metacountregressor 0.1.135__py3-none-any.whl → 0.1.138__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -2,6 +2,7 @@ import numpy as np
2
2
  import pandas as pd
3
3
  import csv
4
4
  import matplotlib.pyplot as plt
5
+ from scipy import stats as st
5
6
  from sklearn.preprocessing import StandardScaler
6
7
 
7
8
  plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
@@ -178,15 +179,54 @@ config = {
178
179
  }
179
180
  }
180
181
  '''
181
-
182
+ def set_up_analyst_constraints(data_characteristic, variable_decisions_alt = None):
183
+ name_data_characteristics = data_characteristic.columns.tolist()
184
+ distu = ['n', 'u', 't']
185
+ tra = ['no']
186
+ variable_decisions = {
187
+ name: {
188
+ 'levels': list(range(6)),
189
+ 'distributions': distu,
190
+ 'transformations': tra
191
+ }
192
+ for name in name_data_characteristics
193
+ }
194
+ # Override elements in the original dictionary with the alt dictionary
195
+ if variable_decisions_alt is not None:
196
+ for key, alt_value in variable_decisions_alt.items():
197
+ if key in variable_decisions:
198
+ # Update the existing entry
199
+ variable_decisions[key].update(alt_value)
200
+ else:
201
+ # Add new entry if it doesn't exist
202
+ variable_decisions[key] = alt_value
203
+ # Prepare the data for the DataFrame
204
+ rows = []
205
+ for column_name, details in variable_decisions.items():
206
+ # Create a row dictionary
207
+ row = {'Column': column_name}
208
+
209
+ # Add levels as True/False for Level 0 through Level 5
210
+ for level in range(6): # Assuming Level 0 to Level 5
211
+ row[f'Level {level}'] = level in details['levels']
212
+
213
+ # Add distributions and transformations directly
214
+ row['distributions'] = details['distributions']
215
+ row['transformations'] = details['transformations']
216
+
217
+ rows.append(row)
218
+
219
+ # Create the DataFrame
220
+ df = pd.DataFrame(rows)
221
+ return df
182
222
 
183
223
  # Function to guess Low, Medium, High ranges
184
224
  def guess_low_medium_high(column_name, series):
185
225
  # Compute the tertiles (33rd and 66th percentiles)
186
- print('did it make it...')
187
- mode_value = np.mode(series) # Get the most frequent value
188
- print('good')
189
- series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
226
+ #print('did it make it...')
227
+ #mode_value = st.mode(series) # Get the most frequent value
228
+ #print('good')
229
+ # series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
190
230
  low_threshold = np.quantile(series, 0.33)
191
231
  high_threshold = np.quantile(series,0.66)
192
232
 
@@ -28,11 +28,16 @@ def convert_df_columns_to_binary_and_wide(df):
28
28
  return df
29
29
 
30
30
 
31
+
32
+
33
+
34
+
31
35
  def process_arguments(**kwargs):
32
36
  '''
33
37
  TRYING TO TURN THE CSV FILES INTO RELEVANT ARGS
34
38
  '''
35
39
  #dataset
40
+ '''
36
41
  if kwargs.get('dataset_file', False
37
42
  ):
38
43
  dataset = pd.read_csv(kwargs.get('dataset_file'))
@@ -71,15 +76,15 @@ def process_arguments(**kwargs):
71
76
 
72
77
  update_constant = kwargs.get('analyst_constraints')
73
78
  #update the decision_constraints
74
-
79
+ '''
75
80
  data_characteristic = pd.read_csv(kwargs.get('problem_data', 'problem_data.csv'))
76
81
  # Extract the column as a list of characteristic names
77
- name_data_characteristics = data_characteristic.columns.tolist()
82
+ #name_data_characteristics = data_characteristic.columns.tolist()
78
83
 
79
84
  # Create the dictionary
80
- decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
85
+ #decision_constraints = {name: list(range(7)) for name in name_data_characteristics}
81
86
 
82
- print('this gets all the features, I need to remove...')
87
+ #print('this gets all the features, I need to remove...')
83
88
 
84
89
  analyst_d = pd.read_csv(kwargs.get('decison_constraints', 'decisions.csv'))
85
90
  hyper = pd.read_csv('setup_hyper.csv')
@@ -377,10 +382,10 @@ def main(args, **kwargs):
377
382
  #data_info['data']['Panel'][0]
378
383
  args['decisions'] = data_info['analyst']
379
384
 
380
- if not np.isnan(data_info['data']['Grouped'][0]):
385
+ if type(data_info['data']['Grouped'][0]) == str and len(data_info['data']['Grouped'][0]) >1:
381
386
  args['group'] = data_info['data']['Grouped'][0]
382
387
  args['ID'] = data_info['data']['Grouped'][0]
383
- if not np.isnan(data_info['data']['Panel'][0]):
388
+ if type(data_info['data']['Panel'][0]) == str and len(data_info['data']['Panel'][0])>1:
384
389
  args['panels'] = data_info['data']['Panel'][0]
385
390
 
386
391
  df = pd.read_csv(str(data_info['data']['Problem'][0]))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.135
3
+ Version: 0.1.138
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,8 +3,8 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=rzqmb9qs9xHAjMbUf7iX0OSW3qdPqWrBtZCbsyqsMwQ,17964
7
- metacountregressor/main.py,sha256=_MVROd1y8qIhvGnG1iFzHw4_2e6-8INjXHDnYlDSLy8,22714
6
+ metacountregressor/helperprocess.py,sha256=3SwQtKCMwu2_6pna1L_vM_qUJiuqi07HnWgHAned008,19502
7
+ metacountregressor/main.py,sha256=2Rx_mGIGzl4lhwkMb7DHvsBaawqEakKiVR1Yr2uG9Yo,22819
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.135.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.135.dist-info/METADATA,sha256=Ga9IAdM6l7jn7lDJ7xPXNeCZQMpHKhmJwoaReS5Ditg,23434
18
- metacountregressor-0.1.135.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.135.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.135.dist-info/RECORD,,
16
+ metacountregressor-0.1.138.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.138.dist-info/METADATA,sha256=IJASEKH3eOWCUVWj1W1_yi5MoLbEaU6AN6_9cm5NHwo,23434
18
+ metacountregressor-0.1.138.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.138.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.138.dist-info/RECORD,,