metacountregressor 0.1.317__py3-none-any.whl → 0.1.318__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -65,7 +65,7 @@ def _plot(x, y, z, xlabel=None, ylabel=None, zlabel=None, filename=None):
65
65
  def dict_mean(dict_list,
66
66
  ignore=None):
67
67
  if ignore is None:
68
- ignore = ['AIC', 'layout', 'fixed_fit', 'rdm_fit', 'rdm_cor_fit', 'zi_fit', 'simple', 'pvalues']
68
+ ignore = ['AIC', 'layout', 'fixed_fit', 'rdm_fit', 'rdm_cor_fit', 'zi_fit', 'simple', 'pvalues', "CAIC"]
69
69
  mean_dict = {}
70
70
  if ignore is None:
71
71
  for key in dict_list[0].keys():
@@ -76,7 +76,13 @@ def dict_mean(dict_list,
76
76
  for key in dict_list[0].keys():
77
77
  if key in ignore:
78
78
  continue
79
- mean_dict[key] = sum(d[key] for d in dict_list) / len(dict_list)
79
+ # Filter out dictionaries that don't have the key
80
+ filtered_values = [d[key] for d in dict_list if key in d]
81
+
82
+ if filtered_values: # Ensure there are values to compute the mean
83
+ mean_dict[key] = sum(filtered_values) / len(filtered_values)
84
+ else:
85
+ mean_dict[key] = None # Or handle missing data differently if needed
80
86
  return mean_dict
81
87
 
82
88
 
@@ -1198,7 +1204,7 @@ class SimulatedAnnealing(object):
1198
1204
  Temp3 = (Temp1 + Temp2) / (w_1 * Temp2 + w_2 * Temp1)
1199
1205
 
1200
1206
  self.best_energy = slns[0]
1201
- low_best = 10000000
1207
+ low_best = 1e5
1202
1208
  for i, val in enumerate(fitness_list):
1203
1209
  low = w_1 * fitness_list[i] + w_2 * fitness_list_2[i]
1204
1210
  if low < low_best:
@@ -2359,7 +2365,7 @@ class Mutlithreaded_Meta(DifferentialEvolution, SimulatedAnnealing, HarmonySearc
2359
2365
  Temp3 = (Temp1 + Temp2) / (w_1 * Temp2 + w_2 * Temp1)
2360
2366
 
2361
2367
  self.best_energy = slns[0]
2362
- low_best = 10000000
2368
+ low_best = 1e5
2363
2369
  for i, val in enumerate(fitness_list):
2364
2370
  low = w_1 * fitness_list[i] + w_2 * fitness_list_2[i]
2365
2371
  if low < low_best:
@@ -123,7 +123,7 @@ class ObjectiveFunction(object):
123
123
  """
124
124
 
125
125
  def __init__(self, x_data, y_data, **kwargs):
126
- self.gbl_best = 1000000.0
126
+ self.gbl_best = 1e5
127
127
  self.run_numerical_hessian = kwargs.get('r_nu_hess', False)
128
128
  self.run_bootstrap = kwargs.get('run_bootstrap', False)
129
129
  self.linear_regression = kwargs.get('linear_model', False)
@@ -1571,9 +1571,9 @@ class ObjectiveFunction(object):
1571
1571
  eVy = eVy.ravel()
1572
1572
 
1573
1573
 
1574
- eVy = np.nan_to_num(eVy, nan=100000, posinf=100000)
1575
- eVy = np.clip(eVy, None, 1000)
1576
- mae = np.nan_to_num(MAE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
1574
+ eVy = np.nan_to_num(eVy, nan=1E5, posinf=1E5)
1575
+ eVy = np.clip(eVy, None, 1E5)
1576
+ mae = np.nan_to_num(MAE(np.squeeze(y), np.squeeze(eVy)), nan=1e5, posinf=1e5)
1577
1577
 
1578
1578
  mspe = np.nan_to_num(MSPE(np.squeeze(y), np.squeeze(eVy)), nan=100000, posinf=100000)
1579
1579
  RMSE = np.sqrt(mspe)
@@ -4797,7 +4797,7 @@ class ObjectiveFunction(object):
4797
4797
  penalty = self.custom_penalty(betas, penalty)
4798
4798
 
4799
4799
  if not np.isreal(loglik):
4800
- loglik = - 10000000.0
4800
+ loglik = - 1e5
4801
4801
 
4802
4802
  output = (-loglik + penalty,)
4803
4803
  if return_gradient:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: metacountregressor
3
- Version: 0.1.317
3
+ Version: 0.1.318
4
4
  Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -6,15 +6,15 @@ metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,
6
6
  metacountregressor/helperprocess.py,sha256=komn_EjCShFg-_8INh1Q06GdWWN4nxhHOgJ3V1X6aJI,26309
7
7
  metacountregressor/main.py,sha256=tGOm8DdbdyDf316qIxDAre6l6GzfJIWYNYIBaSeIemI,23685
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
- metacountregressor/metaheuristics.py,sha256=Qhu06AdF8HwEpyN-Q-6deG4b4kr7BKslgL8i2T7t1aI,107234
9
+ metacountregressor/metaheuristics.py,sha256=A76VAPSbpkWTr07yiVYtFQP2dYGPzMXNDhrLWTpFvUY,107560
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=ap9HscK_9N1m3jpgJju75Y7LLxZ8Kxa-Pkcg1hBnkZI,321872
14
+ metacountregressor/solution.py,sha256=rh_UcMSfIghkkdycDjKzmYzDyNS5wi6YmykywcC1y2Y,321846
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.317.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.317.dist-info/METADATA,sha256=eaozI5zX4AjG-rz0NJ6b8BvpI46FehiiVzq8yYbtTGk,23581
18
- metacountregressor-0.1.317.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
19
- metacountregressor-0.1.317.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.317.dist-info/RECORD,,
16
+ metacountregressor-0.1.318.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.318.dist-info/METADATA,sha256=BMMooW21TLhFEHU9BOYxIa4FOvrsggrVFtfM34iWjiU,23581
18
+ metacountregressor-0.1.318.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
19
+ metacountregressor-0.1.318.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.318.dist-info/RECORD,,