metacountregressor 0.1.120__py3-none-any.whl → 0.1.121__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacountregressor/main.py +51 -47
- metacountregressor/metaheuristics.py +1 -1
- metacountregressor/solution.py +126 -34
- {metacountregressor-0.1.120.dist-info → metacountregressor-0.1.121.dist-info}/METADATA +1 -1
- {metacountregressor-0.1.120.dist-info → metacountregressor-0.1.121.dist-info}/RECORD +8 -8
- {metacountregressor-0.1.120.dist-info → metacountregressor-0.1.121.dist-info}/LICENSE.txt +0 -0
- {metacountregressor-0.1.120.dist-info → metacountregressor-0.1.121.dist-info}/WHEEL +0 -0
- {metacountregressor-0.1.120.dist-info → metacountregressor-0.1.121.dist-info}/top_level.txt +0 -0
metacountregressor/main.py
CHANGED
@@ -444,53 +444,57 @@ if __name__ == '__main__':
|
|
444
444
|
parser = argparse.ArgumentParser(prog='main',
|
445
445
|
epilog=main.__doc__,
|
446
446
|
formatter_class=argparse.RawDescriptionHelpFormatter, conflict_handler='resolve')
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
if
|
452
|
-
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
|
470
|
-
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
parser.
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
447
|
+
|
448
|
+
|
449
|
+
BATCH_JOB = True
|
450
|
+
|
451
|
+
if BATCH_JOB:
|
452
|
+
parser.add_argument('-line', type=int, default=1,
|
453
|
+
help='line to read in csv to pass in argument')
|
454
|
+
|
455
|
+
if vars(parser.parse_args())['line'] is not None:
|
456
|
+
reader = csv.DictReader(open('set_data.csv', 'r'))
|
457
|
+
args = list()
|
458
|
+
line_number_obs = 0
|
459
|
+
for dictionary in reader: # TODO find a way to handle multiple args
|
460
|
+
args = dictionary
|
461
|
+
if line_number_obs == int(vars(parser.parse_args())['line']):
|
462
|
+
break
|
463
|
+
line_number_obs += 1
|
464
|
+
args = dict(args)
|
465
|
+
|
466
|
+
for key, value in args.items():
|
467
|
+
try:
|
468
|
+
# Attempt to parse the string value to a Python literal if value is a string.
|
469
|
+
if isinstance(value, str):
|
470
|
+
value = ast.literal_eval(value)
|
471
|
+
except (ValueError, SyntaxError):
|
472
|
+
# If there's a parsing error, value remains as the original string.
|
473
|
+
pass
|
474
|
+
|
475
|
+
# Add the argument to the parser with the potentially updated value.
|
476
|
+
parser.add_argument(f'-{key}', default=value)
|
477
|
+
|
478
|
+
for i, action in enumerate(parser._optionals._actions):
|
479
|
+
if "-algorithm" in action.option_strings:
|
480
|
+
parser._optionals._actions[i].help = "optimization algorithm"
|
481
|
+
|
482
|
+
override = False
|
483
|
+
if override:
|
484
|
+
print('WARNING: TESTING ENVIRONMENT, TURN OFF FOR RELEASE')
|
485
|
+
parser.add_argument('-problem_number', default='10')
|
486
|
+
|
487
|
+
if 'algorithm' not in args:
|
488
|
+
parser.add_argument('-algorithm', type=str, default='hs',
|
489
|
+
help='optimization algorithm')
|
490
|
+
elif 'Manual_Fit' not in args:
|
491
|
+
parser.add_argument('-Manual_Fit', action='store_false', default=None,
|
492
|
+
help='To fit a model manually if desired.')
|
493
|
+
|
494
|
+
parser.add_argument('-seperate_out_factors', action='store_false', default=False,
|
495
|
+
help='Trie of wanting to split data that is potentially categorical as binary'
|
496
|
+
' we want to split the data for processing')
|
497
|
+
parser.add_argument('-supply_csv', type = str, help = 'enter the name of the csv, please include it as a full directorys')
|
494
498
|
|
495
499
|
else: # DIDN"T SPECIFY LINES TRY EACH ONE MANNUALY
|
496
500
|
parser.add_argument('-com', type=str, default='MetaCode',
|
metacountregressor/solution.py
CHANGED
@@ -152,7 +152,7 @@ class ObjectiveFunction(object):
|
|
152
152
|
self.dist_fit = None
|
153
153
|
|
154
154
|
self.MAE = None
|
155
|
-
self.best_obj_1 =
|
155
|
+
self.best_obj_1 = 1000000.0
|
156
156
|
self._obj_1 = 'bic'
|
157
157
|
self._obj_2 = 'MSE'
|
158
158
|
self.numerical_hessian_calc = 0 # calculates hessian by statsmodels otherwise scipy
|
@@ -395,7 +395,7 @@ class ObjectiveFunction(object):
|
|
395
395
|
|
396
396
|
|
397
397
|
|
398
|
-
self.Ndraws =
|
398
|
+
self.Ndraws = 200 # todo: change back
|
399
399
|
self.draws1 = None
|
400
400
|
self.initial_sig = 1 # pass the test of a single model
|
401
401
|
self.pvalue_sig_value = .1
|
@@ -449,8 +449,17 @@ class ObjectiveFunction(object):
|
|
449
449
|
if 'model_types' in kwargs:
|
450
450
|
model_types = kwargs['model_types']
|
451
451
|
else:
|
452
|
-
|
452
|
+
print('the type of models possible are:')
|
453
453
|
|
454
|
+
model_types = [[0, 1]] # add 2 for Generalized Poisson
|
455
|
+
model_types = [[0]]
|
456
|
+
#TODO change back and fix NB
|
457
|
+
model_t_dict = {'Poisson':0,
|
458
|
+
"NB":1}
|
459
|
+
# Retrieve the keys (model names) corresponding to the values in model_types
|
460
|
+
model_keys = [key for key, value in model_t_dict.items() if value in model_types[0]]
|
461
|
+
# Print the formatted result
|
462
|
+
print(f'The type of models possible are: {", ".join(model_keys)}')
|
454
463
|
self._discrete_values = self._discrete_values + self.define_poissible_transforms(
|
455
464
|
self._transformations, kwargs.get('decisions',None)) + model_types
|
456
465
|
|
@@ -470,6 +479,7 @@ class ObjectiveFunction(object):
|
|
470
479
|
#Manually fit from analyst specification
|
471
480
|
manual_fit = kwargs.get('Manual_Fit')
|
472
481
|
if manual_fit is not None:
|
482
|
+
print('fitting manual')
|
473
483
|
self.process_manual_fit(manual_fit)
|
474
484
|
|
475
485
|
self.solution_analyst = None
|
@@ -1372,7 +1382,7 @@ class ObjectiveFunction(object):
|
|
1372
1382
|
bb = eVy -1
|
1373
1383
|
disp = sm.OLS(ab.ravel(), bb.ravel()).fit()
|
1374
1384
|
gamma = disp.params[0]
|
1375
|
-
print(f'dispersion is {gamma}')
|
1385
|
+
#print(f'dispersion is {gamma}')
|
1376
1386
|
return gamma
|
1377
1387
|
|
1378
1388
|
def validation(self, betas, y, X, Xr=None, dispersion=0, rdm_cor_fit=None, zi_list=None, exog_infl=None,
|
@@ -2321,7 +2331,7 @@ class ObjectiveFunction(object):
|
|
2321
2331
|
sorted(my_dict, key=lambda x: x[0]['pval_percentage'])
|
2322
2332
|
|
2323
2333
|
def get_fitness(self, vector, multi=False, verbose=False, max_routine=3):
|
2324
|
-
obj_1 = 10.0 **
|
2334
|
+
obj_1 = 10.0 ** 5
|
2325
2335
|
obj_best = None
|
2326
2336
|
sub_slns = list()
|
2327
2337
|
|
@@ -2332,7 +2342,7 @@ class ObjectiveFunction(object):
|
|
2332
2342
|
try:
|
2333
2343
|
self.repair(vector)
|
2334
2344
|
except Exception as e:
|
2335
|
-
print('
|
2345
|
+
print('prolem repairing here')
|
2336
2346
|
print(vector)
|
2337
2347
|
print(e)
|
2338
2348
|
layout = vector.copy()
|
@@ -2613,7 +2623,7 @@ class ObjectiveFunction(object):
|
|
2613
2623
|
self._hmcr = (
|
2614
2624
|
self._hmcr_min + ((self._hmcr_max - self._hmcr_min) / self._max_imp) * iteration)
|
2615
2625
|
|
2616
|
-
|
2626
|
+
|
2617
2627
|
|
2618
2628
|
def update_par(self, iteration, is_sin=False):
|
2619
2629
|
"""
|
@@ -2833,10 +2843,6 @@ class ObjectiveFunction(object):
|
|
2833
2843
|
'''
|
2834
2844
|
#return score
|
2835
2845
|
|
2836
|
-
|
2837
|
-
|
2838
|
-
|
2839
|
-
|
2840
2846
|
try:
|
2841
2847
|
if alpha is None:
|
2842
2848
|
alpha = np.exp(params[-1])
|
@@ -3467,6 +3473,8 @@ class ObjectiveFunction(object):
|
|
3467
3473
|
corr_pairs = list(itertools.combinations(self.Kr, 2))
|
3468
3474
|
else:
|
3469
3475
|
corr_pairs = list(itertools.combinations(corr_indices, 2))
|
3476
|
+
if len(corr_pairs) >0:
|
3477
|
+
print('maybe get the terms here')
|
3470
3478
|
|
3471
3479
|
for ii, corr_pair in enumerate(corr_pairs):
|
3472
3480
|
# lower cholesky matrix
|
@@ -3495,7 +3503,7 @@ class ObjectiveFunction(object):
|
|
3495
3503
|
a = 0
|
3496
3504
|
b = 0
|
3497
3505
|
stuff = []
|
3498
|
-
#
|
3506
|
+
# TODO get order
|
3499
3507
|
for j, i in enumerate(list_sizes):
|
3500
3508
|
br_mean = betas_hetro[a:i + a]
|
3501
3509
|
a += i
|
@@ -3522,7 +3530,30 @@ class ObjectiveFunction(object):
|
|
3522
3530
|
br_mean = betas_m
|
3523
3531
|
br_sd = betas_sd # Last Kr positions
|
3524
3532
|
# Compute: betas = mean + sd*draws
|
3525
|
-
|
3533
|
+
if len(br_sd) != draws.shape[1]:
|
3534
|
+
#get the same size as the mean
|
3535
|
+
betas_random = self.Br.copy()
|
3536
|
+
|
3537
|
+
'''
|
3538
|
+
c = self.get_num_params()[3:5]
|
3539
|
+
|
3540
|
+
cor = []
|
3541
|
+
for i in range(c[0]):
|
3542
|
+
cor.append(i)
|
3543
|
+
|
3544
|
+
vall =[]
|
3545
|
+
for i, val in enumerate(reversed(br_sd)):
|
3546
|
+
vall.append()
|
3547
|
+
|
3548
|
+
remaining = draws.shape[1] - len(betas_sd)
|
3549
|
+
'''
|
3550
|
+
|
3551
|
+
else:
|
3552
|
+
|
3553
|
+
|
3554
|
+
betas_random = br_mean[None, :, None] + draws * br_sd[None, :, None]
|
3555
|
+
|
3556
|
+
|
3526
3557
|
betas_random = self._apply_distribution(betas_random)
|
3527
3558
|
|
3528
3559
|
return betas_random
|
@@ -3959,7 +3990,7 @@ class ObjectiveFunction(object):
|
|
3959
3990
|
# proba_r = self.poisson_lognormal_pmf(y, eVd, sig)
|
3960
3991
|
proba_r = np.array(store)
|
3961
3992
|
proba_r = np.atleast_2d(proba_r).T
|
3962
|
-
|
3993
|
+
|
3963
3994
|
|
3964
3995
|
else:
|
3965
3996
|
raise Exception('not implemented other modeling forms')
|
@@ -4137,12 +4168,13 @@ class ObjectiveFunction(object):
|
|
4137
4168
|
br, draws_, brstd, dis_fit_long) # (N,K,R)
|
4138
4169
|
dprod_r = dev.np.einsum("njk,njr -> nkr", Xdr,
|
4139
4170
|
einsum_model_form, dtype=np.float64) # (N,K,R)
|
4140
|
-
der_prod_r = dprod_r * der * proba_n[:, None, :] # (N,K,R)
|
4171
|
+
#der_prod_r = dprod_r * der * proba_n[:, None, :] # (N,K,R)
|
4141
4172
|
#der_prod_r = dprod_r * der * proba_n[:, X_tril_idx, :] # I think this is the case check
|
4142
|
-
|
4143
|
-
#
|
4173
|
+
|
4174
|
+
der_prod_r = dprod_r * der * proba_n[:, None, :] # or this one
|
4175
|
+
|
4144
4176
|
der_t = self._compute_derivatives(
|
4145
|
-
br, draws_[:, draws_tril_idx, :], brstd, self.dist_fit) # (N,K,R)
|
4177
|
+
br[draws_tril_idx], draws_[:, draws_tril_idx, :], brstd, np.array(self.dist_fit)[draws_tril_idx]) # (N,K,R)
|
4146
4178
|
# er_t = self._compute_derivatives(br, draws_, brstd[:, draws_tril_idx,: ], self.dist_fit, draws_tril_idx)
|
4147
4179
|
der_prod_r_t = dprod_r[:, draws_tril_idx, :] * \
|
4148
4180
|
der_t * proba_n[:, None, :] # (N,K,R)
|
@@ -4209,12 +4241,12 @@ class ObjectiveFunction(object):
|
|
4209
4241
|
else:
|
4210
4242
|
grad_n = self._concat_gradients(
|
4211
4243
|
(gr_f, gr_u, gr_s, gr_h, gr_hs, gr_d[:, None])) / Rlik # (N,K)
|
4212
|
-
grad_n = np.nan_to_num(grad_n, nan=0, posinf=
|
4213
|
-
grad_n = np.clip(grad_n, -
|
4244
|
+
grad_n = np.nan_to_num(grad_n, nan=0, posinf=1000, neginf=-1000)
|
4245
|
+
grad_n = np.clip(grad_n, -100, 100)
|
4214
4246
|
n = np.shape(grad_n)[0]
|
4215
4247
|
# subtract out mean gradient value
|
4216
|
-
|
4217
|
-
|
4248
|
+
grad_n_sub = grad_n-(np.sum(grad_n, axis=0)/n)
|
4249
|
+
grad_n = grad_n_sub
|
4218
4250
|
grad = grad_n.sum(axis=0)
|
4219
4251
|
return grad, grad_n
|
4220
4252
|
|
@@ -4574,7 +4606,7 @@ class ObjectiveFunction(object):
|
|
4574
4606
|
penalty = self.regularise_l2(betas)
|
4575
4607
|
|
4576
4608
|
if not np.isreal(loglik):
|
4577
|
-
loglik = -
|
4609
|
+
loglik = - 10000000.0
|
4578
4610
|
|
4579
4611
|
output = (-loglik + penalty,)
|
4580
4612
|
if return_gradient:
|
@@ -4817,7 +4849,7 @@ class ObjectiveFunction(object):
|
|
4817
4849
|
proba.append(dev.to_cpu(proba_))
|
4818
4850
|
|
4819
4851
|
lik = np.stack(proba).sum(axis=0) / R # (N, )
|
4820
|
-
lik = np.clip(lik, min_comp_val,
|
4852
|
+
lik = np.clip(lik, min_comp_val, 1000)
|
4821
4853
|
# lik = np.nan_to_num(lik, )
|
4822
4854
|
loglik = np.log(lik)
|
4823
4855
|
llf_main = loglik
|
@@ -5435,7 +5467,7 @@ class ObjectiveFunction(object):
|
|
5435
5467
|
|
5436
5468
|
|
5437
5469
|
sol = Solution()
|
5438
|
-
|
5470
|
+
|
5439
5471
|
tol = {'ftol': 1e-8, 'gtol': 1e-6}
|
5440
5472
|
is_delete = 0
|
5441
5473
|
dispersion = mod.get('dispersion')
|
@@ -5793,7 +5825,7 @@ class ObjectiveFunction(object):
|
|
5793
5825
|
initial_fit_beta = betas_est.x
|
5794
5826
|
parmas = np.append(initial_fit_beta, nb_parma)
|
5795
5827
|
self.nb_parma = nb_parma
|
5796
|
-
print(f'neg binomi,{self.nb_parma}')
|
5828
|
+
#print(f'neg binomi,{self.nb_parma}')
|
5797
5829
|
betas_est = self._minimize(self._loglik_gradient, initial_fit_beta, args=(
|
5798
5830
|
X, y, draws, X, Xr, self.batch_size, self.grad_yes, self.hess_yes, dispersion, 0, False, 0,
|
5799
5831
|
self.rdm_cor_fit, None, None, draws_grouped, XG, mod),
|
@@ -5801,7 +5833,7 @@ class ObjectiveFunction(object):
|
|
5801
5833
|
options={'gtol': tol['gtol']}, bounds=bounds,
|
5802
5834
|
hess_calc=True if method2 == 'Nelder-Mead-BFGS' else False)
|
5803
5835
|
|
5804
|
-
print('refit with estimation of NB')
|
5836
|
+
#print('refit with estimation of NB')
|
5805
5837
|
# self.numerical_hessian_calc = True
|
5806
5838
|
if self.numerical_hessian_calc:
|
5807
5839
|
try:
|
@@ -6184,6 +6216,7 @@ class ObjectiveFunction(object):
|
|
6184
6216
|
df_test[:, :, idx], model_nature.get('transformations')[idx] = self.transformer(
|
6185
6217
|
t, idx, df_test[:, :, idx])
|
6186
6218
|
if np.max(df_tf[:, :, idx]) >= 77000:
|
6219
|
+
#TODO need to normalise the data
|
6187
6220
|
|
6188
6221
|
print('should not be possible')
|
6189
6222
|
|
@@ -6242,7 +6275,7 @@ class ObjectiveFunction(object):
|
|
6242
6275
|
model_nature['XH'] = XH
|
6243
6276
|
X_test = None
|
6244
6277
|
if np.isin(X, [np.inf, -np.inf, None, np.nan]).any(): # type ignore
|
6245
|
-
raise Exception('there is some kind of error')
|
6278
|
+
raise Exception('there is some kind of error in X')
|
6246
6279
|
|
6247
6280
|
# numpy data setup fpr estimation
|
6248
6281
|
indices2 = self.get_named_indices(self.rdm_fit)
|
@@ -6393,6 +6426,53 @@ class ObjectiveFunction(object):
|
|
6393
6426
|
|
6394
6427
|
return obj_1, model_nature
|
6395
6428
|
|
6429
|
+
def get_X_tril(self):
|
6430
|
+
'''For correlations find the repeating terms'''
|
6431
|
+
varnames = self.none_join([self.rdm_grouped_fit, self.rdm_fit, self.rdm_cor_fit])
|
6432
|
+
rv_count_all = 0
|
6433
|
+
chol_count = 0
|
6434
|
+
rv_count = 0
|
6435
|
+
corr_indices = []
|
6436
|
+
rv_indices = []
|
6437
|
+
for ii, var in enumerate(varnames): # TODO: BUGFIXf
|
6438
|
+
if var in self.none_handler(self.rdm_cor_fit):
|
6439
|
+
is_correlated = True
|
6440
|
+
else:
|
6441
|
+
is_correlated = False
|
6442
|
+
|
6443
|
+
rv_count_all += 1
|
6444
|
+
if is_correlated:
|
6445
|
+
chol_count += 1
|
6446
|
+
else:
|
6447
|
+
rv_count += 1
|
6448
|
+
|
6449
|
+
if var in self.none_handler(self.rdm_cor_fit):
|
6450
|
+
|
6451
|
+
corr_indices.append(rv_count_all - 1) # TODO: what does tis do
|
6452
|
+
|
6453
|
+
else:
|
6454
|
+
rv_indices.append(rv_count_all - 1)
|
6455
|
+
|
6456
|
+
# for s.d.: gr_w = (Obs prob. minus predicted probability) * obs. var * random draw
|
6457
|
+
draws_tril_idx = np.array([corr_indices[j]
|
6458
|
+
for i in range(len(self.none_handler(self.rdm_cor_fit)))
|
6459
|
+
for j in range(i + 1)]) # varnames pos.
|
6460
|
+
X_tril_idx = np.array([corr_indices[i]
|
6461
|
+
for i in range(len(self.none_handler(self.rdm_cor_fit)))
|
6462
|
+
for j in range(i + 1)])
|
6463
|
+
# Find the s.d. for random variables that are not correlated
|
6464
|
+
var_uncor = self.none_join([self.rdm_grouped_fit, self.rdm_fit])
|
6465
|
+
range_var = [x for x in
|
6466
|
+
range(len(self.none_handler(var_uncor)))]
|
6467
|
+
range_var = sorted(range_var)
|
6468
|
+
draws_tril_idx = np.array(np.concatenate((range_var, draws_tril_idx)))
|
6469
|
+
X_tril_idx = np.array(np.concatenate((range_var, X_tril_idx)))
|
6470
|
+
draws_tril_idx = draws_tril_idx.astype(int)
|
6471
|
+
X_tril_idx = X_tril_idx.astype(int)
|
6472
|
+
return X_tril_idx
|
6473
|
+
|
6474
|
+
|
6475
|
+
|
6396
6476
|
def modifyn(self, data):
|
6397
6477
|
select_data = self._characteristics_names
|
6398
6478
|
alpha = np.isin(select_data, [item.split(':')[0] for item in data['fixed_fit']]).astype(int).tolist()
|
@@ -6600,23 +6680,35 @@ class ObjectiveFunction(object):
|
|
6600
6680
|
# N, D = draws.shape[0], draws.shape[1]
|
6601
6681
|
N, R, Kr = draws.shape[0], draws.shape[2], draws.shape[1]
|
6602
6682
|
der = dev.np.ones((N, Kr, R), dtype=draws.dtype)
|
6603
|
-
if len(self.none_handler(self.rdm_cor_fit)) == 0:
|
6604
|
-
Br_come_one = self.Br.copy()
|
6605
|
-
# Br_come_one =
|
6606
|
-
else:
|
6607
6683
|
|
6608
|
-
Br_come_one = self.Br.copy()
|
6609
6684
|
# betas_random = self._transform_rand_betas(betas, betas_std, draws)
|
6610
6685
|
#todo make sure this works for ln and truncated normal
|
6611
6686
|
if any(set(distribution).intersection(['ln_normal', 'tn_normal'])):
|
6612
|
-
|
6687
|
+
|
6688
|
+
#print('check this, intesection shouldn not happen for all')
|
6689
|
+
|
6690
|
+
if der.shape[1] != draws.shape[1]:
|
6691
|
+
print('why')
|
6613
6692
|
Br_come_one = self._transform_rand_betas(betas, betas_std, draws)
|
6693
|
+
if der.shape[1] != draws.shape[1]:
|
6694
|
+
print('why')
|
6695
|
+
#TODO need to get the stuction of the rdms
|
6614
6696
|
for k, dist_k in enumerate(distribution):
|
6615
6697
|
if dist_k == 'ln_normal':
|
6698
|
+
if der.shape[1] != draws.shape[1]:
|
6699
|
+
print('why')
|
6616
6700
|
der[:, k, :] = Br_come_one[:, k, :]
|
6701
|
+
if der.shape[1] != draws.shape[1]:
|
6702
|
+
print('why')
|
6617
6703
|
elif dist_k == 'tn_normal':
|
6704
|
+
if der.shape[1] != draws.shape[1]:
|
6705
|
+
print('why')
|
6618
6706
|
der[:, k, :] = 1 * (Br_come_one[:, k, :] > 0)
|
6707
|
+
if der.shape[1] != draws.shape[1]:
|
6708
|
+
print('why')
|
6619
6709
|
|
6710
|
+
if der.shape[1] != draws.shape[1]:
|
6711
|
+
print('why')
|
6620
6712
|
return der
|
6621
6713
|
|
6622
6714
|
def _copy_size_display_as_ones(self, matrix):
|
@@ -4,17 +4,17 @@ metacountregressor/app_main.py,sha256=vY3GczTbGbBRalbzMkl_9jVW7RMgEOc6z2Dr1IZJv9
|
|
4
4
|
metacountregressor/data_split_helper.py,sha256=M2fIMdIO8znUaYhx5wlacRyNWdQjNYu1z1wkE-kFUYU,3373
|
5
5
|
metacountregressor/halton.py,sha256=jhovA45UBoZYU9g-hl6Lb2sBIx_ZBTNdPrpgkzR9fng,9463
|
6
6
|
metacountregressor/helperprocess.py,sha256=Sc5gJ7ffFlkya5B5KQwE33xxXuIQyF6OaYtSikLa3pQ,12968
|
7
|
-
metacountregressor/main.py,sha256=
|
7
|
+
metacountregressor/main.py,sha256=37yw2weAhaDR-wH83QC4Jy8SeUFIHpxqhO9YPwgmRi4,20764
|
8
8
|
metacountregressor/main_old.py,sha256=eTS4ygq27MnU-dZ_j983Ucb-D5XfbVF8OJQK2hVVLZc,24123
|
9
|
-
metacountregressor/metaheuristics.py,sha256=
|
9
|
+
metacountregressor/metaheuristics.py,sha256=Kkx1Jfox6NBlm5zVrI26Vc_NI7NFQSS9dinrZU9SpV8,105871
|
10
10
|
metacountregressor/pareto_file.py,sha256=whySaoPAUWYjyI8zo0hwAOa3rFk6SIUlHSpqZiLur0k,23096
|
11
11
|
metacountregressor/pareto_logger__plot.py,sha256=mEU2QN4wmsM7t39GJ_XhJ_jjsdl09JOmG0U2jICrAkI,30037
|
12
12
|
metacountregressor/setup.py,sha256=8w6IqX0tJsbYrOI1BJLIJCIvOnunKli5I9fsF5PhHv4,919
|
13
13
|
metacountregressor/single_objective_finder.py,sha256=jVG7GJBqzSP4_riYr-kMMKy_LE3SlGmKMunNhHYxgRg,8011
|
14
|
-
metacountregressor/solution.py,sha256=
|
14
|
+
metacountregressor/solution.py,sha256=OJqB00cvGMLFei6RsjphPamOdLm3EWOOzK7k-uVbvFY,277671
|
15
15
|
metacountregressor/test_generated_paper2.py,sha256=pwOoRzl1jJIIOUAAvbkT6HmmTQ81mwpsshn9SLdKOg8,3927
|
16
|
-
metacountregressor-0.1.
|
17
|
-
metacountregressor-0.1.
|
18
|
-
metacountregressor-0.1.
|
19
|
-
metacountregressor-0.1.
|
20
|
-
metacountregressor-0.1.
|
16
|
+
metacountregressor-0.1.121.dist-info/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
17
|
+
metacountregressor-0.1.121.dist-info/METADATA,sha256=c-c5mHUC6gdf2JEq-DWBuw0F1gAp-Cq0pQeYVLKG_y8,23415
|
18
|
+
metacountregressor-0.1.121.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
19
|
+
metacountregressor-0.1.121.dist-info/top_level.txt,sha256=zGG7UC5WIpr76gsFUpwJ4En2aCcoNTONBaS3OewwjR0,19
|
20
|
+
metacountregressor-0.1.121.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|