metacountregressor 0.1.138__py3-none-any.whl → 0.1.139__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,9 +1,12 @@
1
+ from os.path import exists
2
+
1
3
  import numpy as np
2
4
  import pandas as pd
3
5
  import csv
4
6
  import matplotlib.pyplot as plt
5
7
  from scipy import stats as st
6
8
  from sklearn.preprocessing import StandardScaler
9
+ from win32comext.shell.demos.IActiveDesktop import existing_item
7
10
 
8
11
  plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
9
12
 
@@ -179,17 +182,38 @@ config = {
179
182
  }
180
183
  }
181
184
  '''
182
- def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = None):
185
+ def null_handler(vari):
186
+ if vari in locals():
187
+ return vari
188
+ else:
189
+ print(f'{vari} does not exist, setting None..')
190
+ return None
191
+
192
+
193
+ def set_up_analyst_constraints(data_characteristic, model_terms, variable_decisions_alt = None):
194
+
195
+
183
196
  name_data_characteristics = data_characteristic.columns.tolist()
184
- distu = ['n', 'u', 't']
185
- tra = ['no']
197
+ # Get non-None values as a list
198
+ non_none_terms = [value for value in model_terms.values() if value is not None]
199
+ # how to make name_data_characteristics - non_none_terms
200
+
201
+ result = [item for item in name_data_characteristics if item not in non_none_terms]
202
+ distu = ['Normal', 'Uniform', 'Triangular']
203
+ tra = ['no', 'sqrt', 'arcsinh']
204
+ if model_terms.get('grouped') is None:
205
+ print('cant have grouped rpm, removing level 4 from every item')
206
+ MAKE_ALL_4_FALSE = True
207
+ else:
208
+ MAKE_ALL_4_FALSE = False
209
+
186
210
  variable_decisions = {
187
211
  name: {
188
212
  'levels': list(range(6)),
189
213
  'distributions': distu,
190
214
  'transformations': tra
191
215
  }
192
- for name in name_data_characteristics
216
+ for name in result
193
217
  }
194
218
  # Override elements in the original dictionary with the alt dictionary
195
219
  if variable_decisions_alt is not None:
@@ -208,7 +232,11 @@ def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = Non
208
232
 
209
233
  # Add levels as True/False for Level 0 through Level 5
210
234
  for level in range(6): # Assuming Level 0 to Level 5
211
- row[f'Level {level}'] = level in details['levels']
235
+
236
+ if level == 4 and MAKE_ALL_4_FALSE:
237
+ row[f'Level {level}'] = False
238
+ else:
239
+ row[f'Level {level}'] = level in details['levels']
212
240
 
213
241
  # Add distributions and transformations directly
214
242
  row['distributions'] = details['distributions']
@@ -218,7 +246,9 @@ def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = Non
218
246
 
219
247
  # Create the DataFrame
220
248
  df = pd.DataFrame(rows)
221
- return df
249
+
250
+ data_new = data_characteristic.rename(columns={v: k for k, v in model_terms.items() if v in data_characteristic.columns})
251
+ return df, data_new
222
252
 
223
253
  # Function to guess Low, Medium, High ranges
224
254
  def guess_low_medium_high(column_name, series):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.138
3
+ Version: 0.1.139
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=3SwQtKCMwu2_6pna1L_vM_qUJiuqi07HnWgHAned008,19502
6
+ metacountregressor/helperprocess.py,sha256=WiCItpiGJQJNxwczsNzWobDeltfmSKzSJKlxz8_9pxk,20504
7
7
  metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.138.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.138.dist-info/METADATA,sha256=IJASEKH3eOWCUVWj1W1_yi5MoLbEaU6AN6_9cm5NHwo,23434
18
- metacountregressor-0.1.138.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.138.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.138.dist-info/RECORD,,
16
+ metacountregressor-0.1.139.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.139.dist-info/METADATA,sha256=_jvPMVa-G1tSUPlH9VjpCAPT1nl6TCFWSsq6SMDwTw8,23434
18
+ metacountregressor-0.1.139.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.139.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.139.dist-info/RECORD,,