metacountregressor 0.1.141__py3-none-any.whl → 0.1.143__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/metaheuristics.py +2 -2
- metacountregressor/solution.py +7 -6
- {metacountregressor-0.1.141.dist-info → metacountregressor-0.1.143.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.141.dist-info → metacountregressor-0.1.143.dist-info}/RECORD +7 -7
- {metacountregressor-0.1.141.dist-info → metacountregressor-0.1.143.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.141.dist-info → metacountregressor-0.1.143.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.141.dist-info → metacountregressor-0.1.143.dist-info}/top_level.txt +0 -0
@@ -1239,7 +1239,7 @@ class HarmonySearch(object):
|
|
1239
1239
|
self._obj_fun = objective_function
|
1240
1240
|
## NEW CODE, TRYING TO EXCTACT OUT THE PARAMATERS
|
1241
1241
|
self._hms = kwargs.get('_hms', 20)
|
1242
|
-
self._par = kwargs.get(
|
1242
|
+
self._par = kwargs.get('_par', .30)
|
1243
1243
|
self.F = kwargs.get('_AI', 2) # mutation scale
|
1244
1244
|
self.iter = kwargs.get('_max_iter', 10000)
|
1245
1245
|
self.cr = kwargs.get('_crossover_perc') or kwargs.get('_cr', 0.2)
|
@@ -1248,7 +1248,7 @@ class HarmonySearch(object):
|
|
1248
1248
|
|
1249
1249
|
|
1250
1250
|
# for printing basics metrics
|
1251
|
-
self.print_verbose =
|
1251
|
+
self.print_verbose = kwargs.get('verbose', False)
|
1252
1252
|
# harmony_memory stores the best hms harmonies
|
1253
1253
|
self._harmony_memory = list()
|
1254
1254
|
# harmony_history stores all hms harmonies every nth improvisations (i.e., one 'generation')
|
metacountregressor/solution.py
CHANGED
@@ -136,10 +136,10 @@ class ObjectiveFunction(object):
|
|
136
136
|
self.constant_value = 0
|
137
137
|
self.negative_binomial_value = 1
|
138
138
|
|
139
|
-
self.verbose_safe =
|
139
|
+
self.verbose_safe = kwargs.get('verbose', 0)
|
140
140
|
self.please_print = kwargs.get('please_print', 0)
|
141
141
|
self.group_halton = None
|
142
|
-
self.grad_yes =
|
142
|
+
self.grad_yes = kwargs.get('grad_est', False)
|
143
143
|
self.hess_yes = False
|
144
144
|
self.group_halton_test = None
|
145
145
|
self.panels = None
|
@@ -177,13 +177,14 @@ class ObjectiveFunction(object):
|
|
177
177
|
self.method_ll = 'Nelder-Mead-BFGS'
|
178
178
|
|
179
179
|
self.method_ll = 'L-BFGS-B' # alternatives 'BFGS_2', 'BFGS
|
180
|
-
self.method_ll = '
|
180
|
+
self.method_ll = kwargs.get('method', 'Nealder-Mead-BFGS')
|
181
|
+
|
181
182
|
#self.method_ll = 'Nelder-Mead-BFGS'
|
182
183
|
self.Keep_Fit = 2
|
183
184
|
self.MP = 0
|
184
185
|
# Nelder-Mead-BFGS
|
185
186
|
|
186
|
-
self._max_characteristics = 26
|
187
|
+
self._max_characteristics = self.get('_max_vars', 26)
|
187
188
|
|
188
189
|
self.beta_dict = dict
|
189
190
|
|
@@ -4858,7 +4859,7 @@ class ObjectiveFunction(object):
|
|
4858
4859
|
proba.append(dev.to_cpu(proba_))
|
4859
4860
|
|
4860
4861
|
lik = np.stack(proba).sum(axis=0) / R # (N, )
|
4861
|
-
lik = np.clip(lik, min_comp_val,
|
4862
|
+
lik = np.clip(lik, min_comp_val, max_comp_val)
|
4862
4863
|
# lik = np.nan_to_num(lik, )
|
4863
4864
|
loglik = np.log(lik)
|
4864
4865
|
llf_main = loglik
|
@@ -5188,7 +5189,7 @@ class ObjectiveFunction(object):
|
|
5188
5189
|
H = self.numerical_hessian(lambda x: self._loglik_gradient(x, *argbs), result.x, eps=1e-7 * self.n_obs)
|
5189
5190
|
result['Hessian'] = H
|
5190
5191
|
result['hess_inv'] = np.linalg.pinv(H)
|
5191
|
-
|
5192
|
+
|
5192
5193
|
standard_errors = np.sqrt(np.diag(np.linalg.pinv(H)))
|
5193
5194
|
return result
|
5194
5195
|
# return minimize(loglik_fn, x, args=args, jac=args[6], hess=args[7], method='BFGS', options= {'gtol':1e-7*self.N}*self.Ndraws)
|
@@ -6,15 +6,15 @@ metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,
|
|
6
6
|
metacountregressor/helperprocess.py,sha256=05698FXkXiAZi2JvVxCtaBwSf9LbW1lY8q_eFmEF5Nc,20739
|
7
7
|
metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
|
-
metacountregressor/metaheuristics.py,sha256=
|
9
|
+
metacountregressor/metaheuristics.py,sha256=1Tm_BS8HxumEo9fteIwTTkfiJXbfH6wlfSmY0tSt77A,106289
|
10
10
|
metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
|
11
11
|
metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
|
12
12
|
metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
|
-
metacountregressor/solution.py,sha256=
|
14
|
+
metacountregressor/solution.py,sha256=y5YO5kHvipn82uOj8buYSQZFohzjMti5LkMZcTdkleU,278334
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.143.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.143.dist-info/METADATA,sha256=ykaOHFpVeb_segLwOTdJsahDwqcyq03u4nswEmo_mXE,23434
|
18
|
+
metacountregressor-0.1.143.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.143.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.143.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|