metacountregressor 0.1.317__py3-none-any.whl → 0.1.319__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -65,7 +65,7 @@ def _plot(x, y, z, xlabel=None, ylabel=None, zlabel=None, filename=None):
65
65
  def dict_mean(dict_list,
66
66
  ignore=None):
67
67
  if ignore is None:
68
- ignore = ['AIC', 'layout', 'fixed_fit', 'rdm_fit', 'rdm_cor_fit', 'zi_fit', 'simple', 'pvalues']
68
+ ignore = ['AIC', 'layout', 'fixed_fit', 'rdm_fit', 'rdm_cor_fit', 'zi_fit', 'simple', 'pvalues', "CAIC"]
69
69
  mean_dict = {}
70
70
  if ignore is None:
71
71
  for key in dict_list[0].keys():
@@ -76,7 +76,13 @@ def dict_mean(dict_list,
76
76
  for key in dict_list[0].keys():
77
77
  if key in ignore:
78
78
  continue
79
- mean_dict[key] = sum(d[key] for d in dict_list) / len(dict_list)
79
+ # Filter out dictionaries that don't have the key
80
+ filtered_values = [d[key] for d in dict_list if key in d]
81
+
82
+ if filtered_values: # Ensure there are values to compute the mean
83
+ mean_dict[key] = sum(filtered_values) / len(filtered_values)
84
+ else:
85
+ mean_dict[key] = None # Or handle missing data differently if needed
80
86
  return mean_dict
81
87
 
82
88
 
@@ -1198,7 +1204,7 @@ class SimulatedAnnealing(object):
1198
1204
  Temp3 = (Temp1 + Temp2) / (w_1 * Temp2 + w_2 * Temp1)
1199
1205
 
1200
1206
  self.best_energy = slns[0]
1201
- low_best = 10000000
1207
+ low_best = 1e5
1202
1208
  for i, val in enumerate(fitness_list):
1203
1209
  low = w_1 * fitness_list[i] + w_2 * fitness_list_2[i]
1204
1210
  if low < low_best:
@@ -2359,7 +2365,7 @@ class Mutlithreaded_Meta(DifferentialEvolution, SimulatedAnnealing, HarmonySearc
2359
2365
  Temp3 = (Temp1 + Temp2) / (w_1 * Temp2 + w_2 * Temp1)
2360
2366
 
2361
2367
  self.best_energy = slns[0]
2362
- low_best = 10000000
2368
+ low_best = 1e5
2363
2369
  for i, val in enumerate(fitness_list):
2364
2370
  low = w_1 * fitness_list[i] + w_2 * fitness_list_2[i]
2365
2371
  if low < low_best:
@@ -123,7 +123,7 @@ class ObjectiveFunction(object):
123
123
  """
124
124
 
125
125
  def __init__(self, x_data, y_data, **kwargs):
126
- self.gbl_best = 1000000.0
126
+ self.gbl_best = 1e5
127
127
  self.run_numerical_hessian = kwargs.get('r_nu_hess', False)
128
128
  self.run_bootstrap = kwargs.get('run_bootstrap', False)
129
129
  self.linear_regression = kwargs.get('linear_model', False)
@@ -611,6 +611,7 @@ class ObjectiveFunction(object):
611
611
 
612
612
  modified_fit = self.modify_initial_fit(manual_fit) # Modify the initial fit based on manual_fit
613
613
  self.significant = 1
614
+ #self.define_selfs_fixed_rdm_cor(modified_fit)
614
615
  self.makeRegression(modified_fit) # Perform regression with the modified fit
615
616
 
616
617
 
@@ -1571,9 +1572,9 @@ class ObjectiveFunction(object):
1571
1572
  eVy = eVy.ravel()
1572
1573
 
1573
1574
 
1574
- eVy = np.nan_to_num(eVy, nan=100000, posinf=100000)
1575
- eVy = np.clip(eVy, None, 1000)
1576
- mae = np.nan_to_num(MAE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
1575
+ eVy = np.nan_to_num(eVy, nan=1E5, posinf=1E5)
1576
+ eVy = np.clip(eVy, None, 1E5)
1577
+ mae = np.nan_to_num(MAE(np.squeeze(y), np.squeeze(eVy)), nan=1e5, posinf=1e5)
1577
1578
 
1578
1579
  mspe = np.nan_to_num(MSPE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
1579
1580
  RMSE = np.sqrt(mspe)
@@ -4797,7 +4798,7 @@ class ObjectiveFunction(object):
4797
4798
  penalty = self.custom_penalty(betas, penalty)
4798
4799
 
4799
4800
  if not np.isreal(loglik):
4800
- loglik = - 10000000.0
4801
+ loglik = - 1e5
4801
4802
 
4802
4803
  output = (-loglik + penalty,)
4803
4804
  if return_gradient:
@@ -5933,7 +5934,11 @@ class ObjectiveFunction(object):
5933
5934
  """
5934
5935
  X, Xr, XG, XH = mod.get('X'), mod.get('Xr'), mod.get('XG'), mod.get('XH')
5935
5936
  if XG is not None:
5936
- return np.concatenate((X, XG, Xr, XH), axis=2)
5937
+ if XH is not None:
5938
+ return np.concatenate((X, XG, Xr, XH), axis=2)
5939
+ else:
5940
+ return np.concatenate((X, XG, Xr), axis=2)
5941
+ # return np.concatenate((X, XG, Xr, XH), axis=2)
5937
5942
  elif XH is not None:
5938
5943
  return np.concatenate((X, Xr, XH), axis=2)
5939
5944
  else:
@@ -6287,11 +6292,14 @@ class ObjectiveFunction(object):
6287
6292
  X_test, Xr_test, XG_test, XH_test = (
6288
6293
  mod.get('X_test'), mod.get('Xr_test'), mod.get('XG_test'), mod.get('XH_test')
6289
6294
  )
6290
- if X_test is None or Xr_test is None:
6295
+ if X_test is None and Xr_test is None:
6291
6296
  return None
6292
6297
 
6293
6298
  if XH_test is not None:
6294
- return np.concatenate((X_test, Xr_test, XH_test), axis=2)
6299
+ if XG_test is not None:
6300
+ return np.concatenate((X_test, XG_test, Xr_test, XH_test), axis=2)
6301
+ else:
6302
+ return np.concatenate((X_test, Xr_test, XH_test), axis=2)
6295
6303
  elif XG_test is not None:
6296
6304
  return np.concatenate((X_test, XG_test, Xr_test), axis=2)
6297
6305
  else:
@@ -7638,6 +7646,8 @@ class ObjectiveFunction(object):
7638
7646
  alpha_group_rdm = np.isin(select_data, data.get('group_rdm', [])).astype(int).tolist()
7639
7647
  alpha_hetro = np.isin(select_data, [item.split(':')[0] for item in data.get('hetro_in_means', [])]).astype(
7640
7648
  int).tolist()
7649
+ matching_names = [name for name in select_data if name in [item.split(':')[0] for item in data.get('hetro_in_means', [])]]
7650
+ self.hetro_fit = matching_names
7641
7651
  for i in range(len(alpha_rdm)):
7642
7652
 
7643
7653
  if alpha[i]:
@@ -7678,14 +7688,14 @@ class ObjectiveFunction(object):
7678
7688
  # select_data = self._x_data.columns
7679
7689
 
7680
7690
  select_data = self._characteristics_names
7681
- alpha = np.in1d(select_data, fix) * 1
7682
- alpha_rdm = np.in1d(select_data, rdm) * 1
7691
+ alpha = np.isin(select_data, fix) * 1
7692
+ alpha_rdm = np.isin(select_data, rdm) * 1
7683
7693
  alpha = alpha.tolist()
7684
7694
  alpha_rdm = alpha_rdm.tolist()
7685
7695
 
7686
- alpha_cor_rdm = np.in1d(select_data, cor_rdm) * 1
7696
+ alpha_cor_rdm = np.isin(select_data, cor_rdm) * 1
7687
7697
  alpha_cor_rdm = alpha_cor_rdm.tolist()
7688
- alpha_group_rdm = np.in1d(select_data, group_rdm) * 1
7698
+ alpha_group_rdm = np.isin(select_data, group_rdm) * 1
7689
7699
  alpha_group_rdm = alpha_group_rdm.tolist() #todo will this ever trigger
7690
7700
  return alpha, alpha_rdm, alpha_cor_rdm
7691
7701
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: metacountregressor
3
- Version: 0.1.317
3
+ Version: 0.1.319
4
4
  Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -6,15 +6,15 @@ metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,
6
6
  metacountregressor/helperprocess.py,sha256=komn_EjCShFg-_8INh1Q06GdWWN4nxhHOgJ3V1X6aJI,26309
7
7
  metacountregressor/main.py,sha256=tGOm8DdbdyDf316qIxDAre6l6GzfJIWYNYIBaSeIemI,23685
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
- metacountregressor/metaheuristics.py,sha256=Qhu06AdF8HwEpyN-Q-6deG4b4kr7BKslgL8i2T7t1aI,107234
9
+ metacountregressor/metaheuristics.py,sha256=A76VAPSbpkWTr07yiVYtFQP2dYGPzMXNDhrLWTpFvUY,107560
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=ap9HscK_9N1m3jpgJju75Y7LLxZ8Kxa-Pkcg1hBnkZI,321872
14
+ metacountregressor/solution.py,sha256=uGhPhpxzx8Ne1BludCUdPoI8DJxVP5WkS5enTgTjlxw,322386
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.317.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.317.dist-info/METADATA,sha256=eaozI5zX4AjG-rz0NJ6b8BvpI46FehiiVzq8yYbtTGk,23581
18
- metacountregressor-0.1.317.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
19
- metacountregressor-0.1.317.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.317.dist-info/RECORD,,
16
+ metacountregressor-0.1.319.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.319.dist-info/METADATA,sha256=_gqq4HbaTCT5rNsY32KA2mta824GC8lakus_JIncf3Y,23581
18
+ metacountregressor-0.1.319.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
19
+ metacountregressor-0.1.319.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.319.dist-info/RECORD,,