metacountregressor 0.1.140__py3-none-any.whl → 0.1.141__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,12 +1,11 @@
1
1
  from os.path import exists
2
-
3
2
  import numpy as np
4
3
  import pandas as pd
5
4
  import csv
6
5
  import matplotlib.pyplot as plt
7
6
  from scipy import stats as st
8
7
  from sklearn.preprocessing import StandardScaler
9
- from win32comext.shell.demos.IActiveDesktop import existing_item
8
+
10
9
 
11
10
  plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
12
11
 
@@ -32,7 +32,7 @@ from sklearn.metrics import mean_squared_error as MSPE
32
32
  from statsmodels.tools.numdiff import approx_fprime, approx_hess
33
33
  from sklearn.preprocessing import StandardScaler, MinMaxScaler
34
34
  from texttable import Texttable
35
-
35
+ import time
36
36
  try:
37
37
  from ._device_cust import device as dev
38
38
  from .pareto_file import Pareto, Solution
@@ -204,12 +204,17 @@ class ObjectiveFunction(object):
204
204
  if 'instance_number' in kwargs:
205
205
  self.instance_number = str(kwargs['instance_number'])
206
206
  else:
207
+
208
+ print('no name set, setting name as 0')
207
209
  self.instance_number = str(0) # set an arbitrary instance number
208
210
 
209
211
  if not os.path.exists(self.instance_number):
210
- os.makedirs(self.instance_number)
212
+ if kwargs.get('make_directory', True):
213
+ print('Making a Directory, if you want to stop from storing the files to this directory set argumet: make_directory:False')
214
+ os.makedirs(self.instance_number)
211
215
 
212
216
  if not hasattr(self, '_obj_1'):
217
+ print('_obj_1 required, define as bic, aic, ll')
213
218
  raise Exception
214
219
 
215
220
  self.pvalue_penalty = float(kwargs.get('pvalue_penalty', 0.5))
@@ -238,6 +243,9 @@ class ObjectiveFunction(object):
238
243
  self.test_percentage = float(kwargs.get('test_percentage', 0))
239
244
  self.val_percentage = float(kwargs.get('val_percentage', 0))
240
245
  if self.test_percentage == 0:
246
+ print('test percentage is 0, please enter arg test_percentage as decimal, eg 0.8')
247
+ print('continuing single objective')
248
+ time.sleep(2)
241
249
  self.is_multi = False
242
250
 
243
251
  if 'panels' in kwargs and not (kwargs.get('panels') == None):
@@ -348,6 +356,7 @@ class ObjectiveFunction(object):
348
356
 
349
357
 
350
358
  else:
359
+ print('No Panels. Grouped Random Paramaters Will not be estimated')
351
360
  self.G = None
352
361
  self._Gnum = 1
353
362
  self._max_group_all_means = 0
@@ -413,6 +422,7 @@ class ObjectiveFunction(object):
413
422
  print('Setup Complete...')
414
423
  else:
415
424
  print('No Panels Supplied')
425
+ print('Setup Complete...')
416
426
  self._characteristics_names = list(self._x_data.columns)
417
427
  # define the variables
418
428
  # self._transformations = ["no", "sqrt", "log", "exp", "fact", "arcsinh", 2, 3]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.140
3
+ Version: 0.1.141
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=ee4R9SfRK8bRZrzijzhulNIGPXWNfdFihiM2RhHvbEU,20804
6
+ metacountregressor/helperprocess.py,sha256=05698FXkXiAZi2JvVxCtaBwSf9LbW1lY8q_eFmEF5Nc,20739
7
7
  metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=f3Jgg6NkPalcAeY2Nz8AePSDHQkVASxfceOLs_OMCug,106265
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=c4zEb7L4qYghVyE3gOH9Q7ylrweRNbVEnHnNeKOnLVE,277625
14
+ metacountregressor/solution.py,sha256=j8pWlmMmEkjBC798Fnh1fu0w7F6jrVtW43H2OSXv8Ts,278258
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.140.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.140.dist-info/METADATA,sha256=1vHV72AJOpC5EvLlXtbw_9MGMBomiRsd6FnlJVAQrYc,23434
18
- metacountregressor-0.1.140.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.140.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.140.dist-info/RECORD,,
16
+ metacountregressor-0.1.141.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.141.dist-info/METADATA,sha256=0P_boUzZxFlgmSBgeEXHip5O0Yg-H6JMWurOQi7H9UQ,23434
18
+ metacountregressor-0.1.141.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.141.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.141.dist-info/RECORD,,