metacountregressor 0.1.33__py3-none-any.whl → 0.1.35__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/main.py +11 -11
- metacountregressor/metaheuristics.py +25 -17
- metacountregressor/pareto_file.py +22 -10
- metacountregressor/set_data.csv +3780 -3780
- metacountregressor/solution.py +99 -82
- {metacountregressor-0.1.33.dist-info → metacountregressor-0.1.35.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.33.dist-info → metacountregressor-0.1.35.dist-info}/RECORD +8 -8
- {metacountregressor-0.1.33.dist-info → metacountregressor-0.1.35.dist-info}/WHEEL +0 -0
metacountregressor/solution.py
CHANGED
@@ -144,7 +144,8 @@ class ObjectiveFunction(object):
|
|
144
144
|
self.MAE = None
|
145
145
|
self.best_obj_1 = 100000000
|
146
146
|
self._obj_1 = 'bic'
|
147
|
-
self._obj_2 = '
|
147
|
+
self._obj_2 = 'MSE'
|
148
|
+
self.numerical_hessian_calc = 1 # calculates hessian by statsmodels otherwise scipy
|
148
149
|
self.full_model = None
|
149
150
|
self.GP_pararameter = 0
|
150
151
|
self.is_multi = 0
|
@@ -276,7 +277,7 @@ class ObjectiveFunction(object):
|
|
276
277
|
|
277
278
|
self._characteristics_names = list(self._x_data.columns)
|
278
279
|
#self._characteristics_names = [x for x in self._characteristics_names if not 'ID' in x]
|
279
|
-
|
280
|
+
|
280
281
|
|
281
282
|
self._max_group_all_means = 1
|
282
283
|
|
@@ -518,8 +519,8 @@ class ObjectiveFunction(object):
|
|
518
519
|
|
519
520
|
for_testing_purposes = 0
|
520
521
|
if "Manual_Fit" in kwargs and kwargs['Manual_Fit'] is not None:
|
521
|
-
for_testing_purposes =
|
522
|
-
|
522
|
+
for_testing_purposes = 1
|
523
|
+
|
523
524
|
if for_testing_purposes:
|
524
525
|
self.initial_sig = 1 # pass the test of a single model
|
525
526
|
self.pvalue_sig_value = 1
|
@@ -907,6 +908,10 @@ class ObjectiveFunction(object):
|
|
907
908
|
def round_with_padding(self, value, round_digits):
|
908
909
|
return(format(np.round(value, round_digits), "."+str(round_digits)+"f"))
|
909
910
|
|
911
|
+
def round_with_scientific(self, value, round_digits):
|
912
|
+
return(format(np.round(value, round_digits), "."+str(round_digits)+"f"))
|
913
|
+
|
914
|
+
|
910
915
|
def get_dispersion_name(self, dispersion=0):
|
911
916
|
if dispersion == 0:
|
912
917
|
return []
|
@@ -960,15 +965,20 @@ class ObjectiveFunction(object):
|
|
960
965
|
big_hetro = [item for sublist in hetro_names_for for item in sublist]
|
961
966
|
name_hetro = list(model_nature['hetro_hold'].keys())
|
962
967
|
hetro_long= []
|
968
|
+
hetro_std = []
|
963
969
|
|
964
|
-
for i in name_hetro:
|
965
|
-
hetro = [f"{j}: hetro" for j in model_nature['hetro_hold'][i]]
|
966
|
-
hetro
|
970
|
+
for n, i in enumerate(name_hetro):
|
971
|
+
hetro = [f"{j}: hetro group {n}" for j in model_nature['hetro_hold'][i]]
|
972
|
+
hetro = [f"main: {j}: hetro group {n}" if idx == 0 else f"{j}: hetro group {n}" for idx, j in enumerate(model_nature['hetro_hold'][i])]
|
973
|
+
hetro_std.append(f"{hetro[0]}:{i}:sd hetro group {n}")
|
967
974
|
hetro_long = hetro_long +hetro
|
968
975
|
|
969
976
|
abct = []
|
977
|
+
hetro_long = hetro_long + hetro_std
|
970
978
|
for i in model_nature['transfrom_hetro']:
|
971
|
-
abct = abct + i
|
979
|
+
abct = abct + i
|
980
|
+
for i in model_nature['transfrom_hetro']:
|
981
|
+
abct = abct + ['']
|
972
982
|
else:
|
973
983
|
big_hetro = []
|
974
984
|
hetro_long = []
|
@@ -1046,7 +1056,7 @@ class ObjectiveFunction(object):
|
|
1046
1056
|
except Exception as e:
|
1047
1057
|
print(e)
|
1048
1058
|
|
1049
|
-
def summary_alternative(self, long_print=0, model=0, solution=None):
|
1059
|
+
def summary_alternative(self, long_print=0, model=0, solution=None, save_state = 0):
|
1050
1060
|
fmt = "{:19} {:13} {:13.10f} {:13.10f}{:13.10f} {:13.3g} {:3}"
|
1051
1061
|
coeff_name_str_length = 19
|
1052
1062
|
|
@@ -1065,19 +1075,26 @@ class ObjectiveFunction(object):
|
|
1065
1075
|
if not isinstance(self.pvalues, np.ndarray):
|
1066
1076
|
raise Exception
|
1067
1077
|
|
1078
|
+
|
1079
|
+
#self.pvalues= [self.round_with_padding(x, 2) for x in self.pvalues]
|
1080
|
+
#self.pvalues= [self.round_with_scientific(x, 2) for x in self.pvalues]
|
1081
|
+
|
1068
1082
|
for i in range(len(self.coeff_)):
|
1069
1083
|
signif = ""
|
1070
|
-
|
1071
|
-
if self.pvalues[i] < 0.01:
|
1084
|
+
|
1085
|
+
if float(self.pvalues[i]) < 0.01:
|
1072
1086
|
signif = "***"
|
1073
|
-
elif self.pvalues[i] < 0.05:
|
1087
|
+
elif float(self.pvalues[i]) < 0.05:
|
1074
1088
|
signif = "**"
|
1075
|
-
elif self.pvalues[i] < 0.1:
|
1089
|
+
elif float(self.pvalues[i]) < 0.1:
|
1076
1090
|
signif = "*"
|
1091
|
+
|
1092
|
+
'''
|
1077
1093
|
print(fmt.format(self.coeff_names[i][:coeff_name_str_length], self.print_transform[i], self.coeff_[i],
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1094
|
+
self.stderr[i], self.zvalues[i], self.pvalues[i],
|
1095
|
+
signif
|
1096
|
+
))
|
1097
|
+
'''
|
1081
1098
|
|
1082
1099
|
if not self.convergence:
|
1083
1100
|
print("-" * 50)
|
@@ -1156,7 +1173,7 @@ class ObjectiveFunction(object):
|
|
1156
1173
|
caption_parts.append(f"MSPE: {self.round_with_padding(self.MAE, 2)}")
|
1157
1174
|
|
1158
1175
|
caption = " ".join(caption_parts)
|
1159
|
-
print(latextable.draw_latex(table, caption=caption, caption_above = True))
|
1176
|
+
#print(latextable.draw_latex(table, caption=caption, caption_above = True))
|
1160
1177
|
if solution is None:
|
1161
1178
|
file_name = self.instance_number + "/sln" + \
|
1162
1179
|
"_with_BIC_"+str(self.bic)+".tex"
|
@@ -1164,8 +1181,10 @@ class ObjectiveFunction(object):
|
|
1164
1181
|
file_name = self.instance_number + "/sln" + \
|
1165
1182
|
str(solution['sol_num']) + \
|
1166
1183
|
"_with_BIC_"+str(self.bic)+".tex"
|
1167
|
-
|
1168
|
-
|
1184
|
+
|
1185
|
+
if save_state:
|
1186
|
+
self.save_to_file(latextable.draw_latex(
|
1187
|
+
table, caption=caption, caption_above = True), file_name)
|
1169
1188
|
|
1170
1189
|
|
1171
1190
|
#print('change this')
|
@@ -1403,11 +1422,20 @@ class ObjectiveFunction(object):
|
|
1403
1422
|
if np.size(y) != np.size(eVy):
|
1404
1423
|
y = np.tile(y, self.Ndraws).ravel()
|
1405
1424
|
eVy = eVy.ravel()
|
1425
|
+
|
1426
|
+
# y_avg = np.mean(y, axis = (1,2))
|
1427
|
+
# eVy_avg = np.mean(eVy, axis = (1,2))
|
1428
|
+
#mspe1 = np.nan_to_num(MSPE(np.squeeze(y_avg), np.squeeze(eVy_avg)), nan=100000, posinf=100000)
|
1406
1429
|
eVy = np.nan_to_num(eVy, nan=100000, posinf=100000)
|
1407
1430
|
eVy = np.clip(eVy, None, 1000)
|
1408
1431
|
mae = np.nan_to_num(MAE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
|
1409
1432
|
mspe = np.nan_to_num(MSPE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
|
1410
|
-
|
1433
|
+
if self._obj_2 == 'MAE':
|
1434
|
+
return mae
|
1435
|
+
elif self._obj_2 == 'MSE':
|
1436
|
+
return mspe
|
1437
|
+
elif self._obj_2 == "MAD":
|
1438
|
+
raise Exception
|
1411
1439
|
return mspe
|
1412
1440
|
|
1413
1441
|
def get_solution_vector(self, fixed_vars, random_vars, random_var_cor, distribution_vars, dispersion=None):
|
@@ -1587,7 +1615,7 @@ class ObjectiveFunction(object):
|
|
1587
1615
|
|
1588
1616
|
if (self.get_num_discrete_values(get_rdm_i) - 1) == 0:
|
1589
1617
|
# TODO: must be a better way to avoid selecting this
|
1590
|
-
print('
|
1618
|
+
print('repair constraint violated, skipping over..')
|
1591
1619
|
|
1592
1620
|
|
1593
1621
|
else:
|
@@ -3439,15 +3467,22 @@ class ObjectiveFunction(object):
|
|
3439
3467
|
return covariance
|
3440
3468
|
|
3441
3469
|
def _numerical_hessian(self, betas, args, jac):
|
3442
|
-
Xd, y, draws, Xf, Xr, corr_list, dispersion = args
|
3470
|
+
#Xd, y, draws, Xf, Xr, corr_list, dispersion = args
|
3443
3471
|
def loglike(p): return self._loglik_gradient(
|
3444
|
-
p,
|
3472
|
+
p, *args)
|
3473
|
+
robust = False
|
3445
3474
|
hess = approx_hess(betas, loglike)
|
3475
|
+
hess /= self.N
|
3446
3476
|
hess_inv1 = np.linalg.pinv(hess)
|
3447
|
-
|
3448
|
-
|
3449
|
-
|
3450
|
-
|
3477
|
+
if robust:
|
3478
|
+
|
3479
|
+
scores = approx_fprime(betas, loglike)
|
3480
|
+
score_cov = np.cov(scores.T)
|
3481
|
+
inv_hess = hess_inv1.dot(score_cov).dot(hess_inv1) / self.N
|
3482
|
+
else:
|
3483
|
+
inv_hess = hess_inv1 / self.N
|
3484
|
+
|
3485
|
+
return inv_hess
|
3451
3486
|
|
3452
3487
|
def _chol_mat(self, correlationLength, br, Br_w, correlation):
|
3453
3488
|
# if correlation = True correlation pos is randpos, if list get correct pos
|
@@ -5770,12 +5805,20 @@ class ObjectiveFunction(object):
|
|
5770
5805
|
bounds = bounds + [(i-5, i+5)]
|
5771
5806
|
'''
|
5772
5807
|
Kf_a, Kr_a, Kr_c, Kr_b_a, Kchol_a, Kh, zi_terms_a = self.get_num_params()
|
5773
|
-
|
5808
|
+
if Kh > 0:
|
5809
|
+
Kh_e = mod.get('XH').shape[-1]
|
5810
|
+
Kh_range = Kh-Kh_e
|
5811
|
+
else:
|
5812
|
+
Kh_e = 0
|
5813
|
+
Kh_rannge = 0
|
5774
5814
|
sum1 = Kf_a + Kr_a + Kr_c
|
5775
|
-
|
5815
|
+
sumk = sum1 +Kh_e
|
5816
|
+
sum2 = sumk + Kr_b_a
|
5776
5817
|
sum3 = sum2 + Kchol_a
|
5818
|
+
sum4 = sum3 +Kh
|
5777
5819
|
|
5778
5820
|
bounds = []
|
5821
|
+
bounds_k = []
|
5779
5822
|
bob = b[0:sum2]
|
5780
5823
|
bob2 = b[sum2:sum3]
|
5781
5824
|
if dispersion ==1 or dispersion ==2:
|
@@ -5786,6 +5829,9 @@ class ObjectiveFunction(object):
|
|
5786
5829
|
for j, i in enumerate(bob):
|
5787
5830
|
if j < sum1:
|
5788
5831
|
bounds.append((i-15, i+15))
|
5832
|
+
elif j < sumk:
|
5833
|
+
bounds_k.append(i)
|
5834
|
+
|
5789
5835
|
elif j < sum2:
|
5790
5836
|
bounds.append((0.1, i+7))
|
5791
5837
|
|
@@ -5811,6 +5857,12 @@ class ObjectiveFunction(object):
|
|
5811
5857
|
count = 0
|
5812
5858
|
bounds.append((0.1,bob2[count]+5))
|
5813
5859
|
|
5860
|
+
if Kh > 0:
|
5861
|
+
for bbb in bounds_k:
|
5862
|
+
bounds.append((bbb-15, bbb+15))
|
5863
|
+
for bbb in range(Kh_range):
|
5864
|
+
bounds.append((.1, 5))
|
5865
|
+
|
5814
5866
|
|
5815
5867
|
|
5816
5868
|
|
@@ -5907,65 +5959,26 @@ class ObjectiveFunction(object):
|
|
5907
5959
|
|
5908
5960
|
if dispersion ==1:
|
5909
5961
|
mod['dispersion_penalty'] = abs(b[-1])
|
5910
|
-
|
5911
|
-
betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size,
|
5962
|
+
grad_args = (X, y, draws, X, Xr, self.batch_size,False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod)
|
5963
|
+
betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size,False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
|
5912
5964
|
method=method2, tol=tol['ftol'],
|
5913
5965
|
options={'gtol': tol['gtol']}, bounds = bounds)
|
5966
|
+
|
5967
|
+
if self.numerical_hessian_calc:
|
5968
|
+
try:
|
5969
|
+
bb_hess = self._numerical_hessian(betas_est.x, grad_args, False)
|
5970
|
+
except Exception as e:
|
5971
|
+
bb_hess = None
|
5972
|
+
else:
|
5973
|
+
bb_hess = None
|
5914
5974
|
# betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
|
5915
5975
|
# method=method2, tol=tol['ftol'], options={'gtol': tol['gtol']})
|
5916
5976
|
# betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, False, False, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
|
5917
5977
|
# method=method2, tol=tol['ftol'], options={'gtol': tol['gtol']})
|
5918
5978
|
|
5919
|
-
|
5920
|
-
|
5921
|
-
print('detlet the fuck out of this ...')
|
5922
|
-
|
5923
|
-
if dispersion:
|
5924
|
-
bb = b[0:-1]
|
5925
|
-
dispersion_coef = b[-1]
|
5926
|
-
constant_coef = None
|
5927
|
-
else:
|
5928
|
-
bb = b[1:]
|
5929
|
-
dispersion_coef = None
|
5930
|
-
constant_coef = b[0]
|
5931
|
-
|
5932
|
-
|
5979
|
+
|
5933
5980
|
|
5934
|
-
beta_est_alt = self._minimize(self._loglik_gradient_wrapper, bb, args=(constant_coef, dispersion_coef, X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
|
5935
|
-
method=method, tol=tol['ftol'],
|
5936
|
-
options={'gtol': tol['gtol']})
|
5937
|
-
print(beta_est_alt)
|
5938
|
-
'''
|
5939
5981
|
|
5940
|
-
old_code = 0
|
5941
|
-
if old_code:
|
5942
|
-
gb_best = betas_est.copy()
|
5943
|
-
if betas_est['success'] == False:
|
5944
|
-
#b[0] += b[0] -len(b)/5
|
5945
|
-
# for i in range(1, len(bb) -self.is_dispersion(dispersion)):
|
5946
|
-
# b[i] += b[i]/5 +.5
|
5947
|
-
# for i, j in enumerate(b):
|
5948
|
-
# b[i] = 0
|
5949
|
-
start_time = time.time()
|
5950
|
-
#print('starint slow')
|
5951
|
-
betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl),
|
5952
|
-
method=method2, tol=tol['ftol'], options={'gtol': tol['gtol']})
|
5953
|
-
print("--- %s seconds ---" %
|
5954
|
-
(time.time() - start_time))
|
5955
|
-
#ll, grad, hess = self._loglik_gradient(betas_est['x'] , X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl)
|
5956
|
-
#hess_inv = np.linalg.pinv(np.dot(hess.T, hess))
|
5957
|
-
#betas_est['hess_inv'] = hess_inv
|
5958
|
-
if betas_est['fun'] <= gb_best['fun']:
|
5959
|
-
gb_best = betas_est.copy()
|
5960
|
-
bb = gb_best['x'].copy()
|
5961
|
-
|
5962
|
-
betas_est = gb_best.copy()
|
5963
|
-
|
5964
|
-
ll, grad, hess = self._loglik_gradient(
|
5965
|
-
betas_est['x'], X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl)
|
5966
|
-
hess_inv = np.linalg.pinv(np.dot(hess.T, hess))
|
5967
|
-
betas_est['hess_inv'] = hess_inv
|
5968
|
-
# this is causing more problems, lets reconsider
|
5969
5982
|
|
5970
5983
|
if betas_est['message'] == 'NaN result encountered.':
|
5971
5984
|
|
@@ -5982,7 +5995,8 @@ class ObjectiveFunction(object):
|
|
5982
5995
|
betas_est['x'], 0, dispersion, zi_fit=sub_zi, model_nature = mod)
|
5983
5996
|
if hasattr(betas_est.hess_inv, 'todense'):
|
5984
5997
|
betas_est['hess_inv'] = betas_est.hess_inv.todense() if hasattr(betas_est.hess_inv, 'todense') else np.array([betas_est.hess_inv(np.eye(len(b))[i]) for i in range(len(b))])
|
5985
|
-
|
5998
|
+
if bb_hess is not None:
|
5999
|
+
betas_est['hess_inv'] = bb_hess
|
5986
6000
|
if betas_est['hess_inv'] is None:
|
5987
6001
|
|
5988
6002
|
self.convergance = 1
|
@@ -6507,11 +6521,14 @@ class ObjectiveFunction(object):
|
|
6507
6521
|
if self.is_multi:
|
6508
6522
|
|
6509
6523
|
if self.pareto_printer.check_if_dominance(self._pareto_population, obj_1):
|
6524
|
+
print('dominate soltuion')
|
6510
6525
|
try:
|
6511
6526
|
self.summary_alternative(
|
6512
6527
|
long_print=1, model=dispersion, solution=obj_1)
|
6513
6528
|
except Exception as e:
|
6514
6529
|
print('e', obj_1)
|
6530
|
+
else:
|
6531
|
+
print('non_dominant solution.')
|
6515
6532
|
if obj_1['layout'] is None:
|
6516
6533
|
print('no layout??')
|
6517
6534
|
else:
|
@@ -6572,11 +6589,11 @@ class ObjectiveFunction(object):
|
|
6572
6589
|
|
6573
6590
|
|
6574
6591
|
alpha_cor_rdm = np.isin(select_data, [item.split(':')[0] for item in data.get('rdm_cor_terms', [])]).astype(int).tolist()
|
6575
|
-
|
6592
|
+
|
6576
6593
|
alpha_group_rdm = np.isin(select_data, data.get('group_rdm', [])).astype(int).tolist()
|
6577
6594
|
alpha_hetro = np.isin(select_data, [item.split(':')[0] for item in data.get('hetro_in_means', [])]).astype(int).tolist()
|
6578
6595
|
for i in range(len(alpha_rdm)):
|
6579
|
-
|
6596
|
+
|
6580
6597
|
if alpha[i]:
|
6581
6598
|
fixed_transforms.append(data['transformations'][jc+ja+jb+j])
|
6582
6599
|
fixed_terms_subset.append('normal')
|
@@ -16,12 +16,12 @@ metacountregressor/halton.py,sha256=0PleInroxmQNhSTPzYT_Yst5nPGF2DiWJppS6mT9cEg,
|
|
16
16
|
metacountregressor/helperprocess.py,sha256=5zl2Z4KO27wt7w52r38URvgW0FeN5VIWnD4Q3iRwpBs,8894
|
17
17
|
metacountregressor/HV_DATES.csv,sha256=kOWYcfRD9oGVm0HTr1uVQyWczw2mBZRNbCK9dlVsQrw,7022961
|
18
18
|
metacountregressor/Indiana_data.csv,sha256=oSL3hTMAocbUzD0HeV-mNEJ1xvH6fiEFaFxdCESgdpQ,14452
|
19
|
-
metacountregressor/main.py,sha256=
|
20
|
-
metacountregressor/metaheuristics.py,sha256=
|
19
|
+
metacountregressor/main.py,sha256=lXjsMu7AsfuI2cvXrmOoEuAOEPXMvASnm4ui9lvgMdw,20703
|
20
|
+
metacountregressor/metaheuristics.py,sha256=_GbaJ8I-YAWv-dZTZD2x4TpcjzlJLA95rXysiQ9itsk,92490
|
21
21
|
metacountregressor/MichiganData.csv,sha256=qeqfZng1IhPxPizR-lTxODUO1jFVLUYZXg3ySIHOuBM,1317927
|
22
22
|
metacountregressor/nbl.R,sha256=ErWPzxn6CFtrOunolFSf7DwVkUOKhsvfOm4t6FmbByk,1917
|
23
23
|
metacountregressor/panel_synth.csv,sha256=w8GBj586DzDfKOn8hwHDNkLeBz5si0qopht1JjAWaTU,3713176
|
24
|
-
metacountregressor/pareto_file.py,sha256=
|
24
|
+
metacountregressor/pareto_file.py,sha256=5QG-Sv1vRItyVtGavzHQUKZBDY2zjIKfIzMTAfCYxpE,21479
|
25
25
|
metacountregressor/pareto_logger__plot.py,sha256=C5f0Qz_Ai4LCrOrgoaJze8qPDqm-RgVcE5cbTTSgk5Q,26253
|
26
26
|
metacountregressor/PB_HS.pbs,sha256=QII67_u5ASD9Dbv4__mRJXDCpW5tXgdYexbg4hvIB-8,293
|
27
27
|
metacountregressor/PB_HS_short.pbs,sha256=WJTmNzXMNmfh8vitpmMLlvN82-RrA_nzuSlKhu6RXF4,292
|
@@ -34,11 +34,11 @@ metacountregressor/RPNBHM.R,sha256=vhaQEsYkG7dZmx3kFAm6OofvWzbo5McwJPpjGOPRcmQ,4
|
|
34
34
|
metacountregressor/RPNBHM_APA.R,sha256=DBkKizyQW7GV-XNwiKCDeFQAVaJ-mUnltnHj3vLw2vg,4016
|
35
35
|
metacountregressor/rural_int.csv,sha256=r4g6ykwZ_0halh3UYHR0GAZsS2sbEBPwU89Eii2RX7A,6959117
|
36
36
|
metacountregressor/rural_int2019.csv,sha256=jCBAM5RGDCU_XYTSOV8BJvpb_2NxKzwSjbjH9SX0cKg,1394779
|
37
|
-
metacountregressor/set_data.csv,sha256=
|
37
|
+
metacountregressor/set_data.csv,sha256=68iJkW4O4HVM8GyNlO0drwp8ZMXkccXCUc7jnA8xnl0,206827
|
38
38
|
metacountregressor/set_data_s.csv,sha256=hELwnv6RjpmXcMheFafwrYbLbyYE21hFKyqJhA8L05o,11111
|
39
39
|
metacountregressor/setup.py,sha256=CpbdBScFhvStc6WByFiAlP7T5wGdWetsLI8X5JRRpP4,268
|
40
40
|
metacountregressor/single_objective_finder.py,sha256=QYXUpxJp7-ul5ZiIKGgYGaH_yFFGUbI7X3yKu5asogE,1960
|
41
|
-
metacountregressor/solution.py,sha256=
|
41
|
+
metacountregressor/solution.py,sha256=eq83FPyydYc_VPmBjdQs1AqUjeEWbcIEn5OnXNshVh0,290278
|
42
42
|
metacountregressor/Stage5A_1848_All_Initial_Columns.csv,sha256=uwsadEyupgIH1w5f8vnlwlo13ryww3VCGYlOnN0dEL0,188769
|
43
43
|
metacountregressor/Stage5A_1848_All_Initial_Columns.xlsx,sha256=5U5Ab1jjGi5qoKp06Bw2tpdPjGaDGoyt5976AAFdEbs,699231
|
44
44
|
metacountregressor/synth_dataset_generator.ipynb,sha256=caBMQJOaeINPZJw5aTsSOXhmenSqrpS7GycINAzUUxs,27153
|
@@ -48,6 +48,6 @@ metacountregressor/testML.R,sha256=UbTsLFUhoJG9bJnU2rbUKlfcprAkROnhREK41qKzbvQ,2
|
|
48
48
|
metacountregressor/TestSetFake.csv,sha256=JPYAWYLAw7rgQHdGTz0rltMfapX8QYt3BVSyK_D-Lzg,1640
|
49
49
|
metacountregressor/ThaiAccident.csv,sha256=NIi_uPyo5u-B6Hj0Ln9xuJ8fnvGbWK9GLdTWdpG5uug,418202
|
50
50
|
metacountregressor/tk_app.py,sha256=0UM76hpQ-ha96ma_Z5ryxYQUSdF4PJBCsLuI1EGu6_E,59490
|
51
|
-
metacountregressor-0.1.
|
52
|
-
metacountregressor-0.1.
|
53
|
-
metacountregressor-0.1.
|
51
|
+
metacountregressor-0.1.35.dist-info/METADATA,sha256=zj0-X0Rt7Ns07wjqXX6DQUI2dShDyScnJEDIetmFFEM,3391
|
52
|
+
metacountregressor-0.1.35.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
|
53
|
+
metacountregressor-0.1.35.dist-info/RECORD,,
|
File without changes
|