metacountregressor 0.1.128__py3-none-any.whl → 0.1.130__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -183,18 +183,18 @@ config = {
183
183
  # Function to guess Low, Medium, High ranges
184
184
  def guess_low_medium_high(column_name, series):
185
185
  # Compute the tertiles (33rd and 66th percentiles)
186
- low_threshold = series.quantile(0.33)
187
- high_threshold = series.quantile(0.66)
186
+ low_threshold = np.quantile(series, 0.33)
187
+ high_threshold = np.quantile(series,0.66)
188
188
 
189
189
  # Define the bins and labels
190
- bins = [series.min() - 1, low_threshold, high_threshold, series.max()]
190
+ bins = [np.min(series) - 1, low_threshold, high_threshold, np.min(series)]
191
191
  labels = ['Low', 'Medium', 'High']
192
192
 
193
193
  return {
194
194
  'type': 'bin',
195
195
  'bins': bins,
196
196
  'labels': labels,
197
- 'prefix': f'{column_name}_Binned'
197
+ 'prefix': f'{column_name}'
198
198
  }
199
199
 
200
200
  def transform_dataframe(df, config):
@@ -246,8 +246,7 @@ def guess_column_type(column_name, series):
246
246
  if unique_values < 5:
247
247
  return {'type': 'one-hot', 'prefix': column_name}
248
248
 
249
-
250
- elif series.max() - series.min() > 20:
249
+ elif np.max(series) - np.min(series) > 20:
251
250
  # If there are few unique values, assume binning with default bins
252
251
  guess_low_medium_high(column_name,series)
253
252
  else:
@@ -449,7 +449,7 @@ class ObjectiveFunction(object):
449
449
  if 'model_types' in kwargs:
450
450
  model_types = kwargs['model_types']
451
451
  else:
452
- print('the type of models possible are:')
452
+
453
453
 
454
454
  model_types = [[0, 1]] # add 2 for Generalized Poisson
455
455
  model_types = [[0]]
@@ -459,7 +459,7 @@ class ObjectiveFunction(object):
459
459
  # Retrieve the keys (model names) corresponding to the values in model_types
460
460
  model_keys = [key for key, value in model_t_dict.items() if value in model_types[0]]
461
461
  # Print the formatted result
462
- print(f'The type of models possible are: {", ".join(model_keys)}')
462
+ print(f'The type of models possible will consider: {", ".join(model_keys)}')
463
463
  self._discrete_values = self._discrete_values + self.define_poissible_transforms(
464
464
  self._transformations, kwargs.get('decisions',None)) + model_types
465
465
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.128
3
+ Version: 0.1.130
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=NUWI4Y6eWYK6n2supbtCim3iI6QdzwlTobBlUHR8zdc,17054
6
+ metacountregressor/helperprocess.py,sha256=gotuODIzxpQ_t90cPth01afQI7ykSYnHfF414sRmDG4,17061
7
7
  metacountregressor/main.py,sha256=A3XGwbwhhKVgMxnEgbAmMpgYaWkS8Rk30-cYs3FxvEk,22713
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=_InL6f_DHPuP518NfYXhQJQwDejR5CVEXdWyU1kKY7E,277562
14
+ metacountregressor/solution.py,sha256=6qAtCSKNvmrCpIpBCzp2Zt8wWKZBHRQtTriyiMHUo54,277519
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.128.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.128.dist-info/METADATA,sha256=Qg1irZBxERwunEhMcdJg_ZHuB49tXCRFL0eExGRPnjg,23434
18
- metacountregressor-0.1.128.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.128.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.128.dist-info/RECORD,,
16
+ metacountregressor-0.1.130.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.130.dist-info/METADATA,sha256=eRZ1OYTIibQlyOIwqL771Tr5k9oQlqqOf-7-ptQEYXM,23434
18
+ metacountregressor-0.1.130.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.130.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.130.dist-info/RECORD,,