metacountregressor 0.1.312__py3-none-any.whl → 0.1.313__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/metaheuristics.py +10 -4
- metacountregressor/solution.py +31 -11
- {metacountregressor-0.1.312.dist-info → metacountregressor-0.1.313.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.312.dist-info → metacountregressor-0.1.313.dist-info}/RECORD +7 -7
- {metacountregressor-0.1.312.dist-info → metacountregressor-0.1.313.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.312.dist-info → metacountregressor-0.1.313.dist-info}/licenses/LICENSE.txt +0 -0
- {metacountregressor-0.1.312.dist-info → metacountregressor-0.1.313.dist-info}/top_level.txt +0 -0
@@ -615,10 +615,16 @@ class DifferentialEvolution(object):
|
|
615
615
|
obj_trial = self._obj_fun.get_fitness(trial, self.pf.get_objective_is_multi())
|
616
616
|
if not self.pf.get_objective_is_multi():
|
617
617
|
average_iteration += obj_trial[self._obj_fun._obj_1]
|
618
|
-
|
619
|
-
else:
|
620
|
-
logger(i, obj_trial, None, True, self.get_instance_name(), self.pf.get_objective_is_multi())
|
618
|
+
try:
|
621
619
|
|
620
|
+
logger(i, obj_trial, None, True, self.get_instance_name(), 1)
|
621
|
+
except:
|
622
|
+
pass
|
623
|
+
else:
|
624
|
+
try:
|
625
|
+
logger(i, obj_trial, None, True, self.get_instance_name(), self.pf.get_objective_is_multi())
|
626
|
+
except:
|
627
|
+
pass
|
622
628
|
except Exception as e:
|
623
629
|
print('why is there an exception')
|
624
630
|
print(e)
|
@@ -637,7 +643,7 @@ class DifferentialEvolution(object):
|
|
637
643
|
|
638
644
|
iterations_without_improvement = 0
|
639
645
|
self._population[j] = obj_trial
|
640
|
-
|
646
|
+
|
641
647
|
logger(self.it_process, obj_trial, self._population, True,
|
642
648
|
self.instance_number + '/population_logger_strict_non_pareto.csv', 1)
|
643
649
|
logger(self.it_process, obj_trial, self._pareto_population, True,
|
metacountregressor/solution.py
CHANGED
@@ -3557,6 +3557,9 @@ class ObjectiveFunction(object):
|
|
3557
3557
|
varnames if x not in correlation]
|
3558
3558
|
return
|
3559
3559
|
|
3560
|
+
|
3561
|
+
|
3562
|
+
|
3560
3563
|
def _chol_mat(self, correlationLength, br, Br_w, correlation):
|
3561
3564
|
# if correlation = True correlation pos is randpos, if list get correct pos
|
3562
3565
|
|
@@ -3601,13 +3604,15 @@ class ObjectiveFunction(object):
|
|
3601
3604
|
try:
|
3602
3605
|
rv_val = chol[chol_count] if is_correlated else br_w[rv_count]
|
3603
3606
|
except:
|
3607
|
+
print('exception here start')
|
3604
3608
|
print(self.rdm_cor_fit, 'rdm_cor_fit')
|
3605
3609
|
print(self.rdm_fit, 'rdm_fit')
|
3606
3610
|
print('varnames', varnames)
|
3607
|
-
print(br, 'br')
|
3611
|
+
print('br', br, 'br')
|
3608
3612
|
print(Br_w, 'Br_w')
|
3609
3613
|
print(chol, 'chol')
|
3610
3614
|
print(br_w, 'br_w')
|
3615
|
+
print('exception here end')
|
3611
3616
|
chol_mat_temp[rv_count_all, rv_count_all] = rv_val
|
3612
3617
|
rv_count_all += 1
|
3613
3618
|
if is_correlated:
|
@@ -4869,10 +4874,10 @@ class ObjectiveFunction(object):
|
|
4869
4874
|
n_coeff = self.get_param_num(dispersion)
|
4870
4875
|
Kf_a, Kr_a, Kr_c, Kr_b_a, Kchol_a, Kh = self.get_num_params()
|
4871
4876
|
if Kchol_a != Kchol:
|
4872
|
-
print('
|
4877
|
+
print('this should not hh qhy')
|
4873
4878
|
|
4874
|
-
if Kr_b !=
|
4875
|
-
print('hold qhy')
|
4879
|
+
if Kr_b != Kr_a:
|
4880
|
+
print('hold qhy this should never happen')
|
4876
4881
|
|
4877
4882
|
|
4878
4883
|
|
@@ -4886,13 +4891,14 @@ class ObjectiveFunction(object):
|
|
4886
4891
|
|
4887
4892
|
)
|
4888
4893
|
Bf = betas[0:Kf] # Fixed betas
|
4889
|
-
|
4890
|
-
|
4891
|
-
|
4894
|
+
TEST_ME = False
|
4895
|
+
if not TEST_ME:
|
4896
|
+
Bf, br, br_std, Br_rema = self.extract_parameters(betas, Kf, Kr, Kchol_a, Kr_b_a)
|
4892
4897
|
|
4893
4898
|
|
4894
4899
|
Vdf = dev.np.einsum('njk,k -> nj', Xdf, Bf, dtype=np.float64) # (N, P)
|
4895
|
-
|
4900
|
+
if TEST_ME:
|
4901
|
+
br = betas[Kf:Kf + Kr]
|
4896
4902
|
|
4897
4903
|
|
4898
4904
|
|
@@ -4910,9 +4916,9 @@ class ObjectiveFunction(object):
|
|
4910
4916
|
# Kchol_a + Krb_a
|
4911
4917
|
#its grabbing from the
|
4912
4918
|
|
4919
|
+
if TEST_ME:
|
4913
4920
|
|
4914
|
-
|
4915
|
-
brstd = betas[Kf + Kr:Kf + Kr + Kr_b + Kchol]
|
4921
|
+
brstd = betas[Kf + Kr:Kf + Kr + Kr_b + Kchol]
|
4916
4922
|
|
4917
4923
|
# initialises size matrix
|
4918
4924
|
proba = [] # Temp batching storage
|
@@ -7209,6 +7215,20 @@ class ObjectiveFunction(object):
|
|
7209
7215
|
indices = [i for i, name in enumerate(self._characteristics_names) if name in names and isinstance(name, str)]
|
7210
7216
|
return indices
|
7211
7217
|
|
7218
|
+
def sanity_check(self, Xr):
|
7219
|
+
a =len(self.rdm_cor_fit)+len(self.rdm_fit) != Xr.shape[2]
|
7220
|
+
if a:
|
7221
|
+
print('why')
|
7222
|
+
print('The number of random effects does not match the data')
|
7223
|
+
print(Xr.shape)
|
7224
|
+
print(self.rdm_cor_fit)
|
7225
|
+
print(self.rdm_fit)
|
7226
|
+
|
7227
|
+
#raise Exception('The number of random effects does not match the data')
|
7228
|
+
else:
|
7229
|
+
return True
|
7230
|
+
|
7231
|
+
|
7212
7232
|
"""
|
7213
7233
|
This function is named 'makeRegression'. It takes several parameters; 'self', 'model_nature', 'layout', '*args', and '**kwargs'.
|
7214
7234
|
The purpose of this function is to execute a regression based on the training and testing datasets.
|
@@ -7315,7 +7335,7 @@ class ObjectiveFunction(object):
|
|
7315
7335
|
Xr_cor = df_tf[:, :, indices3]
|
7316
7336
|
# FIXME not sure if this is the right way orientatied
|
7317
7337
|
Xr = np.concatenate((Xr, Xr_cor), axis=2)
|
7318
|
-
|
7338
|
+
self.sanity_check(Xr)
|
7319
7339
|
model_nature['Xr'] = Xr
|
7320
7340
|
if self.is_multi:
|
7321
7341
|
Xr_test = df_test[:, :, indices2]
|
@@ -6,15 +6,15 @@ metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,
|
|
6
6
|
metacountregressor/helperprocess.py,sha256=komn_EjCShFg-_8INh1Q06GdWWN4nxhHOgJ3V1X6aJI,26309
|
7
7
|
metacountregressor/main.py,sha256=tGOm8DdbdyDf316qIxDAre6l6GzfJIWYNYIBaSeIemI,23685
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
|
-
metacountregressor/metaheuristics.py,sha256=
|
9
|
+
metacountregressor/metaheuristics.py,sha256=Qhu06AdF8HwEpyN-Q-6deG4b4kr7BKslgL8i2T7t1aI,107234
|
10
10
|
metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
|
11
11
|
metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
|
12
12
|
metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
|
-
metacountregressor/solution.py,sha256=
|
14
|
+
metacountregressor/solution.py,sha256=biAgfV5X4EXhzw1vGkNec53C-6ph02WpUWPtCQJfHKc,320016
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.313.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.313.dist-info/METADATA,sha256=kUz8SzD7wzpQxrwHbBSqlIqA7ZRnkJClAMvxYlZVrns,23581
|
18
|
+
metacountregressor-0.1.313.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
19
|
+
metacountregressor-0.1.313.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.313.dist-info/RECORD,,
|
File without changes
|
{metacountregressor-0.1.312.dist-info → metacountregressor-0.1.313.dist-info}/licenses/LICENSE.txt
RENAMED
File without changes
|
File without changes
|