metacountregressor 0.1.123__py3-none-any.whl → 0.1.125__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -180,6 +180,23 @@ config = {
180
180
  '''
181
181
 
182
182
 
183
+ # Function to guess Low, Medium, High ranges
184
+ def guess_low_medium_high(column_name, series):
185
+ # Compute the tertiles (33rd and 66th percentiles)
186
+ low_threshold = series.quantile(0.33)
187
+ high_threshold = series.quantile(0.66)
188
+
189
+ # Define the bins and labels
190
+ bins = [series.min() - 1, low_threshold, high_threshold, series.max()]
191
+ labels = ['Low', 'Medium', 'High']
192
+
193
+ return {
194
+ 'type': 'bin',
195
+ 'bins': bins,
196
+ 'labels': labels,
197
+ 'prefix': f'{column_name}_Binned'
198
+ }
199
+
183
200
  def transform_dataframe(df, config):
184
201
  output_df = pd.DataFrame()
185
202
 
@@ -226,12 +243,13 @@ def guess_column_type(column_name, series):
226
243
  return {'type': 'one-hot', 'prefix': column_name}
227
244
  elif pd.api.types.is_numeric_dtype(series):
228
245
  unique_values = series.nunique()
229
- if unique_values < 10:
246
+ if unique_values < 5:
247
+ return {'type': 'one-hot', 'prefix': column_name}
248
+
249
+
250
+ elif series.range() > 20:
230
251
  # If there are few unique values, assume binning with default bins
231
- min_val, max_val = series.min(), series.max()
232
- bins = np.linspace(min_val, max_val, num=unique_values + 1)
233
- labels = [f'Bin_{i}' for i in range(1, len(bins))]
234
- return {'type': 'bin', 'bins': bins, 'labels': labels, 'prefix': f'{column_name}_Binned'}
252
+ guess_low_medium_high(column_name,series)
235
253
  else:
236
254
  # # Otherwise, assume continuous data with normalization
237
255
  # Otherwise, fallback to continuous standardization
@@ -8,7 +8,7 @@ with codecs.open("README.rst", encoding='utf8') as fh:
8
8
  setuptools.setup(name='metacountregressor',
9
9
  version='0.1.63',
10
10
  description='Extensions for a Python package for \
11
- GPU-accelerated estimation of mixed logit models.',
11
+ estimation of data count models.',
12
12
  long_description=long_description,
13
13
  long_description_content_type="text/x-rst",
14
14
  url='https://github.com/zahern/CountDataEstimation',
@@ -20,5 +20,6 @@ setuptools.setup(name='metacountregressor',
20
20
  python_requires='>=3.10',
21
21
  install_requires=[
22
22
  'numpy>=1.13.1',
23
- 'scipy>=1.0.0'
23
+ 'scipy>=1.0.0',
24
+ 'latextable'
24
25
  ])
@@ -3473,8 +3473,7 @@ class ObjectiveFunction(object):
3473
3473
  corr_pairs = list(itertools.combinations(self.Kr, 2))
3474
3474
  else:
3475
3475
  corr_pairs = list(itertools.combinations(corr_indices, 2))
3476
- if len(corr_pairs) >0:
3477
- print('maybe get the terms here')
3476
+
3478
3477
 
3479
3478
  for ii, corr_pair in enumerate(corr_pairs):
3480
3479
  # lower cholesky matrix
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.123
3
+ Version: 0.1.125
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
7
- Author-email: zeke.ahern@hdr.qut.edu.au
7
+ Author-email: z.ahern@qut.edu.au
8
8
  License: QUT
9
9
  Requires-Python: >=3.10
10
10
  Description-Content-Type: text/markdown
@@ -12,6 +12,7 @@ License-File: LICENSE.txt
12
12
  Requires-Dist: numpy>=1.13.1
13
13
  Requires-Dist: scipy>=1.0.0
14
14
  Requires-Dist: requests
15
+ Requires-Dist: latextable
15
16
  Dynamic: author
16
17
  Dynamic: author-email
17
18
  Dynamic: description
@@ -3,18 +3,18 @@ metacountregressor/_device_cust.py,sha256=759fnKmTYccJm4Lpi9_1reurh6OB9d6q9soPR0
3
3
  metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9c,10014
4
4
  metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
5
5
  metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
6
- metacountregressor/helperprocess.py,sha256=4aSoyKP1GfzjwCzZ_dXlTbokOiMt_8sbzB6_tu0GPDg,16290
6
+ metacountregressor/helperprocess.py,sha256=D5KMFk_OFHvYxFzjQhbwypxks32J7atKpa4J5DThYPE,16661
7
7
  metacountregressor/main.py,sha256=A3XGwbwhhKVgMxnEgbAmMpgYaWkS8Rk30-cYs3FxvEk,22713
8
8
  metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
9
9
  metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
10
10
  metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
11
11
  metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
12
- metacountregressor/setup.py,sha256=8w6IqX0tJsbYrOI1BJLIJCIvOnunKli5I9fsF5PhHv4,919
12
+ metacountregressor/setup.py,sha256=5UcQCCLR8Fm5odA3MX78WwahavxFq4mVD6oq0IuQvAY,936
13
13
  metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
14
- metacountregressor/solution.py,sha256=OJqB00cvGMLFei6RsjphPamOdLm3EWOOzK7k-uVbvFY,277671
14
+ metacountregressor/solution.py,sha256=uAwYNfyVbFIpYg23J7Rn6jfDokRYwWsrllIqtS2qeso,277587
15
15
  metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
16
- metacountregressor-0.1.123.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
- metacountregressor-0.1.123.dist-info/METADATA,sha256=e4jQ9vtFxhHtA98q1Vd8PJ9gJiIz91iSUKgGPt78kg8,23415
18
- metacountregressor-0.1.123.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
- metacountregressor-0.1.123.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
- metacountregressor-0.1.123.dist-info/RECORD,,
16
+ metacountregressor-0.1.125.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
17
+ metacountregressor-0.1.125.dist-info/METADATA,sha256=YT5DEXf9O5CasvuoVesen96osnDRIxZA8a04_yLVYMs,23434
18
+ metacountregressor-0.1.125.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
19
+ metacountregressor-0.1.125.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
20
+ metacountregressor-0.1.125.dist-info/RECORD,,