metacountregressor 0.1.167__py3-none-any.whl → 0.1.170__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -345,8 +345,11 @@ def transform_dataframe(df, config):
345
345
 
346
346
  elif settings['type'] == 'none':
347
347
  # Leave the column unchanged
348
- output_df = pd.concat([output_df, df[[column]]], axis=1)
348
+ if column in df.columns:
349
349
 
350
+ output_df = pd.concat([output_df, df[[column]]], axis=1)
351
+ else:
352
+ print(f'config variable {column} is not in the data. Ignoring ...')
350
353
  return output_df
351
354
 
352
355
  # Helper function to guess column type and update `config`
@@ -402,6 +402,7 @@ class DifferentialEvolution(object):
402
402
  self._obj_fun._obj_1 = 'bic'
403
403
 
404
404
  self._pop_size = kwargs.get('_pop_size', 20)
405
+ print('Population size is', self._pop_size)
405
406
  if not isinstance(self._pop_size, int):
406
407
  raise ValueError("_pop_size must be an integer")
407
408
  elif self._pop_size <= 3:
@@ -618,7 +619,7 @@ class DifferentialEvolution(object):
618
619
  1)
619
620
 
620
621
  if len(self._pareto_population) == 1:
621
- print('the size of the population is only 1')
622
+ print('Pareto Population Size is only 1')
622
623
  if self.pf.check_dominance([obj_trial[self.pf.obj_key_1], obj_trial[self.pf.obj_key_2]],
623
624
  [self._population[j][self.pf.obj_key_1], self._population[j][
624
625
  self.pf.obj_key_2]]): # if solution dominates existing #FIXME some error here true but not entering
@@ -1004,7 +1005,7 @@ class SimulatedAnnealing(object):
1004
1005
  elif num_of_changeablePARMs == 0:
1005
1006
  rdm_i = random.choice(range(len(prmVect)))
1006
1007
  if self._obj_fun.get_num_discrete_values(rdm_i) <= 1:
1007
- print('hold gimct')
1008
+ print('retry')
1008
1009
 
1009
1010
  while self._obj_fun.get_num_discrete_values(rdm_i) <= 1:
1010
1011
  rdm_i = random.randint(0, self._obj_fun.get_num_parameters() - 1)
@@ -1046,7 +1047,7 @@ class SimulatedAnnealing(object):
1046
1047
  get_rdm_j = random.randint(0, self._obj_fun.get_num_discrete_values(rdm_i) - 1)
1047
1048
  if (self._obj_fun.get_num_discrete_values(
1048
1049
  rdm_i) - 1) < 1: # TODO: remove this is just a test
1049
- print('fucking fix this sln algorithm')
1050
+
1050
1051
  break
1051
1052
  new_nbr_i = self._obj_fun.get_value(rdm_i, get_rdm_j)
1052
1053
  neighbour[rdm_i] = new_nbr_i
@@ -1075,13 +1075,15 @@ class ObjectiveFunction(object):
1075
1075
  [''] * (len(names) - len(self.transform_id_names))
1076
1076
  self.coeff_names = names
1077
1077
 
1078
+ '''
1078
1079
  if betas is not None:
1079
1080
  try:
1080
1081
  if len(betas) != len(names):
1081
- print('no draws is', no_draws)
1082
+ print('standard_model', no_draws)
1082
1083
 
1083
1084
  except Exception as e:
1084
1085
  print(e)
1086
+ '''
1085
1087
 
1086
1088
 
1087
1089
 
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.167
4
- Summary: Extensions for a Python package for estimation of count models.
3
+ Version: 0.1.170
4
+ Summary: Extensive Testing for Estimation of Data Count Models
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
7
7
  Author-email: z.ahern@qut.edu.au
8
- License: QUT
8
+ License: MIT
9
9
  Requires-Python: >=3.10
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE.txt
@@ -13,6 +13,10 @@ Requires-Dist: numpy>=1.13.1
13
13
  Requires-Dist: scipy>=1.0.0
14
14
  Requires-Dist: requests
15
15
  Requires-Dist: latextable
16
+ Requires-Dist: pandas
17
+ Requires-Dist: scikit_learn>=1.4.1.post1
18
+ Requires-Dist: statsmodels
19
+ Requires-Dist: psustil
16
20
  Dynamic: author
17
21
  Dynamic: author-email
18
22
  Dynamic: description
@@ -3,18 +3,18 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=HWlEUVNOJo6flQ9sgpDqr-pvXT64vCkaF5mvlggZf7g,21743
6
+ metacountregressor/helperprocess.py,sha256=NmUT0COc9Snxaz9TCV_EQgD2duKuDq_-9673evzv8D4,21887
7
7
  metacountregressor/main.py,sha256=xfpKN2w0kePHp_Q2HOPjtG15PLEN1L3sEnDw1PHBquw,23668
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
- metacountregressor/metaheuristics.py,sha256=1Tm_BS8HxumEo9fteIwTTkfiJXbfH6wlfSmY0tSt77A,106289
9
+ metacountregressor/metaheuristics.py,sha256=rIdBa28EroIYqoE8ZI1isuj_o-tOWHo6jKi1HQJ06lU,106292
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=SSfxacRQT5LY2TEofVS71HFu05Gt9MxWJthr01TxWtE,279217
14
+ metacountregressor/solution.py,sha256=iBFew32bS1YZfEBc0USNbd3i0XKRNCTxXxbltHuJVAM,279244
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.167.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.167.dist-info/METADATA,sha256=zjde42LlNP5a2eklAZSV8mSgs_1dPLnjjZKLtKmOhZc,23434
18
- metacountregressor-0.1.167.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.167.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.167.dist-info/RECORD,,
16
+ metacountregressor-0.1.170.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.170.dist-info/METADATA,sha256=3a6ITLEJWNexzkcpG-XzefmfpeAEgvXNxEaEam4ZhBQ,23537
18
+ metacountregressor-0.1.170.dist-info/WHEEL,sha256=nn6H5-ilmfVryoAQl3ZQ2l8SH5imPWFpm1A5FgEuFV4,91
19
+ metacountregressor-0.1.170.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.170.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (75.8.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5