metacountregressor 0.1.135__py3-none-any.whl → 0.1.138__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/helperprocess.py +45 -5
- metacountregressor/main.py +11 -6
- {metacountregressor-0.1.135.dist-info → metacountregressor-0.1.138.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.135.dist-info → metacountregressor-0.1.138.dist-info}/RECORD +7 -7
- {metacountregressor-0.1.135.dist-info → metacountregressor-0.1.138.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.135.dist-info → metacountregressor-0.1.138.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.135.dist-info → metacountregressor-0.1.138.dist-info}/top_level.txt +0 -0
@@ -2,6 +2,7 @@ import numpy as np
|
|
2
2
|
import pandas as pd
|
3
3
|
import csv
|
4
4
|
import matplotlib.pyplot as plt
|
5
|
+
from scipy import stats as st
|
5
6
|
from sklearn.preprocessing import StandardScaler
|
6
7
|
|
7
8
|
plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
|
@@ -178,15 +179,54 @@ config = {
|
|
178
179
|
}
|
179
180
|
}
|
180
181
|
'''
|
181
|
-
|
182
|
+
def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = None):
|
183
|
+
name_data_characteristics = data_characteristic.columns.tolist()
|
184
|
+
distu = ['n', 'u', 't']
|
185
|
+
tra = ['no']
|
186
|
+
variable_decisions = {
|
187
|
+
name: {
|
188
|
+
'levels': list(range(6)),
|
189
|
+
'distributions': distu,
|
190
|
+
'transformations': tra
|
191
|
+
}
|
192
|
+
for name in name_data_characteristics
|
193
|
+
}
|
194
|
+
# Override elements in the original dictionary with the alt dictionary
|
195
|
+
if variable_decisions_alt is not None:
|
196
|
+
for key, alt_value in variable_decisions_alt.items():
|
197
|
+
if key in variable_decisions:
|
198
|
+
# Update the existing entry
|
199
|
+
variable_decisions[key].update(alt_value)
|
200
|
+
else:
|
201
|
+
# Add new entry if it doesn't exist
|
202
|
+
variable_decisions[key] = alt_value
|
203
|
+
# Prepare the data for the DataFrame
|
204
|
+
rows = []
|
205
|
+
for column_name, details in variable_decisions.items():
|
206
|
+
# Create a row dictionary
|
207
|
+
row = {'Column': column_name}
|
208
|
+
|
209
|
+
# Add levels as True/False for Level 0 through Level 5
|
210
|
+
for level in range(6): # Assuming Level 0 to Level 5
|
211
|
+
row[f'Level {level}'] = level in details['levels']
|
212
|
+
|
213
|
+
# Add distributions and transformations directly
|
214
|
+
row['distributions'] = details['distributions']
|
215
|
+
row['transformations'] = details['transformations']
|
216
|
+
|
217
|
+
rows.append(row)
|
218
|
+
|
219
|
+
# Create the DataFrame
|
220
|
+
df = pd.DataFrame(rows)
|
221
|
+
return df
|
182
222
|
|
183
223
|
# Function to guess Low, Medium, High ranges
|
184
224
|
def guess_low_medium_high(column_name, series):
|
185
225
|
# Compute the tertiles (33rd and 66th percentiles)
|
186
|
-
print('did it make it...')
|
187
|
-
mode_value =
|
188
|
-
print('good')
|
189
|
-
|
226
|
+
#print('did it make it...')
|
227
|
+
#mode_value = st.mode(series) # Get the most frequent value
|
228
|
+
#print('good')
|
229
|
+
# series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
|
190
230
|
low_threshold = np.quantile(series, 0.33)
|
191
231
|
high_threshold = np.quantile(series,0.66)
|
192
232
|
|
metacountregressor/main.py
CHANGED
@@ -28,11 +28,16 @@ def convert_df_columns_to_binary_and_wide(df):
|
|
28
28
|
return df
|
29
29
|
|
30
30
|
|
31
|
+
|
32
|
+
|
33
|
+
|
34
|
+
|
31
35
|
def process_arguments(**kwargs):
|
32
36
|
'''
|
33
37
|
TRYING TO TURN THE CSV FILES INTO RELEVANT ARGS
|
34
38
|
'''
|
35
39
|
#dataset
|
40
|
+
'''
|
36
41
|
if kwargs.get('dataset_file', False
|
37
42
|
):
|
38
43
|
dataset = pd.read_csv(kwargs.get('dataset_file'))
|
@@ -71,15 +76,15 @@ def process_arguments(**kwargs):
|
|
71
76
|
|
72
77
|
update_constant = kwargs.get('analyst_constraints')
|
73
78
|
#update the decision_constraints
|
74
|
-
|
79
|
+
'''
|
75
80
|
data_characteristic = pd.read_csv(kwargs.get('problem_data', 'problem_data.csv'))
|
76
81
|
# Extract the column as a list of characteristic names
|
77
|
-
name_data_characteristics = data_characteristic.columns.tolist()
|
82
|
+
#name_data_characteristics = data_characteristic.columns.tolist()
|
78
83
|
|
79
84
|
# Create the dictionary
|
80
|
-
decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
|
85
|
+
#decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
|
81
86
|
|
82
|
-
print('this gets all the features, I need to remove...')
|
87
|
+
#print('this gets all the features, I need to remove...')
|
83
88
|
|
84
89
|
analyst_d = pd.read_csv(kwargs.get('decison_constraints', 'decisions.csv'))
|
85
90
|
hyper = pd.read_csv('setup_hyper.csv')
|
@@ -377,10 +382,10 @@ def main(args, **kwargs):
|
|
377
382
|
#data_info['data']['Panel'][0]
|
378
383
|
args['decisions'] = data_info['analyst']
|
379
384
|
|
380
|
-
if
|
385
|
+
if type(data_info['data']['Grouped'][0]) == str and len(data_info['data']['Grouped'][0]) >1:
|
381
386
|
args['group'] = data_info['data']['Grouped'][0]
|
382
387
|
args['ID'] = data_info['data']['Grouped'][0]
|
383
|
-
if
|
388
|
+
if type(data_info['data']['Panel'][0]) == str and len(data_info['data']['Panel'][0])>1:
|
384
389
|
args['panels'] = data_info['data']['Panel'][0]
|
385
390
|
|
386
391
|
df = pd.read_csv(str(data_info['data']['Problem'][0]))
|
@@ -3,8 +3,8 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
|
|
3
3
|
metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
|
4
4
|
metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
|
5
5
|
metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
|
6
|
-
metacountregressor/helperprocess.py,sha256=
|
7
|
-
metacountregressor/main.py,sha256=
|
6
|
+
metacountregressor/helperprocess.py,sha256=3SwQtKCMwu2_6pna1L_vM_qUJiuqi07HnWgHAned008,19502
|
7
|
+
metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
9
|
metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
|
10
10
|
metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
|
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
|
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
14
|
metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.138.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.138.dist-info/METADATA,sha256=IJASEKH3eOWCUVWj1W1_yi5MoLbEaU6AN6_9cm5NHwo,23434
|
18
|
+
metacountregressor-0.1.138.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.138.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.138.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|