metacountregressor 0.1.138__py3-none-any.whl → 0.1.139__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,9 +1,12 @@
1
+ from os.path import exists
2
+
1
3
  import numpy as np
2
4
  import pandas as pd
3
5
  import csv
4
6
  import matplotlib.pyplot as plt
5
7
  from scipy import stats as st
6
8
  from sklearn.preprocessing import StandardScaler
9
+ from win32comext.shell.demos.IActiveDesktop import existing_item
7
10
 
8
11
  plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
9
12
 
@@ -179,17 +182,38 @@ config = {
179
182
  }
180
183
  }
181
184
  '''
182
- def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = None):
185
+ def null_handler(vari):
186
+ if vari in locals():
187
+ return vari
188
+ else:
189
+ print(f'{vari} does not exist, setting None..')
190
+ return None
191
+
192
+
193
+ def set_up_analyst_constraints(data_characteristic, model_terms, variable_decisions_alt = None):
194
+
195
+
183
196
  name_data_characteristics = data_characteristic.columns.tolist()
184
- distu = ['n', 'u', 't']
185
- tra = ['no']
197
+ # Get non-None values as a list
198
+ non_none_terms = [value for value in model_terms.values() if value is not None]
199
+ # how to make name_data_characteristics - non_none_terms
200
+
201
+ result = [item for item in name_data_characteristics if item not in non_none_terms]
202
+ distu = ['Normal', 'Uniform', 'Triangular']
203
+ tra = ['no', 'sqrt', 'arcsinh']
204
+ if model_terms.get('grouped') is None:
205
+ print('cant have grouped rpm, removing level 4 from every item')
206
+ MAKE_ALL_4_FALSE = True
207
+ else:
208
+ MAKE_ALL_4_FALSE = False
209
+
186
210
  variable_decisions = {
187
211
  name: {
188
212
  'levels': list(range(6)),
189
213
  'distributions': distu,
190
214
  'transformations': tra
191
215
  }
192
- for name in name_data_characteristics
216
+ for name in result
193
217
  }
194
218
  # Override elements in the original dictionary with the alt dictionary
195
219
  if variable_decisions_alt is not None:
@@ -208,7 +232,11 @@ def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = Non
208
232
 
209
233
  # Add levels as True/False for Level 0 through Level 5
210
234
  for level in range(6): # Assuming Level 0 to Level 5
211
- row[f'Level {level}'] = level in details['levels']
235
+
236
+ if level == 4 and MAKE_ALL_4_FALSE:
237
+ row[f'Level {level}'] = False
238
+ else:
239
+ row[f'Level {level}'] = level in details['levels']
212
240
 
213
241
  # Add distributions and transformations directly
214
242
  row['distributions'] = details['distributions']
@@ -218,7 +246,9 @@ def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = Non
218
246
 
219
247
  # Create the DataFrame
220
248
  df = pd.DataFrame(rows)
221
- return df
249
+
250
+ data_new = data_characteristic.rename(columns={v: k for k, v in model_terms.items() if v in data_characteristic.columns})
251
+ return df, data_new
222
252
 
223
253
  # Function to guess Low, Medium, High ranges
224
254
  def guess_low_medium_high(column_name, series):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.138
3
+ Version: 0.1.139
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=3SwQtKCMwu2_6pna1L_vM_qUJiuqi07HnWgHAned008,19502
6
+ metacountregressor/helperprocess.py,sha256=WiCItpiGJQJNxwczsNzWobDeltfmSKzSJKlxz8_9pxk,20504
7
7
  metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.138.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.138.dist-info/METADATA,sha256=IJASEKH3eOWCUVWj1W1_yi5MoLbEaU6AN6_9cm5NHwo,23434
18
- metacountregressor-0.1.138.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.138.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.138.dist-info/RECORD,,
16
+ metacountregressor-0.1.139.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.139.dist-info/METADATA,sha256=_jvPMVa-G1tSUPlH9VjpCAPT1nl6TCFWSsq6SMDwTw8,23434
18
+ metacountregressor-0.1.139.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.139.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.139.dist-info/RECORD,,