metacountregressor 0.1.236__py3-none-any.whl → 0.1.237__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -481,7 +481,14 @@ class ObjectiveFunction(object):
481
481
 
482
482
  model_types = [[0, 1]] # add 2 for Generalized Poisson
483
483
  #model_types = [[0]]
484
- #TODO change back and fix NB
484
+
485
+ if kwargs.get('linear_model', None) is not None:
486
+ model_types = [[0]]
487
+ self.grad_yes = False
488
+
489
+ print(f'Linear Model Selected: turning off gradient calculation')
490
+
491
+
485
492
  model_t_dict = {'Poisson':0,
486
493
  "NB":1}
487
494
  # Retrieve the keys (model names) corresponding to the values in model_types
@@ -4624,7 +4631,7 @@ class ObjectiveFunction(object):
4624
4631
  betas, dispersion)
4625
4632
 
4626
4633
 
4627
- eVd = self.eXB_calc(Bf, Xd, offset, main_disper, kwargs.get('linear_model'))
4634
+ eVd = self.eXB_calc(Bf, Xd, offset, main_disper, self.linear_regression)
4628
4635
 
4629
4636
  if return_EV is True:
4630
4637
  return eVd
@@ -4637,7 +4644,7 @@ class ObjectiveFunction(object):
4637
4644
 
4638
4645
  betas[-1] = main_disper
4639
4646
 
4640
- if kwargs.get('linear_model'):
4647
+ if self.linear_regression:
4641
4648
  # LINEAR MODEL PROCESS
4642
4649
  mse = np.mean((y - eVd) ** 2)
4643
4650
  return mse
@@ -4873,10 +4880,10 @@ class ObjectiveFunction(object):
4873
4880
  betas_hetro_sd = None
4874
4881
 
4875
4882
  Vdr = dev.cust_einsum("njk,nkr -> njr", Xdr, Br) # (N,P,R)
4876
- if kwargs.get('linear_model'):
4883
+ if self:
4877
4884
  ### LINEAR MODEL WAY #######
4878
4885
  eVd = np.clip(
4879
- Vdf[:, :, None] + Vdr + Vdh + dev.np.array(offset), None, EXP_UPPER_LIMIT)
4886
+ Vdf[:, :, None] + Vdr + Vdh + dev.np.array(offset), None, None)
4880
4887
  mse = np.mean((y - eVd) ** 2)
4881
4888
  return mse
4882
4889
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.236
3
+ Version: 0.1.237
4
4
  Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=8zrVViDUEYWPjzVABupLWWASbluPAGcV9wTc34yCndM,282805
14
+ metacountregressor/solution.py,sha256=4TCa87mLfBtCY2APrfZYsOkw5MDf_rsjErWPW_NgJgc,282948
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.236.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.236.dist-info/METADATA,sha256=UeYMGxvHWJyvX8RrLCHLOlBNNENMZ0j5dufwyqEvbYo,23529
18
- metacountregressor-0.1.236.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
19
- metacountregressor-0.1.236.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.236.dist-info/RECORD,,
16
+ metacountregressor-0.1.237.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.237.dist-info/METADATA,sha256=o8WsXzCVVEte5uzaR1_-XjOZ4rDdKMGf9KI3w9TJTX8,23529
18
+ metacountregressor-0.1.237.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
19
+ metacountregressor-0.1.237.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.237.dist-info/RECORD,,