metacountregressor 0.1.125__py3-none-any.whl → 0.1.127__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -311,14 +311,26 @@ def interactions(df, keep=None, drop_this_perc=0.6, interact = False):
311
311
  df = pd.concat([df, df_interactions], axis=1, sort=False)
312
312
 
313
313
  # second
314
- corr_matrix = df.corr().abs()
314
+ # Remove `keep` columns from the correlation matrix
315
+ if keep is not None:
316
+ df_corr = df.drop(columns=keep, errors='ignore') # Exclude `keep` columns
317
+ else:
318
+ df_corr = df
319
+
320
+ # Compute the absolute correlation matrix
321
+ corr_matrix = df_corr.corr().abs()
322
+
323
+ # Keep only the upper triangle of the correlation matrix
315
324
  upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
316
325
 
317
- # Find features with correlation greater than 0.6
326
+ # Find features with correlation greater than the threshold
318
327
  to_drop = [column for column in upper.columns if any(upper[column] > drop_this_perc)]
328
+
329
+ # Ensure `keep` columns are not dropped
319
330
  if keep is not None:
320
331
  to_drop = [column for column in to_drop if column not in keep]
321
- # Drop features
332
+
333
+ # Drop the identified features
322
334
  df.drop(to_drop, axis=1, inplace=True)
323
335
 
324
336
  return df
@@ -2983,7 +2983,7 @@ class ObjectiveFunction(object):
2983
2983
  argument = prob.mean(axis=1)
2984
2984
  # if less than 0 penalise
2985
2985
  if np.min(argument) < 0:
2986
- print('what the fuck')
2986
+ print('Error with args..')
2987
2987
  if np.min(argument) < limit:
2988
2988
  # add a penalty for too small argument of log
2989
2989
  log_lik += -np.sum(np.minimum(0.0, argument - limit)) / limit
@@ -3634,7 +3634,7 @@ class ObjectiveFunction(object):
3634
3634
  #print("Custom functieon time:", end_time - start_time)
3635
3635
 
3636
3636
  except Exception as e:
3637
- print(e)
3637
+ print("Neg Binom error.")
3638
3638
  return gg_alt
3639
3639
 
3640
3640
  def lindley_pmf(self, x, r, theta, k=50):
@@ -3968,7 +3968,7 @@ class ObjectiveFunction(object):
3968
3968
 
3969
3969
 
3970
3970
  # proba_d = self.dnegbimonli(y, eVd, b_gam )
3971
- # print('fuck if this actually works')
3971
+
3972
3972
 
3973
3973
  elif dispersion == 2:
3974
3974
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.125
3
+ Version: 0.1.127
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -3,7 +3,7 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=D5KMFk_OFHvYxFzjQhbwypxks32J7atKpa4J5DThYPE,16661
6
+ metacountregressor/helperprocess.py,sha256=gzZ6g_uzctQeuyzqj3mV1n1Y4Kw8CLYK02Dkoz_fV9w,17041
7
7
  metacountregressor/main.py,sha256=A3XGwbwhhKVgMxnEgbAmMpgYaWkS8Rk30-cYs3FxvEk,22713
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
@@ -11,10 +11,10 @@ metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiL
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
12
  metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=uAwYNfyVbFIpYg23J7Rn6jfDokRYwWsrllIqtS2qeso,277587
14
+ metacountregressor/solution.py,sha256=_InL6f_DHPuP518NfYXhQJQwDejR5CVEXdWyU1kKY7E,277562
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.125.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.125.dist-info/METADATA,sha256=YT5DEXf9O5CasvuoVesen96osnDRIxZA8a04_yLVYMs,23434
18
- metacountregressor-0.1.125.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.125.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.125.dist-info/RECORD,,
16
+ metacountregressor-0.1.127.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.127.dist-info/METADATA,sha256=oQWg23dV1Dww0iSx684RxlhJyAKwn0Ud6PVNcdKt6LQ,23434
18
+ metacountregressor-0.1.127.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.127.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.127.dist-info/RECORD,,