metacountregressor 0.1.145__py3-none-any.whl → 0.1.147__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -390,7 +390,7 @@ def PCA_code(X, n_components=5):
390
390
 
391
391
 
392
392
  def interactions(df, keep=None, drop_this_perc=0.6, interact = False):
393
-
393
+ full_columns = df.columns
394
394
  if interact:
395
395
  interactions_list = []
396
396
  for i, var_i in enumerate(df.columns):
@@ -419,9 +419,11 @@ def interactions(df, keep=None, drop_this_perc=0.6, interact = False):
419
419
  # Remove `keep` columns from the correlation matrix
420
420
  if keep is not None:
421
421
  missing_columns = [col for col in keep if col not in df.columns]
422
+
422
423
  if missing_columns:
423
424
  print(f"The following columns are not in the DataFrame and will be ignored: {missing_columns}")
424
- df_corr = df.drop(columns=keep, errors='ignore') # Exclude `keep` columns
425
+ keep = [col for col in keep if col not in df.columns]
426
+ df_corr = df.drop(columns=keep, errors='ignore', inplace=False) # Exclude `keep` columns
425
427
  else:
426
428
  df_corr = df
427
429
 
@@ -436,7 +438,7 @@ def interactions(df, keep=None, drop_this_perc=0.6, interact = False):
436
438
 
437
439
  # Ensure `keep` columns are not dropped
438
440
  if keep is not None:
439
- to_drop = [column for column in to_drop if column not in keep]
441
+ to_drop = [column for column in to_drop if column not in full_columns]
440
442
 
441
443
  # Drop the identified features
442
444
  df.drop(to_drop, axis=1, inplace=True)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.145
3
+ Version: 0.1.147
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=tIUOV_nJtTu4VLEqu1H864iCzAo16r02Q2j3so3mvLo,20948
6
+ metacountregressor/helperprocess.py,sha256=RMYSqyuhnYM2Z66nGr0RRP0l0uz46NmPSVJAjQcXbUM,21072
7
7
  metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=1Tm_BS8HxumEo9fteIwTTkfiJXbfH6wlfSmY0tSt77A,106289
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=Se3-NMxuRFacPN9f3qfGzkKeIccs8cbe4ebkV0UsGlA,278325
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.145.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.145.dist-info/METADATA,sha256=k0sRcOZShVukOuSTvscaekSjw6yPUgCryi4x3U_XVqQ,23434
18
- metacountregressor-0.1.145.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.145.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.145.dist-info/RECORD,,
16
+ metacountregressor-0.1.147.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.147.dist-info/METADATA,sha256=-DtCYdQfwAkMmPkdKYgKkIrQxVY4_m8uKGsHbAy7vz8,23434
18
+ metacountregressor-0.1.147.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.147.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.147.dist-info/RECORD,,