metacountregressor 0.1.318__py3-none-any.whl → 0.1.320__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -611,6 +611,7 @@ class ObjectiveFunction(object):
611
611
 
612
612
  modified_fit = self.modify_initial_fit(manual_fit) # Modify the initial fit based on manual_fit
613
613
  self.significant = 1
614
+ #self.define_selfs_fixed_rdm_cor(modified_fit)
614
615
  self.makeRegression(modified_fit) # Perform regression with the modified fit
615
616
 
616
617
 
@@ -4703,6 +4704,27 @@ class ObjectiveFunction(object):
4703
4704
 
4704
4705
  return log_likelihood_value
4705
4706
 
4707
+ def _no_draws(self, draws, grouped_draws, model_nature):
4708
+ # Check if 'draws_hetro' exists and has the required attributes
4709
+ if 'draws_hetro' in model_nature:
4710
+ draws_hetro = model_nature.get('draws_hetro')
4711
+ try:
4712
+ # Check if the condition is met
4713
+ if draws_hetro.shape[1] == 0:
4714
+ return False
4715
+ else: return True
4716
+ except AttributeError:
4717
+ pass
4718
+ else:
4719
+ # If 'draws_hetro' does not exist, return False
4720
+ if draws is None and grouped_draws is None:
4721
+ return False
4722
+ else: return True
4723
+
4724
+ # Return True if none of the conditions for False are met
4725
+ return True
4726
+
4727
+
4706
4728
  def _loglik_gradient(self, betas, Xd, y, draws=None, Xf=None, Xr=None, batch_size=None, return_gradient=False,
4707
4729
  return_gradient_n=False, dispersion=0, test_set=0, return_EV=False, verbose=0, corr_list=None,
4708
4730
  zi_list=None, exog_infl=None, draws_grouped=None, Xgroup=None, model_nature=None, kwarg=None,
@@ -4732,8 +4754,7 @@ class ObjectiveFunction(object):
4732
4754
  penalty = self._penalty_betas(
4733
4755
  betas, dispersion, penalty, float(len(y) / 10.0))
4734
4756
  self.n_obs = len(y) # feeds into gradient
4735
- if draws is None and draws_grouped is None and (model_nature is None or
4736
- 'draws_hetro' not in model_nature or model_nature.get('draws_hetro').shape[1] == 0):
4757
+ if not self._no_draws(draws, draws_grouped, model_nature):
4737
4758
  #TODO do i shuffle the draws
4738
4759
  if type(Xd) == dict:
4739
4760
  N, Kf, P = 0, 0, 0
@@ -5933,7 +5954,11 @@ class ObjectiveFunction(object):
5933
5954
  """
5934
5955
  X, Xr, XG, XH = mod.get('X'), mod.get('Xr'), mod.get('XG'), mod.get('XH')
5935
5956
  if XG is not None:
5936
- return np.concatenate((X, XG, Xr, XH), axis=2)
5957
+ if XH is not None:
5958
+ return np.concatenate((X, XG, Xr, XH), axis=2)
5959
+ else:
5960
+ return np.concatenate((X, XG, Xr), axis=2)
5961
+ # return np.concatenate((X, XG, Xr, XH), axis=2)
5937
5962
  elif XH is not None:
5938
5963
  return np.concatenate((X, Xr, XH), axis=2)
5939
5964
  else:
@@ -6287,11 +6312,14 @@ class ObjectiveFunction(object):
6287
6312
  X_test, Xr_test, XG_test, XH_test = (
6288
6313
  mod.get('X_test'), mod.get('Xr_test'), mod.get('XG_test'), mod.get('XH_test')
6289
6314
  )
6290
- if X_test is None or Xr_test is None:
6315
+ if X_test is None and Xr_test is None:
6291
6316
  return None
6292
6317
 
6293
6318
  if XH_test is not None:
6294
- return np.concatenate((X_test, Xr_test, XH_test), axis=2)
6319
+ if XG_test is not None:
6320
+ return np.concatenate((X_test, XG_test, Xr_test, XH_test), axis=2)
6321
+ else:
6322
+ return np.concatenate((X_test, Xr_test, XH_test), axis=2)
6295
6323
  elif XG_test is not None:
6296
6324
  return np.concatenate((X_test, XG_test, Xr_test), axis=2)
6297
6325
  else:
@@ -7638,6 +7666,8 @@ class ObjectiveFunction(object):
7638
7666
  alpha_group_rdm = np.isin(select_data, data.get('group_rdm', [])).astype(int).tolist()
7639
7667
  alpha_hetro = np.isin(select_data, [item.split(':')[0] for item in data.get('hetro_in_means', [])]).astype(
7640
7668
  int).tolist()
7669
+ matching_names = [name for name in select_data if name in [item.split(':')[0] for item in data.get('hetro_in_means', [])]]
7670
+ self.hetro_fit = matching_names
7641
7671
  for i in range(len(alpha_rdm)):
7642
7672
 
7643
7673
  if alpha[i]:
@@ -7678,14 +7708,14 @@ class ObjectiveFunction(object):
7678
7708
  # select_data = self._x_data.columns
7679
7709
 
7680
7710
  select_data = self._characteristics_names
7681
- alpha = np.in1d(select_data, fix) * 1
7682
- alpha_rdm = np.in1d(select_data, rdm) * 1
7711
+ alpha = np.isin(select_data, fix) * 1
7712
+ alpha_rdm = np.isin(select_data, rdm) * 1
7683
7713
  alpha = alpha.tolist()
7684
7714
  alpha_rdm = alpha_rdm.tolist()
7685
7715
 
7686
- alpha_cor_rdm = np.in1d(select_data, cor_rdm) * 1
7716
+ alpha_cor_rdm = np.isin(select_data, cor_rdm) * 1
7687
7717
  alpha_cor_rdm = alpha_cor_rdm.tolist()
7688
- alpha_group_rdm = np.in1d(select_data, group_rdm) * 1
7718
+ alpha_group_rdm = np.isin(select_data, group_rdm) * 1
7689
7719
  alpha_group_rdm = alpha_group_rdm.tolist() #todo will this ever trigger
7690
7720
  return alpha, alpha_rdm, alpha_cor_rdm
7691
7721
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: metacountregressor
3
- Version: 0.1.318
3
+ Version: 0.1.320
4
4
  Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=rh_UcMSfIghkkdycDjKzmYzDyNS5wi6YmykywcC1y2Y,321846
14
+ metacountregressor/solution.py,sha256=X-MDt7273QxzBiWyfUR_X-e3zYS1f5yWqpc2o3toL5A,323033
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.318.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.318.dist-info/METADATA,sha256=BMMooW21TLhFEHU9BOYxIa4FOvrsggrVFtfM34iWjiU,23581
18
- metacountregressor-0.1.318.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
19
- metacountregressor-0.1.318.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.318.dist-info/RECORD,,
16
+ metacountregressor-0.1.320.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.320.dist-info/METADATA,sha256=whZHogckomJwc0pJ1YUbP03PmRXBP3heEb0y8cr3xL4,23581
18
+ metacountregressor-0.1.320.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
19
+ metacountregressor-0.1.320.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.320.dist-info/RECORD,,