metacountregressor 0.1.130__py3-none-any.whl → 0.1.131__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -183,11 +183,13 @@ config = {
183
183
  # Function to guess Low, Medium, High ranges
184
184
  def guess_low_medium_high(column_name, series):
185
185
  # Compute the tertiles (33rd and 66th percentiles)
186
+ mode_value = np.mode(series) # Get the most frequent value
187
+ series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
186
188
  low_threshold = np.quantile(series, 0.33)
187
189
  high_threshold = np.quantile(series,0.66)
188
190
 
189
191
  # Define the bins and labels
190
- bins = [np.min(series) - 1, low_threshold, high_threshold, np.min(series)]
192
+ bins = [np.min(series) - 1, low_threshold, high_threshold, np.max(series)]
191
193
  labels = ['Low', 'Medium', 'High']
192
194
 
193
195
  return {
@@ -238,6 +240,10 @@ def transform_dataframe(df, config):
238
240
 
239
241
  # Helper function to guess column type and update `config`
240
242
  def guess_column_type(column_name, series):
243
+
244
+ if series.empty:
245
+ raise ValueError(f"The column {column_name} contains no numeric data.")
246
+
241
247
  if series.dtype == 'object' or series.dtype.name == 'category':
242
248
  # If the column is categorical (e.g., strings), assume one-hot encoding
243
249
  return {'type': 'one-hot', 'prefix': column_name}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.130
3
+ Version: 0.1.131
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=gotuODIzxpQ_t90cPth01afQI7ykSYnHfF414sRmDG4,17061
6
+ metacountregressor/helperprocess.py,sha256=RKLPfPX-QqQhoX2cA3D4gBxoEwnWJhG-js2K1e61JdM,17299
7
7
  metacountregressor/main.py,sha256=A3XGwbwhhKVgMxnEgbAmMpgYaWkS8Rk30-cYs3FxvEk,22713
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
@@ -13,8 +13,8 @@ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,9
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
14
  metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.130.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.130.dist-info/METADATA,sha256=eRZ1OYTIibQlyOIwqL771Tr5k9oQlqqOf-7-ptQEYXM,23434
18
- metacountregressor-0.1.130.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.130.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.130.dist-info/RECORD,,
16
+ metacountregressor-0.1.131.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.131.dist-info/METADATA,sha256=IorVg5quaut16jAH7a3rjrgeV8zlkEMfLhZWiFUdvxk,23434
18
+ metacountregressor-0.1.131.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.131.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.131.dist-info/RECORD,,