metacountregressor 0.1.142__py3-none-any.whl → 0.1.146__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -418,6 +418,11 @@ def interactions(df, keep=None, drop_this_perc=0.6, interact = False):
418
418
  # second
419
419
  # Remove `keep` columns from the correlation matrix
420
420
  if keep is not None:
421
+ missing_columns = [col for col in keep if col not in df.columns]
422
+
423
+ if missing_columns:
424
+ print(f"The following columns are not in the DataFrame and will be ignored: {missing_columns}")
425
+ keep = [col for col in keep if col not in df.columns]
421
426
  df_corr = df.drop(columns=keep, errors='ignore') # Exclude `keep` columns
422
427
  else:
423
428
  df_corr = df
@@ -1248,7 +1248,7 @@ class HarmonySearch(object):
1248
1248
 
1249
1249
 
1250
1250
  # for printing basics metrics
1251
- self.print_verbose = True
1251
+ self.print_verbose = kwargs.get('verbose', False)
1252
1252
  # harmony_memory stores the best hms harmonies
1253
1253
  self._harmony_memory = list()
1254
1254
  # harmony_history stores all hms harmonies every nth improvisations (i.e., one 'generation')
@@ -136,10 +136,10 @@ class ObjectiveFunction(object):
136
136
  self.constant_value = 0
137
137
  self.negative_binomial_value = 1
138
138
 
139
- self.verbose_safe = True
139
+ self.verbose_safe = kwargs.get('verbose', 0)
140
140
  self.please_print = kwargs.get('please_print', 0)
141
141
  self.group_halton = None
142
- self.grad_yes = True
142
+ self.grad_yes = kwargs.get('grad_est', False)
143
143
  self.hess_yes = False
144
144
  self.group_halton_test = None
145
145
  self.panels = None
@@ -177,13 +177,14 @@ class ObjectiveFunction(object):
177
177
  self.method_ll = 'Nelder-Mead-BFGS'
178
178
 
179
179
  self.method_ll = 'L-BFGS-B' # alternatives 'BFGS_2', 'BFGS
180
- self.method_ll = 'BFGS_2'
180
+ self.method_ll = kwargs.get('method', 'BFGS_2')
181
+
181
182
  #self.method_ll = 'Nelder-Mead-BFGS'
182
183
  self.Keep_Fit = 2
183
184
  self.MP = 0
184
185
  # Nelder-Mead-BFGS
185
186
 
186
- self._max_characteristics = 26
187
+ self._max_characteristics = kwargs.get('_max_vars', 26)
187
188
 
188
189
  self.beta_dict = dict
189
190
 
@@ -4858,7 +4859,7 @@ class ObjectiveFunction(object):
4858
4859
  proba.append(dev.to_cpu(proba_))
4859
4860
 
4860
4861
  lik = np.stack(proba).sum(axis=0) / R # (N, )
4861
- lik = np.clip(lik, min_comp_val, 1000)
4862
+ lik = np.clip(lik, min_comp_val, max_comp_val)
4862
4863
  # lik = np.nan_to_num(lik, )
4863
4864
  loglik = np.log(lik)
4864
4865
  llf_main = loglik
@@ -5188,7 +5189,7 @@ class ObjectiveFunction(object):
5188
5189
  H = self.numerical_hessian(lambda x: self._loglik_gradient(x, *argbs), result.x, eps=1e-7 * self.n_obs)
5189
5190
  result['Hessian'] = H
5190
5191
  result['hess_inv'] = np.linalg.pinv(H)
5191
- print('to do, only if hessian is fhfhfhf')
5192
+
5192
5193
  standard_errors = np.sqrt(np.diag(np.linalg.pinv(H)))
5193
5194
  return result
5194
5195
  # return minimize(loglik_fn, x, args=args, jac=args[6], hess=args[7], method='BFGS', options= {'gtol':1e-7*self.N}*self.Ndraws)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.142
3
+ Version: 0.1.146
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,18 +3,18 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=05698FXkXiAZi2JvVxCtaBwSf9LbW1lY8q_eFmEF5Nc,20739
6
+ metacountregressor/helperprocess.py,sha256=MTu1dXAejrN-kLcTg2EP0ISOVlPGUkxQs25Q9cqxcPs,21023
7
7
  metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
- metacountregressor/metaheuristics.py,sha256=SiVpq7CTXWe1_YNhdoUfFJdIc85WOoIwWUtfbYIw4og,106265
9
+ metacountregressor/metaheuristics.py,sha256=1Tm_BS8HxumEo9fteIwTTkfiJXbfH6wlfSmY0tSt77A,106289
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=j8pWlmMmEkjBC798Fnh1fu0w7F6jrVtW43H2OSXv8Ts,278258
14
+ metacountregressor/solution.py,sha256=Se3-NMxuRFacPN9f3qfGzkKeIccs8cbe4ebkV0UsGlA,278325
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.142.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.142.dist-info/METADATA,sha256=nXopMa3sjI_vDNwd3KZrzSjp4-Yw9fPP9rZhmCPo7ug,23434
18
- metacountregressor-0.1.142.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.142.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.142.dist-info/RECORD,,
16
+ metacountregressor-0.1.146.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.146.dist-info/METADATA,sha256=AuRoXoD9mbx43mFObuM90pB7l7lGfEBkiCVQcEvgBec,23434
18
+ metacountregressor-0.1.146.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.146.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.146.dist-info/RECORD,,