metacountregressor 0.1.134__py3-none-any.whl → 0.1.136__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/helperprocess.py +17 -3
- {metacountregressor-0.1.134.dist-info → metacountregressor-0.1.136.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.134.dist-info → metacountregressor-0.1.136.dist-info}/RECORD +6 -6
- {metacountregressor-0.1.134.dist-info → metacountregressor-0.1.136.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.134.dist-info → metacountregressor-0.1.136.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.134.dist-info → metacountregressor-0.1.136.dist-info}/top_level.txt +0 -0
@@ -2,6 +2,7 @@ import numpy as np
|
|
2
2
|
import pandas as pd
|
3
3
|
import csv
|
4
4
|
import matplotlib.pyplot as plt
|
5
|
+
from scipy import stats as st
|
5
6
|
from sklearn.preprocessing import StandardScaler
|
6
7
|
|
7
8
|
plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
|
@@ -184,7 +185,7 @@ config = {
|
|
184
185
|
def guess_low_medium_high(column_name, series):
|
185
186
|
# Compute the tertiles (33rd and 66th percentiles)
|
186
187
|
print('did it make it...')
|
187
|
-
mode_value =
|
188
|
+
mode_value = st.mode(series) # Get the most frequent value
|
188
189
|
print('good')
|
189
190
|
series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
|
190
191
|
low_threshold = np.quantile(series, 0.33)
|
@@ -192,7 +193,19 @@ def guess_low_medium_high(column_name, series):
|
|
192
193
|
|
193
194
|
# Define the bins and labels
|
194
195
|
bins = [np.min(series) - 1, low_threshold, high_threshold, np.max(series)]
|
195
|
-
|
196
|
+
# Handle duplicate bins by adjusting labels
|
197
|
+
if len(set(bins)) < len(bins): # Check for duplicate bin edges
|
198
|
+
if low_threshold == high_threshold:
|
199
|
+
# Collapse to two bins (Low and High)
|
200
|
+
bins = [np.min(series) - 1, low_threshold, np.max(series)]
|
201
|
+
labels = ['Low', 'High']
|
202
|
+
else:
|
203
|
+
# Collapse to three unique bins
|
204
|
+
bins = sorted(set(bins)) # Remove duplicate edges
|
205
|
+
labels = [f'Bin {i + 1}' for i in range(len(bins) - 1)]
|
206
|
+
else:
|
207
|
+
# Standard case: Low, Medium, High
|
208
|
+
labels = ['Low', 'Medium', 'High']
|
196
209
|
|
197
210
|
return {
|
198
211
|
'type': 'bin',
|
@@ -211,7 +224,8 @@ def transform_dataframe(df, config):
|
|
211
224
|
df[column],
|
212
225
|
bins=settings['bins'],
|
213
226
|
labels=settings['labels'],
|
214
|
-
right=False
|
227
|
+
right=False,
|
228
|
+
|
215
229
|
)
|
216
230
|
# One-hot encode the binned column
|
217
231
|
binned_dummies = pd.get_dummies(binned, prefix=settings['prefix'])
|
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
|
|
3
3
|
metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
|
4
4
|
metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
|
5
5
|
metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
|
6
|
-
metacountregressor/helperprocess.py,sha256=
|
6
|
+
metacountregressor/helperprocess.py,sha256=W1iOZ_5QGMaWhKZvY6PaWeK5yJZAbJCRdfMro7jfBjA,17994
|
7
7
|
metacountregressor/main.py,sha256=_MVROd1y8qIhvGnG1iFzHw4_2e6-8INjXHDnYlDSLy8,22714
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
9
|
metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
|
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
|
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
14
|
metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.136.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.136.dist-info/METADATA,sha256=xaLgLobGX8K3ibCWEOtcnjFfEfsciq8gs9lRv-WM6JE,23434
|
18
|
+
metacountregressor-0.1.136.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.136.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.136.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|