metacountregressor 0.1.135__py3-none-any.whl → 0.1.136__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,6 +2,7 @@ import numpy as np
2
2
  import pandas as pd
3
3
  import csv
4
4
  import matplotlib.pyplot as plt
5
+ from scipy import stats as st
5
6
  from sklearn.preprocessing import StandardScaler
6
7
 
7
8
  plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
@@ -184,7 +185,7 @@ config = {
184
185
  def guess_low_medium_high(column_name, series):
185
186
  # Compute the tertiles (33rd and 66th percentiles)
186
187
  print('did it make it...')
187
- mode_value = np.mode(series) # Get the most frequent value
188
+ mode_value = st.mode(series) # Get the most frequent value
188
189
  print('good')
189
190
  series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
190
191
  low_threshold = np.quantile(series, 0.33)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.135
3
+ Version: 0.1.136
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=rzqmb9qs9xHAjMbUf7iX0OSW3qdPqWrBtZCbsyqsMwQ,17964
6
+ metacountregressor/helperprocess.py,sha256=W1iOZ_5QGMaWhKZvY6PaWeK5yJZAbJCRdfMro7jfBjA,17994
7
7
  metacountregressor/main.py,sha256=_MVROd1y8qIhvGnG1iFzHw4_2e6-8INjXHDnYlDSLy8,22714
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.135.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.135.dist-info/METADATA,sha256=Ga9IAdM6l7jn7lDJ7xPXNeCZQMpHKhmJwoaReS5Ditg,23434
18
- metacountregressor-0.1.135.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.135.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.135.dist-info/RECORD,,
16
+ metacountregressor-0.1.136.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.136.dist-info/METADATA,sha256=xaLgLobGX8K3ibCWEOtcnjFfEfsciq8gs9lRv-WM6JE,23434
18
+ metacountregressor-0.1.136.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.136.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.136.dist-info/RECORD,,