metacountregressor 0.1.132__py3-none-any.whl → 0.1.135__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- metacountregressor/helperprocess.py +20 -4
- {metacountregressor-0.1.132.dist-info → metacountregressor-0.1.135.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.132.dist-info → metacountregressor-0.1.135.dist-info}/RECORD +6 -6
- {metacountregressor-0.1.132.dist-info → metacountregressor-0.1.135.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.132.dist-info → metacountregressor-0.1.135.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.132.dist-info → metacountregressor-0.1.135.dist-info}/top_level.txt +0 -0
@@ -183,15 +183,28 @@ config = {
|
|
183
183
|
# Function to guess Low, Medium, High ranges
|
184
184
|
def guess_low_medium_high(column_name, series):
|
185
185
|
# Compute the tertiles (33rd and 66th percentiles)
|
186
|
-
print('
|
186
|
+
print('did it make it...')
|
187
187
|
mode_value = np.mode(series) # Get the most frequent value
|
188
|
+
print('good')
|
188
189
|
series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
|
189
190
|
low_threshold = np.quantile(series, 0.33)
|
190
191
|
high_threshold = np.quantile(series,0.66)
|
191
192
|
|
192
193
|
# Define the bins and labels
|
193
194
|
bins = [np.min(series) - 1, low_threshold, high_threshold, np.max(series)]
|
194
|
-
|
195
|
+
# Handle duplicate bins by adjusting labels
|
196
|
+
if len(set(bins)) < len(bins): # Check for duplicate bin edges
|
197
|
+
if low_threshold == high_threshold:
|
198
|
+
# Collapse to two bins (Low and High)
|
199
|
+
bins = [np.min(series) - 1, low_threshold, np.max(series)]
|
200
|
+
labels = ['Low', 'High']
|
201
|
+
else:
|
202
|
+
# Collapse to three unique bins
|
203
|
+
bins = sorted(set(bins)) # Remove duplicate edges
|
204
|
+
labels = [f'Bin {i + 1}' for i in range(len(bins) - 1)]
|
205
|
+
else:
|
206
|
+
# Standard case: Low, Medium, High
|
207
|
+
labels = ['Low', 'Medium', 'High']
|
195
208
|
|
196
209
|
return {
|
197
210
|
'type': 'bin',
|
@@ -210,7 +223,8 @@ def transform_dataframe(df, config):
|
|
210
223
|
df[column],
|
211
224
|
bins=settings['bins'],
|
212
225
|
labels=settings['labels'],
|
213
|
-
right=False
|
226
|
+
right=False,
|
227
|
+
|
214
228
|
)
|
215
229
|
# One-hot encode the binned column
|
216
230
|
binned_dummies = pd.get_dummies(binned, prefix=settings['prefix'])
|
@@ -250,12 +264,14 @@ def guess_column_type(column_name, series):
|
|
250
264
|
return {'type': 'one-hot', 'prefix': column_name}
|
251
265
|
elif pd.api.types.is_numeric_dtype(series):
|
252
266
|
unique_values = series.nunique()
|
267
|
+
|
253
268
|
if unique_values < 5:
|
254
269
|
return {'type': 'one-hot', 'prefix': column_name}
|
255
270
|
|
256
271
|
elif np.max(series) - np.min(series) > 20:
|
272
|
+
print('made it through here')
|
257
273
|
# If there are few unique values, assume binning with default bins
|
258
|
-
guess_low_medium_high(column_name,series)
|
274
|
+
return guess_low_medium_high(column_name,series)
|
259
275
|
else:
|
260
276
|
# # Otherwise, assume continuous data with normalization
|
261
277
|
# Otherwise, fallback to continuous standardization
|
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
|
|
3
3
|
metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
|
4
4
|
metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
|
5
5
|
metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
|
6
|
-
metacountregressor/helperprocess.py,sha256=
|
6
|
+
metacountregressor/helperprocess.py,sha256=rzqmb9qs9xHAjMbUf7iX0OSW3qdPqWrBtZCbsyqsMwQ,17964
|
7
7
|
metacountregressor/main.py,sha256=_MVROd1y8qIhvGnG1iFzHw4_2e6-8INjXHDnYlDSLy8,22714
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
9
|
metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
|
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
|
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
14
|
metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.135.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.135.dist-info/METADATA,sha256=Ga9IAdM6l7jn7lDJ7xPXNeCZQMpHKhmJwoaReS5Ditg,23434
|
18
|
+
metacountregressor-0.1.135.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.135.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.135.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|