+ hetro_long = hetro_long + hetro_std
970
978
  for i in model_nature['transfrom_hetro']:
971
- abct = abct + i + ['']
979
+ abct = abct + i
980
+ for i in model_nature['transfrom_hetro']:
981
+ abct = abct + ['']
972
982
  else:
973
983
  big_hetro = []
974
984
  hetro_long = []
@@ -1046,7 +1056,7 @@ class ObjectiveFunction(object):
1046
1056
  except Exception as e:
1047
1057
  print(e)
1048
1058
 
1049
- def summary_alternative(self, long_print=0, model=0, solution=None):
1059
+ def summary_alternative(self, long_print=0, model=0, solution=None, save_state = 0):
1050
1060
  fmt = "{:19} {:13} {:13.10f} {:13.10f}{:13.10f} {:13.3g} {:3}"
1051
1061
  coeff_name_str_length = 19
1052
1062
 
@@ -1065,19 +1075,26 @@ class ObjectiveFunction(object):
1065
1075
  if not isinstance(self.pvalues, np.ndarray):
1066
1076
  raise Exception
1067
1077
 
1078
+
1079
+ #self.pvalues= [self.round_with_padding(x, 2) for x in self.pvalues]
1080
+ #self.pvalues= [self.round_with_scientific(x, 2) for x in self.pvalues]
1081
+
1068
1082
  for i in range(len(self.coeff_)):
1069
1083
  signif = ""
1070
-
1071
- if self.pvalues[i] < 0.01:
1084
+
1085
+ if float(self.pvalues[i]) < 0.01:
1072
1086
  signif = "***"
1073
- elif self.pvalues[i] < 0.05:
1087
+ elif float(self.pvalues[i]) < 0.05:
1074
1088
  signif = "**"
1075
- elif self.pvalues[i] < 0.1:
1089
+ elif float(self.pvalues[i]) < 0.1:
1076
1090
  signif = "*"
1091
+
1092
+ '''
1077
1093
  print(fmt.format(self.coeff_names[i][:coeff_name_str_length], self.print_transform[i], self.coeff_[i],
1078
- self.stderr[i], self.zvalues[i], self.pvalues[i],
1079
- signif
1080
- ))
1094
+ self.stderr[i], self.zvalues[i], self.pvalues[i],
1095
+ signif
1096
+ ))
1097
+ '''
1081
1098
 
1082
1099
  if not self.convergence:
1083
1100
  print("-" * 50)
@@ -1156,7 +1173,7 @@ class ObjectiveFunction(object):
1156
1173
  caption_parts.append(f"MSPE: {self.round_with_padding(self.MAE, 2)}")
1157
1174
 
1158
1175
  caption = " ".join(caption_parts)
1159
- print(latextable.draw_latex(table, caption=caption, caption_above = True))
1176
+ #print(latextable.draw_latex(table, caption=caption, caption_above = True))
1160
1177
  if solution is None:
1161
1178
  file_name = self.instance_number + "/sln" + \
1162
1179
  "_with_BIC_"+str(self.bic)+".tex"
@@ -1164,8 +1181,10 @@ class ObjectiveFunction(object):
1164
1181
  file_name = self.instance_number + "/sln" + \
1165
1182
  str(solution['sol_num']) + \
1166
1183
  "_with_BIC_"+str(self.bic)+".tex"
1167
- self.save_to_file(latextable.draw_latex(
1168
- table, caption=caption), file_name)
1184
+
1185
+ if save_state:
1186
+ self.save_to_file(latextable.draw_latex(
1187
+ table, caption=caption, caption_above = True), file_name)
1169
1188
 
1170
1189
 
1171
1190
  #print('change this')
@@ -1403,11 +1422,20 @@ class ObjectiveFunction(object):
1403
1422
  if np.size(y) != np.size(eVy):
1404
1423
  y = np.tile(y, self.Ndraws).ravel()
1405
1424
  eVy = eVy.ravel()
1425
+
1426
+ # y_avg = np.mean(y, axis = (1,2))
1427
+ # eVy_avg = np.mean(eVy, axis = (1,2))
1428
+ #mspe1 = np.nan_to_num(MSPE(np.squeeze(y_avg), np.squeeze(eVy_avg)), nan=100000, posinf=100000)
1406
1429
  eVy = np.nan_to_num(eVy, nan=100000, posinf=100000)
1407
1430
  eVy = np.clip(eVy, None, 1000)
1408
1431
  mae = np.nan_to_num(MAE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
1409
1432
  mspe = np.nan_to_num(MSPE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
1410
-
1433
+ if self._obj_2 == 'MAE':
1434
+ return mae
1435
+ elif self._obj_2 == 'MSE':
1436
+ return mspe
1437
+ elif self._obj_2 == "MAD":
1438
+ raise Exception
1411
1439
  return mspe
1412
1440
 
1413
1441
  def get_solution_vector(self, fixed_vars, random_vars, random_var_cor, distribution_vars, dispersion=None):
@@ -1587,7 +1615,7 @@ class ObjectiveFunction(object):
1587
1615
 
1588
1616
  if (self.get_num_discrete_values(get_rdm_i) - 1) == 0:
1589
1617
  # TODO: must be a better way to avoid selecting this
1590
- print('ignore replacemenet')
1618
+ print('repair constraint violated, skipping over..')
1591
1619
 
1592
1620
 
1593
1621
  else:
@@ -3439,15 +3467,22 @@ class ObjectiveFunction(object):
3439
3467
  return covariance
3440
3468
 
3441
3469
  def _numerical_hessian(self, betas, args, jac):
3442
- Xd, y, draws, Xf, Xr, corr_list, dispersion = args
3470
+ #Xd, y, draws, Xf, Xr, corr_list, dispersion = args
3443
3471
  def loglike(p): return self._loglik_gradient(
3444
- p, Xd, y, draws, Xf, Xr, None, False, False, dispersion, corr_list=corr_list)
3472
+ p, *args)
3473
+ robust = False
3445
3474
  hess = approx_hess(betas, loglike)
3475
+ hess /= self.N
3446
3476
  hess_inv1 = np.linalg.pinv(hess)
3447
- hess = self._hessian_prot(betas, loglike)
3448
- hess = np.nan_to_num(hess)
3449
- hess_inv = np.linalg.pinv(hess)
3450
- return hess_inv
3477
+ if robust:
3478
+
3479
+ scores = approx_fprime(betas, loglike)
3480
+ score_cov = np.cov(scores.T)
3481
+ inv_hess = hess_inv1.dot(score_cov).dot(hess_inv1) / self.N
3482
+ else:
3483
+ inv_hess = hess_inv1 / self.N
3484
+
3485
+ return inv_hess
3451
3486
 
3452
3487
  def _chol_mat(self, correlationLength, br, Br_w, correlation):
3453
3488
  # if correlation = True correlation pos is randpos, if list get correct pos
@@ -5770,12 +5805,20 @@ class ObjectiveFunction(object):
5770
5805
  bounds = bounds + [(i-5, i+5)]
5771
5806
  '''
5772
5807
  Kf_a, Kr_a, Kr_c, Kr_b_a, Kchol_a, Kh, zi_terms_a = self.get_num_params()
5773
-
5808
+ if Kh > 0:
5809
+ Kh_e = mod.get('XH').shape[-1]
5810
+ Kh_range = Kh-Kh_e
5811
+ else:
5812
+ Kh_e = 0
5813
+ Kh_rannge = 0
5774
5814
  sum1 = Kf_a + Kr_a + Kr_c
5775
- sum2 = sum1 + Kr_b_a
5815
+ sumk = sum1 +Kh_e
5816
+ sum2 = sumk + Kr_b_a
5776
5817
  sum3 = sum2 + Kchol_a
5818
+ sum4 = sum3 +Kh
5777
5819
 
5778
5820
  bounds = []
5821
+ bounds_k = []
5779
5822
  bob = b[0:sum2]
5780
5823
  bob2 = b[sum2:sum3]
5781
5824
  if dispersion ==1 or dispersion ==2:
@@ -5786,6 +5829,9 @@ class ObjectiveFunction(object):
5786
5829
  for j, i in enumerate(bob):
5787
5830
  if j < sum1:
5788
5831
  bounds.append((i-15, i+15))
5832
+ elif j < sumk:
5833
+ bounds_k.append(i)
5834
+
5789
5835
  elif j < sum2:
5790
5836
  bounds.append((0.1, i+7))
5791
5837
 
@@ -5811,6 +5857,12 @@ class ObjectiveFunction(object):
5811
5857
  count = 0
5812
5858
  bounds.append((0.1,bob2[count]+5))
5813
5859
 
5860
+ if Kh > 0:
5861
+ for bbb in bounds_k:
5862
+ bounds.append((bbb-15, bbb+15))
5863
+ for bbb in range(Kh_range):
5864
+ bounds.append((.1, 5))
5865
+
5814
5866
 
5815
5867
 
5816
5868
 
@@ -5907,65 +5959,26 @@ class ObjectiveFunction(object):
5907
5959
 
5908
5960
  if dispersion ==1:
5909
5961
  mod['dispersion_penalty'] = abs(b[-1])
5910
-
5911
- betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
5962
+ grad_args = (X, y, draws, X, Xr, self.batch_size,False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod)
5963
+ betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size,False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
5912
5964
  method=method2, tol=tol['ftol'],
5913
5965
  options={'gtol': tol['gtol']}, bounds = bounds)
5966
+
5967
+ if self.numerical_hessian_calc:
5968
+ try:
5969
+ bb_hess = self._numerical_hessian(betas_est.x, grad_args, False)
5970
+ except Exception as e:
5971
+ bb_hess = None
5972
+ else:
5973
+ bb_hess = None
5914
5974
  # betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
5915
5975
  # method=method2, tol=tol['ftol'], options={'gtol': tol['gtol']})
5916
5976
  # betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
5917
5977
  # method=method2, tol=tol['ftol'], options={'gtol': tol['gtol']})
5918
5978
 
5919
- '''
5920
-
5921
- print('detlet the fuck out of this ...')
5922
-
5923
- if dispersion:
5924
- bb = b[0:-1]
5925
- dispersion_coef = b[-1]
5926
- constant_coef = None
5927
- else:
5928
- bb = b[1:]
5929
- dispersion_coef = None
5930
- constant_coef = b[0]
5931
-
5932
-
5979
+
5933
5980
 
5934
- beta_est_alt = self._minimize(self._loglik_gradient_wrapper, bb, args=(constant_coef, dispersion_coef, X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
5935
- method=method, tol=tol['ftol'],
5936
- options={'gtol': tol['gtol']})
5937
- print(beta_est_alt)
5938
- '''
5939
5981
 
5940
- old_code = 0
5941
- if old_code:
5942
- gb_best = betas_est.copy()
5943
- if betas_est['success'] == False:
5944
- #b[0] += b[0] -len(b)/5
5945
- # for i in range(1, len(bb) -self.is_dispersion(dispersion)):
5946
- # b[i] += b[i]/5 +.5
5947
- # for i, j in enumerate(b):
5948
- # b[i] = 0
5949
- start_time = time.time()
5950
- #print('starint slow')
5951
- betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl),
5952
- method=method2, tol=tol['ftol'], options={'gtol': tol['gtol']})
5953
- print("--- %s seconds ---" %
5954
- (time.time() - start_time))
5955
- #ll, grad, hess = self._loglik_gradient(betas_est['x'] , X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl)
5956
- #hess_inv = np.linalg.pinv(np.dot(hess.T, hess))
5957
- #betas_est['hess_inv'] = hess_inv
5958
- if betas_est['fun'] <= gb_best['fun']:
5959
- gb_best = betas_est.copy()
5960
- bb = gb_best['x'].copy()
5961
-
5962
- betas_est = gb_best.copy()
5963
-
5964
- ll, grad, hess = self._loglik_gradient(
5965
- betas_est['x'], X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl)
5966
- hess_inv = np.linalg.pinv(np.dot(hess.T, hess))
5967
- betas_est['hess_inv'] = hess_inv
5968
- # this is causing more problems, lets reconsider
5969
5982
 
5970
5983
  if betas_est['message'] == 'NaN result encountered.':
5971
5984
 
@@ -5982,7 +5995,8 @@ class ObjectiveFunction(object):
5982
5995
  betas_est['x'], 0, dispersion, zi_fit=sub_zi, model_nature = mod)
5983
5996
  if hasattr(betas_est.hess_inv, 'todense'):
5984
5997
  betas_est['hess_inv'] = betas_est.hess_inv.todense() if hasattr(betas_est.hess_inv, 'todense') else np.array([betas_est.hess_inv(np.eye(len(b))[i]) for i in range(len(b))])
5985
-
5998
+ if bb_hess is not None:
5999
+ betas_est['hess_inv'] = bb_hess
5986
6000
  if betas_est['hess_inv'] is None:
5987
6001
 
5988
6002
  self.convergance = 1
@@ -6507,11 +6521,14 @@ class ObjectiveFunction(object):
6507
6521
  if self.is_multi:
6508
6522
 
6509
6523
  if self.pareto_printer.check_if_dominance(self._pareto_population, obj_1):
6524
+ print('dominate soltuion')
6510
6525
  try:
6511
6526
  self.summary_alternative(
6512
6527
  long_print=1, model=dispersion, solution=obj_1)
6513
6528
  except Exception as e:
6514
6529
  print('e', obj_1)
6530
+ else:
6531
+ print('non_dominant solution.')
6515
6532
  if obj_1['layout'] is None:
6516
6533
  print('no layout??')
6517
6534
  else:
@@ -6572,11 +6589,11 @@ class ObjectiveFunction(object):
6572
6589
 
6573
6590
 
6574
6591
  alpha_cor_rdm = np.isin(select_data, [item.split(':')[0] for item in data.get('rdm_cor_terms', [])]).astype(int).tolist()
6575
- print(alpha_cor_rdm)
6592
+
6576
6593
  alpha_group_rdm = np.isin(select_data, data.get('group_rdm', [])).astype(int).tolist()
6577
6594
  alpha_hetro = np.isin(select_data, [item.split(':')[0] for item in data.get('hetro_in_means', [])]).astype(int).tolist()
6578
6595
  for i in range(len(alpha_rdm)):
6579
- print(alpha_cor_rdm)
6596
+
6580
6597
  if alpha[i]:
6581
6598
  fixed_transforms.append(data['transformations'][jc+ja+jb+j])
6582
6599
  fixed_terms_subset.append('normal')
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: metacountregressor
3
- Version: 0.1.33
3
+ Version: 0.1.35
4
4
  Summary: A python package for count regression of rare events assisted by metaheuristics
5
5
  Author: zahern
6
6
  Author-email: zeke.ahern@hdr.qut.edu.au
@@ -16,12 +16,12 @@ metacountregressor/halton.py,sha256=0PleInroxmQNhSTPzYT_Yst5nPGF2DiWJppS6mT9cEg,
16
16
  metacountregressor/helperprocess.py,sha256=5zl2Z4KO27wt7w52r38URvgW0FeN5VIWnD4Q3iRwpBs,8894
17
17
  metacountregressor/HV_DATES.csv,sha256=kOWYcfRD9oGVm0HTr1uVQyWczw2mBZRNbCK9dlVsQrw,7022961
18
18
  metacountregressor/Indiana_data.csv,sha256=oSL3hTMAocbUzD0HeV-mNEJ1xvH6fiEFaFxdCESgdpQ,14452
19
- metacountregressor/main.py,sha256=uK-T6IJ5wLLvSNp-Ovaii-ErIl_fIWZIDAC9aMzjWu4,20766
20
- metacountregressor/metaheuristics.py,sha256=mN7YLssDkRNEvVAyyYIiwOOFk--kqqumm2UW8b3Jzs0,91877
19
+ metacountregressor/main.py,sha256=lXjsMu7AsfuI2cvXrmOoEuAOEPXMvASnm4ui9lvgMdw,20703
20
+ metacountregressor/metaheuristics.py,sha256=_GbaJ8I-YAWv-dZTZD2x4TpcjzlJLA95rXysiQ9itsk,92490
21
21
  metacountregressor/MichiganData.csv,sha256=qeqfZng1IhPxPizR-lTxODUO1jFVLUYZXg3ySIHOuBM,1317927
22
22
  metacountregressor/nbl.R,sha256=ErWPzxn6CFtrOunolFSf7DwVkUOKhsvfOm4t6FmbByk,1917
23
23
  metacountregressor/panel_synth.csv,sha256=w8GBj586DzDfKOn8hwHDNkLeBz5si0qopht1JjAWaTU,3713176
24
- metacountregressor/pareto_file.py,sha256=NWemZDA8bHJHJXCgyM-Xy4CVZnvU2wPYJSNBFOF-k6o,20991
24
+ metacountregressor/pareto_file.py,sha256=5QG-Sv1vRItyVtGavzHQUKZBDY2zjIKfIzMTAfCYxpE,21479
25
25
  metacountregressor/pareto_logger__plot.py,sha256=C5f0Qz_Ai4LCrOrgoaJze8qPDqm-RgVcE5cbTTSgk5Q,26253
26
26
  metacountregressor/PB_HS.pbs,sha256=QII67_u5ASD9Dbv4__mRJXDCpW5tXgdYexbg4hvIB-8,293
27
27
  metacountregressor/PB_HS_short.pbs,sha256=WJTmNzXMNmfh8vitpmMLlvN82-RrA_nzuSlKhu6RXF4,292
@@ -34,11 +34,11 @@ metacountregressor/RPNBHM.R,sha256=vhaQEsYkG7dZmx3kFAm6OofvWzbo5McwJPpjGOPRcmQ,4
34
34
  metacountregressor/RPNBHM_APA.R,sha256=DBkKizyQW7GV-XNwiKCDeFQAVaJ-mUnltnHj3vLw2vg,4016
35
35
  metacountregressor/rural_int.csv,sha256=r4g6ykwZ_0halh3UYHR0GAZsS2sbEBPwU89Eii2RX7A,6959117
36
36
  metacountregressor/rural_int2019.csv,sha256=jCBAM5RGDCU_XYTSOV8BJvpb_2NxKzwSjbjH9SX0cKg,1394779
37
- metacountregressor/set_data.csv,sha256=2LEtfJXHK9Jh3YZ_MpBt6TUGWWk-zsXIyI9PnH_YeJM,226987
37
+ metacountregressor/set_data.csv,sha256=68iJkW4O4HVM8GyNlO0drwp8ZMXkccXCUc7jnA8xnl0,206827
38
38
  metacountregressor/set_data_s.csv,sha256=hELwnv6RjpmXcMheFafwrYbLbyYE21hFKyqJhA8L05o,11111
39
39
  metacountregressor/setup.py,sha256=CpbdBScFhvStc6WByFiAlP7T5wGdWetsLI8X5JRRpP4,268
40
40
  metacountregressor/single_objective_finder.py,sha256=QYXUpxJp7-ul5ZiIKGgYGaH_yFFGUbI7X3yKu5asogE,1960
41
- metacountregressor/solution.py,sha256=ULUjgXLKUn-unMsseCDreIwvv4_tTTeM2MkH6RlLjjo,290351
41
+ metacountregressor/solution.py,sha256=eq83FPyydYc_VPmBjdQs1AqUjeEWbcIEn5OnXNshVh0,290278
42
42
  metacountregressor/Stage5A_1848_All_Initial_Columns.csv,sha256=uwsadEyupgIH1w5f8vnlwlo13ryww3VCGYlOnN0dEL0,188769
43
43
  metacountregressor/Stage5A_1848_All_Initial_Columns.xlsx,sha256=5U5Ab1jjGi5qoKp06Bw2tpdPjGaDGoyt5976AAFdEbs,699231
44
44
  metacountregressor/synth_dataset_generator.ipynb,sha256=caBMQJOaeINPZJw5aTsSOXhmenSqrpS7GycINAzUUxs,27153
@@ -48,6 +48,6 @@ metacountregressor/testML.R,sha256=UbTsLFUhoJG9bJnU2rbUKlfcprAkROnhREK41qKzbvQ,2
48
48
  metacountregressor/TestSetFake.csv,sha256=JPYAWYLAw7rgQHdGTz0rltMfapX8QYt3BVSyK_D-Lzg,1640
49
49
  metacountregressor/ThaiAccident.csv,sha256=NIi_uPyo5u-B6Hj0Ln9xuJ8fnvGbWK9GLdTWdpG5uug,418202
50
50
  metacountregressor/tk_app.py,sha256=0UM76hpQ-ha96ma_Z5ryxYQUSdF4PJBCsLuI1EGu6_E,59490
51
- metacountregressor-0.1.33.dist-info/METADATA,sha256=yAVqCOFeUdZhARSH5jb6XwGXgWDXZTNWJxbqYZCAyVc,3391
52
- metacountregressor-0.1.33.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
53
- metacountregressor-0.1.33.dist-info/RECORD,,
51
+ metacountregressor-0.1.35.dist-info/METADATA,sha256=zj0-X0Rt7Ns07wjqXX6DQUI2dShDyScnJEDIetmFFEM,3391
52
+ metacountregressor-0.1.35.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
53
+ metacountregressor-0.1.35.dist-info/RECORD,,