metacountregressor 0.1.33__py3-none-any.whl → 0.1.34__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/solution.py +49 -16
- {metacountregressor-0.1.33.dist-info → metacountregressor-0.1.34.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.33.dist-info → metacountregressor-0.1.34.dist-info}/RECORD +4 -4
- {metacountregressor-0.1.33.dist-info → metacountregressor-0.1.34.dist-info}/WHEEL +0 -0
metacountregressor/solution.py
CHANGED
@@ -276,7 +276,7 @@ class ObjectiveFunction(object):
|
|
276
276
|
|
277
277
|
self._characteristics_names = list(self._x_data.columns)
|
278
278
|
#self._characteristics_names = [x for x in self._characteristics_names if not 'ID' in x]
|
279
|
-
|
279
|
+
|
280
280
|
|
281
281
|
self._max_group_all_means = 1
|
282
282
|
|
@@ -907,6 +907,10 @@ class ObjectiveFunction(object):
|
|
907
907
|
def round_with_padding(self, value, round_digits):
|
908
908
|
return(format(np.round(value, round_digits), "."+str(round_digits)+"f"))
|
909
909
|
|
910
|
+
def round_with_scientific(self, value, round_digits):
|
911
|
+
return(format(np.round(value, round_digits), "."+str(round_digits)+"f"))
|
912
|
+
|
913
|
+
|
910
914
|
def get_dispersion_name(self, dispersion=0):
|
911
915
|
if dispersion == 0:
|
912
916
|
return []
|
@@ -960,15 +964,20 @@ class ObjectiveFunction(object):
|
|
960
964
|
big_hetro = [item for sublist in hetro_names_for for item in sublist]
|
961
965
|
name_hetro = list(model_nature['hetro_hold'].keys())
|
962
966
|
hetro_long= []
|
967
|
+
hetro_std = []
|
963
968
|
|
964
|
-
for i in name_hetro:
|
965
|
-
hetro = [f"{j}: hetro" for j in model_nature['hetro_hold'][i]]
|
966
|
-
hetro
|
969
|
+
for n, i in enumerate(name_hetro):
|
970
|
+
hetro = [f"{j}: hetro group {n}" for j in model_nature['hetro_hold'][i]]
|
971
|
+
hetro = [f"main: {j}: hetro group {n}" if idx == 0 else f"{j}: hetro group {n}" for idx, j in enumerate(model_nature['hetro_hold'][i])]
|
972
|
+
hetro_std.append(f"{hetro[0]}:{i}:sd hetro group {n}")
|
967
973
|
hetro_long = hetro_long +hetro
|
968
974
|
|
969
975
|
abct = []
|
976
|
+
hetro_long = hetro_long + hetro_std
|
977
|
+
for i in model_nature['transfrom_hetro']:
|
978
|
+
abct = abct + i
|
970
979
|
for i in model_nature['transfrom_hetro']:
|
971
|
-
abct = abct +
|
980
|
+
abct = abct + ['']
|
972
981
|
else:
|
973
982
|
big_hetro = []
|
974
983
|
hetro_long = []
|
@@ -1065,19 +1074,26 @@ class ObjectiveFunction(object):
|
|
1065
1074
|
if not isinstance(self.pvalues, np.ndarray):
|
1066
1075
|
raise Exception
|
1067
1076
|
|
1077
|
+
|
1078
|
+
self.pvalues= [self.round_with_padding(x, 2) for x in self.pvalues]
|
1079
|
+
#self.pvalues= [self.round_with_scientific(x, 2) for x in self.pvalues]
|
1080
|
+
|
1068
1081
|
for i in range(len(self.coeff_)):
|
1069
1082
|
signif = ""
|
1070
|
-
|
1083
|
+
|
1071
1084
|
if self.pvalues[i] < 0.01:
|
1072
1085
|
signif = "***"
|
1073
1086
|
elif self.pvalues[i] < 0.05:
|
1074
1087
|
signif = "**"
|
1075
1088
|
elif self.pvalues[i] < 0.1:
|
1076
1089
|
signif = "*"
|
1090
|
+
|
1091
|
+
'''
|
1077
1092
|
print(fmt.format(self.coeff_names[i][:coeff_name_str_length], self.print_transform[i], self.coeff_[i],
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1093
|
+
self.stderr[i], self.zvalues[i], self.pvalues[i],
|
1094
|
+
signif
|
1095
|
+
))
|
1096
|
+
'''
|
1081
1097
|
|
1082
1098
|
if not self.convergence:
|
1083
1099
|
print("-" * 50)
|
@@ -1156,7 +1172,7 @@ class ObjectiveFunction(object):
|
|
1156
1172
|
caption_parts.append(f"MSPE: {self.round_with_padding(self.MAE, 2)}")
|
1157
1173
|
|
1158
1174
|
caption = " ".join(caption_parts)
|
1159
|
-
print(latextable.draw_latex(table, caption=caption, caption_above = True))
|
1175
|
+
#print(latextable.draw_latex(table, caption=caption, caption_above = True))
|
1160
1176
|
if solution is None:
|
1161
1177
|
file_name = self.instance_number + "/sln" + \
|
1162
1178
|
"_with_BIC_"+str(self.bic)+".tex"
|
@@ -1165,7 +1181,7 @@ class ObjectiveFunction(object):
|
|
1165
1181
|
str(solution['sol_num']) + \
|
1166
1182
|
"_with_BIC_"+str(self.bic)+".tex"
|
1167
1183
|
self.save_to_file(latextable.draw_latex(
|
1168
|
-
table, caption=caption), file_name)
|
1184
|
+
table, caption=caption, caption_above = True), file_name)
|
1169
1185
|
|
1170
1186
|
|
1171
1187
|
#print('change this')
|
@@ -5770,12 +5786,20 @@ class ObjectiveFunction(object):
|
|
5770
5786
|
bounds = bounds + [(i-5, i+5)]
|
5771
5787
|
'''
|
5772
5788
|
Kf_a, Kr_a, Kr_c, Kr_b_a, Kchol_a, Kh, zi_terms_a = self.get_num_params()
|
5773
|
-
|
5789
|
+
if Kh > 0:
|
5790
|
+
Kh_e = mod.get('XH').shape[-1]
|
5791
|
+
Kh_range = Kh-Kh_e
|
5792
|
+
else:
|
5793
|
+
Kh_e = 0
|
5794
|
+
Kh_rannge = 0
|
5774
5795
|
sum1 = Kf_a + Kr_a + Kr_c
|
5775
|
-
|
5796
|
+
sumk = sum1 +Kh_e
|
5797
|
+
sum2 = sumk + Kr_b_a
|
5776
5798
|
sum3 = sum2 + Kchol_a
|
5799
|
+
sum4 = sum3 +Kh
|
5777
5800
|
|
5778
5801
|
bounds = []
|
5802
|
+
bounds_k = []
|
5779
5803
|
bob = b[0:sum2]
|
5780
5804
|
bob2 = b[sum2:sum3]
|
5781
5805
|
if dispersion ==1 or dispersion ==2:
|
@@ -5786,6 +5810,9 @@ class ObjectiveFunction(object):
|
|
5786
5810
|
for j, i in enumerate(bob):
|
5787
5811
|
if j < sum1:
|
5788
5812
|
bounds.append((i-15, i+15))
|
5813
|
+
elif j < sumk:
|
5814
|
+
bounds_k.append(i)
|
5815
|
+
|
5789
5816
|
elif j < sum2:
|
5790
5817
|
bounds.append((0.1, i+7))
|
5791
5818
|
|
@@ -5811,6 +5838,12 @@ class ObjectiveFunction(object):
|
|
5811
5838
|
count = 0
|
5812
5839
|
bounds.append((0.1,bob2[count]+5))
|
5813
5840
|
|
5841
|
+
if Kh > 0:
|
5842
|
+
for bbb in bounds_k:
|
5843
|
+
bounds.append((bbb-15, bbb+15))
|
5844
|
+
for bbb in range(Kh_range):
|
5845
|
+
bounds.append((.1, 5))
|
5846
|
+
|
5814
5847
|
|
5815
5848
|
|
5816
5849
|
|
@@ -5908,7 +5941,7 @@ class ObjectiveFunction(object):
|
|
5908
5941
|
if dispersion ==1:
|
5909
5942
|
mod['dispersion_penalty'] = abs(b[-1])
|
5910
5943
|
|
5911
|
-
betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size,
|
5944
|
+
betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
|
5912
5945
|
method=method2, tol=tol['ftol'],
|
5913
5946
|
options={'gtol': tol['gtol']}, bounds = bounds)
|
5914
5947
|
# betas_est = self._minimize(self._loglik_gradient, b, args=(X, y, draws, X, Xr, self.batch_size, True, True, dispersion, 0, False, 0, self.rdm_cor_fit, self.zi_fit, exog_infl, draws_grouped, XG, mod),
|
@@ -6572,11 +6605,11 @@ class ObjectiveFunction(object):
|
|
6572
6605
|
|
6573
6606
|
|
6574
6607
|
alpha_cor_rdm = np.isin(select_data, [item.split(':')[0] for item in data.get('rdm_cor_terms', [])]).astype(int).tolist()
|
6575
|
-
|
6608
|
+
|
6576
6609
|
alpha_group_rdm = np.isin(select_data, data.get('group_rdm', [])).astype(int).tolist()
|
6577
6610
|
alpha_hetro = np.isin(select_data, [item.split(':')[0] for item in data.get('hetro_in_means', [])]).astype(int).tolist()
|
6578
6611
|
for i in range(len(alpha_rdm)):
|
6579
|
-
|
6612
|
+
|
6580
6613
|
if alpha[i]:
|
6581
6614
|
fixed_transforms.append(data['transformations'][jc+ja+jb+j])
|
6582
6615
|
fixed_terms_subset.append('normal')
|
@@ -38,7 +38,7 @@ metacountregressor/set_data.csv,sha256=2LEtfJXHK9Jh3YZ_MpBt6TUGWWk-zsXIyI9PnH_Ye
|
|
38
38
|
metacountregressor/set_data_s.csv,sha256=hELwnv6RjpmXcMheFafwrYbLbyYE21hFKyqJhA8L05o,11111
|
39
39
|
metacountregressor/setup.py,sha256=CpbdBScFhvStc6WByFiAlP7T5wGdWetsLI8X5JRRpP4,268
|
40
40
|
metacountregressor/single_objective_finder.py,sha256=QYXUpxJp7-ul5ZiIKGgYGaH_yFFGUbI7X3yKu5asogE,1960
|
41
|
-
metacountregressor/solution.py,sha256=
|
41
|
+
metacountregressor/solution.py,sha256=tUd2f36cN60D6FOjIVZJfaWLi7yFhAVGLgFRPcBycZo,291869
|
42
42
|
metacountregressor/Stage5A_1848_All_Initial_Columns.csv,sha256=uwsadEyupgIH1w5f8vnlwlo13ryww3VCGYlOnN0dEL0,188769
|
43
43
|
metacountregressor/Stage5A_1848_All_Initial_Columns.xlsx,sha256=5U5Ab1jjGi5qoKp06Bw2tpdPjGaDGoyt5976AAFdEbs,699231
|
44
44
|
metacountregressor/synth_dataset_generator.ipynb,sha256=caBMQJOaeINPZJw5aTsSOXhmenSqrpS7GycINAzUUxs,27153
|
@@ -48,6 +48,6 @@ metacountregressor/testML.R,sha256=UbTsLFUhoJG9bJnU2rbUKlfcprAkROnhREK41qKzbvQ,2
|
|
48
48
|
metacountregressor/TestSetFake.csv,sha256=JPYAWYLAw7rgQHdGTz0rltMfapX8QYt3BVSyK_D-Lzg,1640
|
49
49
|
metacountregressor/ThaiAccident.csv,sha256=NIi_uPyo5u-B6Hj0Ln9xuJ8fnvGbWK9GLdTWdpG5uug,418202
|
50
50
|
metacountregressor/tk_app.py,sha256=0UM76hpQ-ha96ma_Z5ryxYQUSdF4PJBCsLuI1EGu6_E,59490
|
51
|
-
metacountregressor-0.1.
|
52
|
-
metacountregressor-0.1.
|
53
|
-
metacountregressor-0.1.
|
51
|
+
metacountregressor-0.1.34.dist-info/METADATA,sha256=KVCPwaZPaSW7ETzwDlOhAR419gwNidItaPth5Ai_dWE,3391
|
52
|
+
metacountregressor-0.1.34.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
|
53
|
+
metacountregressor-0.1.34.dist-info/RECORD,,
|
File without changes
|