metacountregressor 0.1.128__py3-none-any.whl → 0.1.130__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/helperprocess.py +5 -6
- metacountregressor/solution.py +2 -2
- {metacountregressor-0.1.128.dist-info → metacountregressor-0.1.130.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.128.dist-info → metacountregressor-0.1.130.dist-info}/RECORD +7 -7
- {metacountregressor-0.1.128.dist-info → metacountregressor-0.1.130.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.128.dist-info → metacountregressor-0.1.130.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.128.dist-info → metacountregressor-0.1.130.dist-info}/top_level.txt +0 -0
@@ -183,18 +183,18 @@ config = {
|
|
183
183
|
# Function to guess Low, Medium, High ranges
|
184
184
|
def guess_low_medium_high(column_name, series):
|
185
185
|
# Compute the tertiles (33rd and 66th percentiles)
|
186
|
-
low_threshold =
|
187
|
-
high_threshold =
|
186
|
+
low_threshold = np.quantile(series, 0.33)
|
187
|
+
high_threshold = np.quantile(series,0.66)
|
188
188
|
|
189
189
|
# Define the bins and labels
|
190
|
-
bins = [
|
190
|
+
bins = [np.min(series) - 1, low_threshold, high_threshold, np.min(series)]
|
191
191
|
labels = ['Low', 'Medium', 'High']
|
192
192
|
|
193
193
|
return {
|
194
194
|
'type': 'bin',
|
195
195
|
'bins': bins,
|
196
196
|
'labels': labels,
|
197
|
-
'prefix': f'{column_name}
|
197
|
+
'prefix': f'{column_name}'
|
198
198
|
}
|
199
199
|
|
200
200
|
def transform_dataframe(df, config):
|
@@ -246,8 +246,7 @@ def guess_column_type(column_name, series):
|
|
246
246
|
if unique_values < 5:
|
247
247
|
return {'type': 'one-hot', 'prefix': column_name}
|
248
248
|
|
249
|
-
|
250
|
-
elif series.max() - series.min() > 20:
|
249
|
+
elif np.max(series) - np.min(series) > 20:
|
251
250
|
# If there are few unique values, assume binning with default bins
|
252
251
|
guess_low_medium_high(column_name,series)
|
253
252
|
else:
|
metacountregressor/solution.py
CHANGED
@@ -449,7 +449,7 @@ class ObjectiveFunction(object):
|
|
449
449
|
if 'model_types' in kwargs:
|
450
450
|
model_types = kwargs['model_types']
|
451
451
|
else:
|
452
|
-
|
452
|
+
|
453
453
|
|
454
454
|
model_types = [[0, 1]] # add 2 for Generalized Poisson
|
455
455
|
model_types = [[0]]
|
@@ -459,7 +459,7 @@ class ObjectiveFunction(object):
|
|
459
459
|
# Retrieve the keys (model names) corresponding to the values in model_types
|
460
460
|
model_keys = [key for key, value in model_t_dict.items() if value in model_types[0]]
|
461
461
|
# Print the formatted result
|
462
|
-
print(f'The type of models possible
|
462
|
+
print(f'The type of models possible will consider: {", ".join(model_keys)}')
|
463
463
|
self._discrete_values = self._discrete_values + self.define_poissible_transforms(
|
464
464
|
self._transformations, kwargs.get('decisions',None)) + model_types
|
465
465
|
|
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
|
|
3
3
|
metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
|
4
4
|
metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
|
5
5
|
metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
|
6
|
-
metacountregressor/helperprocess.py,sha256=
|
6
|
+
metacountregressor/helperprocess.py,sha256=gotuODIzxpQ_t90cPth01afQI7ykSYnHfF414sRmDG4,17061
|
7
7
|
metacountregressor/main.py,sha256=A3XGwbwhhKVgMxnEgbAmMpgYaWkS8Rk30-cYs3FxvEk,22713
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
9
|
metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
|
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
|
|
11
11
|
metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
|
12
12
|
metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
|
-
metacountregressor/solution.py,sha256=
|
14
|
+
metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.130.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.130.dist-info/METADATA,sha256=eRZ1OYTIibQlyOIwqL771Tr5k9oQlqqOf-7-ptQEYXM,23434
|
18
|
+
metacountregressor-0.1.130.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.130.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.130.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|