meta-edc 1.0.6__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- meta_ae/action_items.py +10 -2
- meta_ae/baker_recipes.py +1 -2
- meta_ae/tests/tests/test_actions.py +1 -2
- meta_analytics/dataframes/__init__.py +3 -0
- meta_analytics/dataframes/constants.py +1 -1
- meta_analytics/dataframes/get_eos_df.py +15 -2
- meta_analytics/dataframes/get_glucose_df.py +149 -0
- meta_analytics/dataframes/get_glucose_fbg_df.py +27 -0
- meta_analytics/dataframes/get_glucose_fbg_ogtt_df.py +22 -0
- meta_analytics/dataframes/glucose_endpoints/endpoint_by_date.py +106 -120
- meta_analytics/dataframes/glucose_endpoints/glucose_endpoints_by_date.py +36 -227
- meta_analytics/dataframes/utils.py +18 -4
- meta_analytics/notebooks/anu.ipynb +95 -0
- meta_analytics/notebooks/appointment_planning.ipynb +329 -0
- meta_analytics/notebooks/arvs.ipynb +103 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
- meta_analytics/notebooks/followup_examination.ipynb +141 -0
- meta_analytics/notebooks/hba1c.ipynb +136 -0
- meta_analytics/notebooks/hiv_regimens.ipynb +429 -0
- meta_analytics/notebooks/incidence.ipynb +232 -0
- meta_analytics/notebooks/liver.ipynb +389 -0
- meta_analytics/notebooks/magreth.ipynb +645 -0
- meta_analytics/notebooks/monitoring_report.ipynb +1751 -0
- meta_analytics/notebooks/pharmacy.ipynb +1070 -0
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
- meta_analytics/notebooks/steering.ipynb +61 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
- meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
- meta_analytics/notebooks/ven.ipynb +191 -0
- meta_analytics/notebooks/vitals.ipynb +263 -0
- meta_analytics/utils.py +81 -0
- meta_edc/settings/debug.py +3 -2
- meta_edc/urls.py +1 -0
- {meta_edc-1.0.6.dist-info → meta_edc-1.1.0.dist-info}/METADATA +6 -5
- {meta_edc-1.0.6.dist-info → meta_edc-1.1.0.dist-info}/RECORD +77 -36
- {meta_edc-1.0.6.dist-info → meta_edc-1.1.0.dist-info}/WHEEL +1 -1
- meta_edc-1.1.0.dist-info/licenses/AUTHORS.rst +8 -0
- meta_labs/reportables.py +14 -11
- meta_labs/tests/test_reportables.py +33 -12
- meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
- meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
- meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
- meta_prn/models/end_of_study.py +2 -0
- meta_prn/models/off_study_medication.py +2 -0
- meta_reports/migrations/0054_auto_20250422_2003.py +81 -0
- meta_reports/migrations/0055_alter_glucosesummary_table.py +17 -0
- meta_reports/migrations/0056_auto_20250422_2214.py +54 -0
- meta_reports/migrations/0057_auto_20250422_2224.py +54 -0
- meta_reports/migrations/0058_auto_20250422_2232.py +54 -0
- meta_reports/models/dbviews/glucose_summary/unmanaged_model.py +13 -1
- meta_reports/models/dbviews/glucose_summary/view_definition.py +8 -5
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
- meta_screening/form_validators/screening_part_three.py +6 -1
- meta_screening/tests/meta_test_case_mixin.py +3 -0
- meta_screening/tests/tests/test_forms.py +9 -2
- meta_screening/tests/tests/test_screening_part_three.py +11 -14
- meta_subject/action_items.py +1 -2
- meta_subject/choices.py +2 -1
- meta_subject/form_validators/glucose_form_validator.py +16 -1
- meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
- meta_subject/forms/study_medication_form.py +5 -3
- meta_subject/migrations/0221_auto_20250402_1913.py +42 -0
- meta_subject/migrations/0222_alter_historicalstudymedication_stock_codes_and_more.py +46 -0
- meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
- meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
- meta_subject/tests/tests/test_egfr.py +5 -5
- meta_analytics/dataframes/enrolled/__init__.py +0 -1
- meta_analytics/dataframes/enrolled/get_glucose_df.py +0 -122
- /meta_edc-1.0.6.dist-info/AUTHORS → /meta_analytics/dataframes/glucose_endpoints/utils.py +0 -0
- {meta_edc-1.0.6.dist-info → meta_edc-1.1.0.dist-info/licenses}/LICENSE +0 -0
- {meta_edc-1.0.6.dist-info → meta_edc-1.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,329 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import os\n",
|
12
|
+
"from pathlib import Path\n",
|
13
|
+
"import pandas as pd\n",
|
14
|
+
"from dj_notebook import activate\n",
|
15
|
+
"import numpy as np\n",
|
16
|
+
"from django_pandas.io import read_frame\n",
|
17
|
+
"\n",
|
18
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
19
|
+
"reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
|
20
|
+
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
21
|
+
"pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
|
22
|
+
"plus = activate(dotenv_file=env_file)\n",
|
23
|
+
"pd.set_option('future.no_silent_downcasting', True)"
|
24
|
+
]
|
25
|
+
},
|
26
|
+
{
|
27
|
+
"cell_type": "code",
|
28
|
+
"execution_count": null,
|
29
|
+
"id": "1",
|
30
|
+
"metadata": {},
|
31
|
+
"outputs": [],
|
32
|
+
"source": [
|
33
|
+
"import pdfkit\n",
|
34
|
+
"from datetime import date\n",
|
35
|
+
"from edc_pdutils.dataframes import get_subject_visit\n",
|
36
|
+
"from meta_analytics.dataframes import get_glucose_fbg_ogtt_df, get_glucose_fbg_df\n",
|
37
|
+
"from meta_visit_schedule.constants import MONTH15, MONTH18, MONTH21, MONTH27, MONTH30, MONTH33, MONTH39\n",
|
38
|
+
"from meta_analytics.dataframes import GlucoseEndpointsByDate\n",
|
39
|
+
"from scipy.stats import chi2\n",
|
40
|
+
"from great_tables import loc, style, md\n",
|
41
|
+
"from meta_analytics.dataframes import get_eos_df\n",
|
42
|
+
"from meta_analytics.utils import df_as_great_table, df_as_great_table2\n",
|
43
|
+
"from meta_prn.models import LossToFollowup\n",
|
44
|
+
"from edc_visit_schedule.models import SubjectScheduleHistory\n",
|
45
|
+
"from edc_appointment.analytics import get_appointment_df\n",
|
46
|
+
"from edc_appointment.constants import NEW_APPT, CANCELLED_APPT, ONTIME_APPT, MISSED_APPT, SCHEDULED_APPT, COMPLETE_APPT, INCOMPLETE_APPT, IN_PROGRESS_APPT, UNSCHEDULED_APPT\n",
|
47
|
+
"from edc_constants.constants import YES\n",
|
48
|
+
"from meta_consent.models import SubjectConsentV1Ext"
|
49
|
+
]
|
50
|
+
},
|
51
|
+
{
|
52
|
+
"cell_type": "code",
|
53
|
+
"execution_count": null,
|
54
|
+
"id": "2",
|
55
|
+
"metadata": {},
|
56
|
+
"outputs": [],
|
57
|
+
"source": [
|
58
|
+
"html_data = []\n",
|
59
|
+
"cutoff_date = date(2025,3, 31)\n",
|
60
|
+
"end_of_trial_date= date(2026,3, 1)\n",
|
61
|
+
"document_title = f\"<h2>Monitoring Report: {cutoff_date.strftime('%B %Y')}</h2><h5>Data Download: {cutoff_date.strftime('%d %B %Y')}</h5>\"\n",
|
62
|
+
"study_title = 'META3 - Metformin treatment for diabetes prevention in Africa'\n",
|
63
|
+
"pdf_filename = f\"monitoring_report_{cutoff_date.strftime('%Y%m%d')}.pdf\"\n",
|
64
|
+
"\n",
|
65
|
+
"column_headers = {\"appt_datetime\": \"Appointment\", \"year\": \"Year\", \"month\": \"Month\", \"10\": \"Hindu Mandal\", \"20\": \"Amana\", \"30\": \"Temeke\", \"40\": \"Mwananyamala\", \"60\": \"Mnazi Moja\", \"total\": \"Total\"}\n",
|
66
|
+
"\n"
|
67
|
+
]
|
68
|
+
},
|
69
|
+
{
|
70
|
+
"cell_type": "code",
|
71
|
+
"execution_count": null,
|
72
|
+
"id": "3",
|
73
|
+
"metadata": {},
|
74
|
+
"outputs": [],
|
75
|
+
"source": [
|
76
|
+
"df_visit = get_subject_visit(\"meta_subject.subjectvisit\")\n",
|
77
|
+
"df_visit = df_visit[df_visit.appt_datetime.dt.date<=cutoff_date]\n",
|
78
|
+
"df_appointments = get_appointment_df()\n",
|
79
|
+
"df_appointments[\"site_id\"] = df_appointments.site_id.astype(str)\n",
|
80
|
+
"cls = GlucoseEndpointsByDate()\n",
|
81
|
+
"cls.run()\n",
|
82
|
+
"df_endpoint = cls.endpoint_only_df.copy()\n",
|
83
|
+
"df_glucose = get_glucose_fbg_ogtt_df()\n",
|
84
|
+
"df_glucose_fbg = get_glucose_fbg_df()\n",
|
85
|
+
"df_glucose = pd.concat([df_glucose, df_glucose_fbg])\n",
|
86
|
+
"\n",
|
87
|
+
"enrolled = df_visit.copy()\n",
|
88
|
+
"enrolled[\"site_id\"] = enrolled[\"site_id\"].astype(str)\n",
|
89
|
+
"enrolled_pivot = (\n",
|
90
|
+
" enrolled\n",
|
91
|
+
" .query(\"visit_code==1000.0\").groupby([\"site_id\"])\n",
|
92
|
+
" .size()\n",
|
93
|
+
" .reset_index()\n",
|
94
|
+
" .pivot_table(columns=\"site_id\", values=0, observed=True)\n",
|
95
|
+
")\n",
|
96
|
+
"enrolled_pivot.columns.name=\"\"\n",
|
97
|
+
"enrolled_pivot[\"total\"] = enrolled_pivot[[\"10\", \"20\",\"30\",\"40\",\"60\"]].sum(axis=1)\n",
|
98
|
+
"\n"
|
99
|
+
]
|
100
|
+
},
|
101
|
+
{
|
102
|
+
"cell_type": "code",
|
103
|
+
"execution_count": null,
|
104
|
+
"id": "4",
|
105
|
+
"metadata": {},
|
106
|
+
"outputs": [],
|
107
|
+
"source": [
|
108
|
+
"# Table 1f Future scheduled appointments per month\n",
|
109
|
+
"df_appt_pivot = (\n",
|
110
|
+
" # df_appointments.query(\"appt_datetime<=@cutoff_date and appt_reason==@SCHEDULED_APPT and appt_timing==@ONTIME_APPT and ~appt_status.isin([@NEW_APPT])\")\n",
|
111
|
+
" df_appointments.query(\"@cutoff_date<=appt_datetime<=@end_of_trial_date and appt_reason==@SCHEDULED_APPT and appt_timing==@ONTIME_APPT and appt_status.isin([@NEW_APPT])\")\n",
|
112
|
+
" .set_index(\"appt_datetime\")\n",
|
113
|
+
" .groupby(by=[\"site_id\", pd.Grouper(freq=\"ME\")])\n",
|
114
|
+
" .size()\n",
|
115
|
+
" .to_frame()\n",
|
116
|
+
" .reset_index()\n",
|
117
|
+
" .rename(columns={0:\"patients\"})\n",
|
118
|
+
" .pivot(index=\"appt_datetime\", columns=\"site_id\", values=\"patients\")\n",
|
119
|
+
" .reset_index()\n",
|
120
|
+
" .fillna(0)\n",
|
121
|
+
")\n",
|
122
|
+
"\n",
|
123
|
+
"df_appt_pivot.columns.name = None\n",
|
124
|
+
"df_appt_pivot[\"total\"] = df_appt_pivot.iloc[:,1:].sum(axis=1)\n",
|
125
|
+
"df_appt_pivot[\"appt_datetime\"] = df_appt_pivot.appt_datetime.dt.strftime(\"%Y-%m\")\n",
|
126
|
+
"sum_row = df_appt_pivot.select_dtypes(include='float64').sum()\n",
|
127
|
+
"sum_row['appt_datetime'] = 'Total-'\n",
|
128
|
+
"sum_row_df = pd.DataFrame(sum_row).T\n",
|
129
|
+
"df_appt_pivot = pd.concat([df_appt_pivot, sum_row_df], axis=0)\n",
|
130
|
+
"df_appt_pivot[[\"year\", \"month\"]] = df_appt_pivot[\"appt_datetime\"].str.split(\"-\", expand=True)\n",
|
131
|
+
"\n",
|
132
|
+
"df_appt_pivot2 = (\n",
|
133
|
+
" # df_appointments.query(\"appt_datetime<=@cutoff_date and appt_reason==@SCHEDULED_APPT and appt_timing==@ONTIME_APPT and ~appt_status.isin([@NEW_APPT])\")\n",
|
134
|
+
" df_appointments.query(\"@cutoff_date<=appt_datetime<=@end_of_trial_date and appt_reason==@SCHEDULED_APPT and appt_timing==@ONTIME_APPT and appt_status.isin([@NEW_APPT])\")\n",
|
135
|
+
" .set_index(\"visit_code\")\n",
|
136
|
+
" .groupby(by=[\"site_id\", \"visit_code\"])\n",
|
137
|
+
" .agg([\"last\"])\n",
|
138
|
+
" .size()\n",
|
139
|
+
" .to_frame()\n",
|
140
|
+
" .reset_index()\n",
|
141
|
+
" .rename(columns={0:\"patients\"})\n",
|
142
|
+
" .pivot(index=\"visit_code\", columns=\"site_id\", values=\"patients\")\n",
|
143
|
+
" .reset_index()\n",
|
144
|
+
" .fillna(0)\n",
|
145
|
+
")\n",
|
146
|
+
"\n",
|
147
|
+
"df_appt_pivot2.columns.name = None\n",
|
148
|
+
"df_appt_pivot2[\"total\"] = df_appt_pivot2.iloc[:,1:].sum(axis=1)\n",
|
149
|
+
"df_appt_pivot2[\"visit_code\"] = df_appt_pivot2.visit_code.astype(str)\n",
|
150
|
+
"sum_row = df_appt_pivot2.select_dtypes(include='float64').sum()\n",
|
151
|
+
"sum_row['visit_code'] = 'Total-'\n",
|
152
|
+
"sum_row_df = pd.DataFrame(sum_row).T\n",
|
153
|
+
"df_appt_pivot2 = pd.concat([df_appt_pivot2, sum_row_df], axis=0)\n",
|
154
|
+
"\n",
|
155
|
+
"# df_appt_pivot2[[\"year\", \"month\"]] = df_appt_pivot2[\"appt_datetime\"].str.split(\"-\", expand=True)\n",
|
156
|
+
"\n",
|
157
|
+
"\n",
|
158
|
+
"df_appt_pivot2"
|
159
|
+
]
|
160
|
+
},
|
161
|
+
{
|
162
|
+
"cell_type": "code",
|
163
|
+
"execution_count": null,
|
164
|
+
"id": "5",
|
165
|
+
"metadata": {},
|
166
|
+
"outputs": [],
|
167
|
+
"source": [
|
168
|
+
"def get_df_appt(criteria:str):\n",
|
169
|
+
" df_appt = (\n",
|
170
|
+
" df_appointments.query(\"@cutoff_date<=appt_datetime<=@end_of_trial_date and appt_reason==@SCHEDULED_APPT and appt_timing==@ONTIME_APPT and appt_status.isin([@NEW_APPT]) and visit_code<2000.0\")\n",
|
171
|
+
" .groupby([\"site_id\", \"appt_datetime\"])\n",
|
172
|
+
" .agg(\"last\")\n",
|
173
|
+
" .reset_index()\n",
|
174
|
+
" .query(criteria)\n",
|
175
|
+
" .set_index(\"appt_datetime\")\n",
|
176
|
+
" .groupby(by=[\"site_id\", pd.Grouper(freq=\"ME\")])\n",
|
177
|
+
" .size()\n",
|
178
|
+
" .to_frame()\n",
|
179
|
+
" .reset_index()\n",
|
180
|
+
" .rename(columns={0:\"patients\"})\n",
|
181
|
+
" .pivot(index=\"appt_datetime\", columns=\"site_id\", values=\"patients\")\n",
|
182
|
+
" .reset_index()\n",
|
183
|
+
" .fillna(0)\n",
|
184
|
+
" )\n",
|
185
|
+
" df_appt.columns.name = None\n",
|
186
|
+
" df_appt[\"total\"] = df_appt.iloc[:,1:].sum(axis=1)\n",
|
187
|
+
" sum_row = df_appt.select_dtypes(include='float64').sum()\n",
|
188
|
+
" sum_row_df = pd.DataFrame(sum_row).T\n",
|
189
|
+
" df_appt = pd.concat([df_appt, sum_row_df], axis=0)\n",
|
190
|
+
" df_appt[\"appt_datetime\"] = df_appt.appt_datetime.dt.strftime(\"%Y-%m\")\n",
|
191
|
+
" df_appt[[\"year\", \"month\"]] = df_appt[\"appt_datetime\"].str.split(\"-\", expand=True)\n",
|
192
|
+
" df_appt[\"year\"] = df_appt[\"year\"].fillna(\"Total\")\n",
|
193
|
+
" return df_appt\n",
|
194
|
+
"\n",
|
195
|
+
"\n",
|
196
|
+
"gt = df_as_great_table2(\n",
|
197
|
+
" get_df_appt(criteria=\"visit_code.isin([1360.0, 1480.0])\"),\n",
|
198
|
+
" title=\"Table 1f: Participants who will complete followup on 1360 or 1480 before 2026-03-01\",\n",
|
199
|
+
" # subtitle=\"Visit codes 1360 or 1480 only\",\n",
|
200
|
+
" rowname_col=\"month\",\n",
|
201
|
+
" groupname_col=\"year\",\n",
|
202
|
+
")\n",
|
203
|
+
"gt = (\n",
|
204
|
+
" gt\n",
|
205
|
+
" .cols_label({k:v for k, v in column_headers.items() if k!=\"label\"})\n",
|
206
|
+
" .cols_align(align=\"center\", columns=[\"appt_datetime\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
|
207
|
+
" .cols_align(align=\"left\", columns=[\"month\", \"year\"])\n",
|
208
|
+
" .fmt_number(columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"], decimals=0)\n",
|
209
|
+
" .tab_source_note(source_note=f\"Scheduled appointment date is on or after {cutoff_date.strftime('%d %B %Y')} and before {end_of_trial_date.strftime('%d %B %Y')}.\")\n",
|
210
|
+
" .tab_style(\n",
|
211
|
+
" style=[\n",
|
212
|
+
" style.text(color=\"black\", weight=\"bold\"),\n",
|
213
|
+
" style.fill(color=\"lightgray\")\n",
|
214
|
+
" ],\n",
|
215
|
+
" locations=loc.row_groups()\n",
|
216
|
+
" )\n",
|
217
|
+
")\n",
|
218
|
+
"html_data.append(gt.as_raw_html())\n",
|
219
|
+
"gt.show()"
|
220
|
+
]
|
221
|
+
},
|
222
|
+
{
|
223
|
+
"cell_type": "code",
|
224
|
+
"execution_count": null,
|
225
|
+
"id": "6",
|
226
|
+
"metadata": {},
|
227
|
+
"outputs": [],
|
228
|
+
"source": [
|
229
|
+
"\n",
|
230
|
+
"gt = df_as_great_table2(\n",
|
231
|
+
" get_df_appt(criteria=\"~visit_code.isin([1360.0, 1480.0])\"),\n",
|
232
|
+
" title=\"Table 1f: Participants who will NOT complete followup on 1360 or 1480 before 2026-03-01\",\n",
|
233
|
+
" rowname_col=\"month\",\n",
|
234
|
+
" groupname_col=\"year\",\n",
|
235
|
+
")\n",
|
236
|
+
"gt = (\n",
|
237
|
+
" gt\n",
|
238
|
+
" .cols_label({k:v for k, v in column_headers.items() if k!=\"label\"})\n",
|
239
|
+
" .cols_align(align=\"center\", columns=[\"appt_datetime\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"])\n",
|
240
|
+
" .cols_align(align=\"left\", columns=[\"month\", \"year\"])\n",
|
241
|
+
" .fmt_number(columns=[\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"], decimals=0)\n",
|
242
|
+
" .tab_source_note(source_note=f\"Scheduled appointment date is on or after {cutoff_date.strftime('%d %B %Y')} and before {end_of_trial_date.strftime('%d %B %Y')}.\")\n",
|
243
|
+
" .tab_style(\n",
|
244
|
+
" style=[\n",
|
245
|
+
" style.text(color=\"black\", weight=\"bold\"),\n",
|
246
|
+
" style.fill(color=\"lightgray\")\n",
|
247
|
+
" ],\n",
|
248
|
+
" locations=loc.row_groups()\n",
|
249
|
+
" )\n",
|
250
|
+
")\n",
|
251
|
+
"html_data.append(gt.as_raw_html())\n",
|
252
|
+
"gt.show()"
|
253
|
+
]
|
254
|
+
},
|
255
|
+
{
|
256
|
+
"cell_type": "code",
|
257
|
+
"execution_count": null,
|
258
|
+
"id": "7",
|
259
|
+
"metadata": {},
|
260
|
+
"outputs": [],
|
261
|
+
"source": [
|
262
|
+
"# gather raw html\n",
|
263
|
+
"raw_html = [f'<div class=\"page-break\">{s}</div>' for s in html_data]\n",
|
264
|
+
"style_css = \"\"\"\n",
|
265
|
+
"<style>\n",
|
266
|
+
" .page-break {\n",
|
267
|
+
" page-break-inside: avoid; /* Always add page break before this element */\n",
|
268
|
+
" }\n",
|
269
|
+
" .table-header {\n",
|
270
|
+
" font-weight: bold;\n",
|
271
|
+
" font-size: 18px;\n",
|
272
|
+
" text-align: center;\n",
|
273
|
+
" border-bottom: None;\n",
|
274
|
+
" }\n",
|
275
|
+
"</style>\n",
|
276
|
+
"\"\"\"\n",
|
277
|
+
"raw_html = ''.join(raw_html)\n",
|
278
|
+
"raw_html = f'<!DOCTYPE html>\\n<html lang=\"en\">\\n{style_css}\\n<head>\\n<meta charset=\"utf-8\"/>\\n</head>\\n<body>\\n' + document_title + raw_html + '\\n</body>\\n</html>\\n'"
|
279
|
+
]
|
280
|
+
},
|
281
|
+
{
|
282
|
+
"cell_type": "code",
|
283
|
+
"execution_count": null,
|
284
|
+
"id": "8",
|
285
|
+
"metadata": {},
|
286
|
+
"outputs": [],
|
287
|
+
"source": [
|
288
|
+
"pdfkit.from_string(raw_html, str(analysis_folder / pdf_filename),\n",
|
289
|
+
"options={\n",
|
290
|
+
" 'footer-center': 'Page [page] of [topage]',\n",
|
291
|
+
" 'footer-font-size': '8',\n",
|
292
|
+
" 'footer-spacing': '5',\n",
|
293
|
+
" 'encoding': \"UTF-8\",\n",
|
294
|
+
" 'margin-top':'10mm',\n",
|
295
|
+
" 'margin-right':'15mm',\n",
|
296
|
+
" 'margin-bottom':'15mm',\n",
|
297
|
+
" 'margin-left':'15mm',\n",
|
298
|
+
" 'header-center': study_title,\n",
|
299
|
+
" 'header-font-size': '6',\n",
|
300
|
+
" 'header-spacing': '0',\n",
|
301
|
+
" 'disable-javascript': None,\n",
|
302
|
+
" 'no-outline': None,\n",
|
303
|
+
"},\n",
|
304
|
+
"verbose=True)"
|
305
|
+
]
|
306
|
+
}
|
307
|
+
],
|
308
|
+
"metadata": {
|
309
|
+
"kernelspec": {
|
310
|
+
"display_name": "Python 3",
|
311
|
+
"language": "python",
|
312
|
+
"name": "python3"
|
313
|
+
},
|
314
|
+
"language_info": {
|
315
|
+
"codemirror_mode": {
|
316
|
+
"name": "ipython",
|
317
|
+
"version": 2
|
318
|
+
},
|
319
|
+
"file_extension": ".py",
|
320
|
+
"mimetype": "text/x-python",
|
321
|
+
"name": "python",
|
322
|
+
"nbconvert_exporter": "python",
|
323
|
+
"pygments_lexer": "ipython2",
|
324
|
+
"version": "2.7.6"
|
325
|
+
}
|
326
|
+
},
|
327
|
+
"nbformat": 4,
|
328
|
+
"nbformat_minor": 5
|
329
|
+
}
|
@@ -0,0 +1,103 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": []
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"cell_type": "code",
|
13
|
+
"execution_count": null,
|
14
|
+
"id": "1",
|
15
|
+
"metadata": {},
|
16
|
+
"outputs": [],
|
17
|
+
"source": [
|
18
|
+
"%%capture\n",
|
19
|
+
"import os\n",
|
20
|
+
"import pandas as pd\n",
|
21
|
+
"import numpy as np\n",
|
22
|
+
"from dj_notebook import activate\n",
|
23
|
+
"from pathlib import Path\n",
|
24
|
+
"\n",
|
25
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
26
|
+
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
27
|
+
"reports_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
28
|
+
"plus = activate(dotenv_file=env_file)"
|
29
|
+
]
|
30
|
+
},
|
31
|
+
{
|
32
|
+
"cell_type": "code",
|
33
|
+
"execution_count": null,
|
34
|
+
"id": "2",
|
35
|
+
"metadata": {},
|
36
|
+
"outputs": [],
|
37
|
+
"source": [
|
38
|
+
"from edc_pdutils.dataframes import get_crf"
|
39
|
+
]
|
40
|
+
},
|
41
|
+
{
|
42
|
+
"cell_type": "code",
|
43
|
+
"execution_count": null,
|
44
|
+
"id": "3",
|
45
|
+
"metadata": {},
|
46
|
+
"outputs": [],
|
47
|
+
"source": [
|
48
|
+
"df_patient_history = get_crf(\"meta_subject.patienthistory\", subject_visit_model=\"meta_subject.subjectvisit\")"
|
49
|
+
]
|
50
|
+
},
|
51
|
+
{
|
52
|
+
"cell_type": "code",
|
53
|
+
"execution_count": null,
|
54
|
+
"id": "4",
|
55
|
+
"metadata": {},
|
56
|
+
"outputs": [],
|
57
|
+
"source": [
|
58
|
+
"df_patient_history[['subject_identifier', \"current_arv_regimen\"]].groupby(by=[\"current_arv_regimen\"])[\"current_arv_regimen\"].value_counts()"
|
59
|
+
]
|
60
|
+
},
|
61
|
+
{
|
62
|
+
"cell_type": "code",
|
63
|
+
"execution_count": null,
|
64
|
+
"id": "5",
|
65
|
+
"metadata": {},
|
66
|
+
"outputs": [],
|
67
|
+
"source": [
|
68
|
+
"df_patient_history[['subject_identifier', \"current_arv_regimen\", \"other_current_arv_regimen\"]][[ \"other_current_arv_regimen\"]].value_counts()"
|
69
|
+
]
|
70
|
+
},
|
71
|
+
{
|
72
|
+
"cell_type": "code",
|
73
|
+
"execution_count": null,
|
74
|
+
"id": "6",
|
75
|
+
"metadata": {},
|
76
|
+
"outputs": [],
|
77
|
+
"source": [
|
78
|
+
"df_patient_history[ \"other_current_arv_regimen\"] = df_patient_history[ \"other_current_arv_regimen\"].apply(lambda x : x.split(\"-\")[0])"
|
79
|
+
]
|
80
|
+
}
|
81
|
+
],
|
82
|
+
"metadata": {
|
83
|
+
"kernelspec": {
|
84
|
+
"display_name": "Python 3",
|
85
|
+
"language": "python",
|
86
|
+
"name": "python3"
|
87
|
+
},
|
88
|
+
"language_info": {
|
89
|
+
"codemirror_mode": {
|
90
|
+
"name": "ipython",
|
91
|
+
"version": 2
|
92
|
+
},
|
93
|
+
"file_extension": ".py",
|
94
|
+
"mimetype": "text/x-python",
|
95
|
+
"name": "python",
|
96
|
+
"nbconvert_exporter": "python",
|
97
|
+
"pygments_lexer": "ipython2",
|
98
|
+
"version": "2.7.6"
|
99
|
+
}
|
100
|
+
},
|
101
|
+
"nbformat": 4,
|
102
|
+
"nbformat_minor": 5
|
103
|
+
}
|
@@ -0,0 +1,227 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": []
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"cell_type": "code",
|
13
|
+
"execution_count": null,
|
14
|
+
"id": "1",
|
15
|
+
"metadata": {},
|
16
|
+
"outputs": [],
|
17
|
+
"source": [
|
18
|
+
"%%capture\n",
|
19
|
+
"import pandas as pd\n",
|
20
|
+
"from django_pandas.io import read_frame\n",
|
21
|
+
"from pathlib import Path\n",
|
22
|
+
"from dj_notebook import activate\n",
|
23
|
+
"\n",
|
24
|
+
"plus = activate(dotenv_file=\"/Users/erikvw/source/edc_source/meta-edc/.env\")\n",
|
25
|
+
"report_folder = Path(\"/Users/erikvw/Documents/ucl/protocols/meta3/reports/\")\n",
|
26
|
+
"# output is suppressed -- normally would spew out all the edc loading messages\n"
|
27
|
+
]
|
28
|
+
},
|
29
|
+
{
|
30
|
+
"cell_type": "code",
|
31
|
+
"execution_count": null,
|
32
|
+
"id": "2",
|
33
|
+
"metadata": {},
|
34
|
+
"outputs": [],
|
35
|
+
"source": [
|
36
|
+
"from edc_registration.models import RegisteredSubject\n",
|
37
|
+
"from edc_appointment.analytics import get_appointment_df\n",
|
38
|
+
"from meta_prn.models import OnSchedule, OffSchedule, OffSchedulePregnancy, OffSchedulePostnatal, OnScheduleDmReferral, \\\n",
|
39
|
+
" EndOfStudy\n",
|
40
|
+
"\n",
|
41
|
+
"df_onschedule = read_frame(OnSchedule.objects.all(), verbose=True)\n",
|
42
|
+
"df_offschedule = read_frame(OffSchedule.objects.all(), verbose=True)\n",
|
43
|
+
"df_onschedule_preg = read_frame(OffSchedulePregnancy.objects.all(), verbose=True)\n",
|
44
|
+
"df_onschedule_postnatal = read_frame(OffSchedulePostnatal.objects.all(), verbose=True)\n",
|
45
|
+
"df_onschedule_dm = read_frame(OnScheduleDmReferral.objects.all(), verbose=True)\n",
|
46
|
+
"df_eos = read_frame(EndOfStudy.objects.all(), verbose=True)\n",
|
47
|
+
"df_appt = get_appointment_df()\n",
|
48
|
+
"df_rs = read_frame(RegisteredSubject.objects.values(\"subject_identifier\", \"registration_datetime\").all(), verbose=True)\n"
|
49
|
+
]
|
50
|
+
},
|
51
|
+
{
|
52
|
+
"cell_type": "code",
|
53
|
+
"execution_count": null,
|
54
|
+
"id": "3",
|
55
|
+
"metadata": {},
|
56
|
+
"outputs": [],
|
57
|
+
"source": [
|
58
|
+
"df_appt[df_appt.visit_code > 1360][[\"visit_code\", \"schedule_name\"]].schedule_name.value_counts()"
|
59
|
+
]
|
60
|
+
},
|
61
|
+
{
|
62
|
+
"cell_type": "code",
|
63
|
+
"execution_count": null,
|
64
|
+
"id": "4",
|
65
|
+
"metadata": {},
|
66
|
+
"outputs": [],
|
67
|
+
"source": [
|
68
|
+
"df_appt[(df_appt.visit_code > 1360) & (df_appt.schedule_name == \"schedule\")][[\"visit_code\", \"schedule_name\"]].visit_code.value_counts()"
|
69
|
+
]
|
70
|
+
},
|
71
|
+
{
|
72
|
+
"cell_type": "code",
|
73
|
+
"execution_count": null,
|
74
|
+
"id": "5",
|
75
|
+
"metadata": {},
|
76
|
+
"outputs": [],
|
77
|
+
"source": [
|
78
|
+
"df_appt[(df_appt.visit_code > 1360) & (df_appt.schedule_name == \"schedule\")][[\"subject_identifier\", \"appt_datetime\", \"visit_code\", \"appt_status\"]].sort_values(\"subject_identifier\")"
|
79
|
+
]
|
80
|
+
},
|
81
|
+
{
|
82
|
+
"cell_type": "code",
|
83
|
+
"execution_count": null,
|
84
|
+
"id": "6",
|
85
|
+
"metadata": {},
|
86
|
+
"outputs": [],
|
87
|
+
"source": [
|
88
|
+
"df_appt = get_appointment_df()\n",
|
89
|
+
"\n",
|
90
|
+
"df_appt = df_appt[(df_appt.visit_code >= 1360) & (df_appt.schedule_name == \"schedule\")][[\"subject_identifier\", \"appt_datetime\", \"visit_code\", \"appt_status\"]]"
|
91
|
+
]
|
92
|
+
},
|
93
|
+
{
|
94
|
+
"cell_type": "code",
|
95
|
+
"execution_count": null,
|
96
|
+
"id": "7",
|
97
|
+
"metadata": {},
|
98
|
+
"outputs": [],
|
99
|
+
"source": [
|
100
|
+
"df_magreth = pd.read_csv(Path(\"/Users/erikvw/Documents/ucl/protocols/meta3/reports/\") / \"consented_v1_ext_magreth.csv\")\n"
|
101
|
+
]
|
102
|
+
},
|
103
|
+
{
|
104
|
+
"cell_type": "code",
|
105
|
+
"execution_count": null,
|
106
|
+
"id": "8",
|
107
|
+
"metadata": {},
|
108
|
+
"outputs": [],
|
109
|
+
"source": [
|
110
|
+
"df_magreth"
|
111
|
+
]
|
112
|
+
},
|
113
|
+
{
|
114
|
+
"cell_type": "code",
|
115
|
+
"execution_count": null,
|
116
|
+
"id": "9",
|
117
|
+
"metadata": {},
|
118
|
+
"outputs": [],
|
119
|
+
"source": [
|
120
|
+
"df_main = pd.merge(df_appt[[\"subject_identifier\", \"appt_datetime\", \"visit_code\", \"appt_status\"]], df_magreth, on=\"subject_identifier\", how=\"right\").groupby([\"subject_identifier\", \"agreed\"]).agg({\"visit_code\": \"min\", \"date_reconsented\": \"max\"})"
|
121
|
+
]
|
122
|
+
},
|
123
|
+
{
|
124
|
+
"cell_type": "code",
|
125
|
+
"execution_count": null,
|
126
|
+
"id": "10",
|
127
|
+
"metadata": {},
|
128
|
+
"outputs": [],
|
129
|
+
"source": [
|
130
|
+
"df_main = df_main.merge(df_appt[[\"subject_identifier\", \"visit_code\", \"appt_status\", \"appt_datetime\"]], on=[\"subject_identifier\", \"visit_code\"], how=\"left\")\n",
|
131
|
+
"df_main\n"
|
132
|
+
]
|
133
|
+
},
|
134
|
+
{
|
135
|
+
"cell_type": "code",
|
136
|
+
"execution_count": null,
|
137
|
+
"id": "11",
|
138
|
+
"metadata": {},
|
139
|
+
"outputs": [],
|
140
|
+
"source": [
|
141
|
+
"df_rs"
|
142
|
+
]
|
143
|
+
},
|
144
|
+
{
|
145
|
+
"cell_type": "code",
|
146
|
+
"execution_count": null,
|
147
|
+
"id": "12",
|
148
|
+
"metadata": {},
|
149
|
+
"outputs": [],
|
150
|
+
"source": [
|
151
|
+
"from meta_consent.models import SubjectConsentV1Ext\n",
|
152
|
+
"df_v1ext = read_frame(SubjectConsentV1Ext.objects.values(\"subject_identifier\", \"report_datetime\", \"agrees_to_extension\").all(), verbose=True)\n",
|
153
|
+
"df_v1ext"
|
154
|
+
]
|
155
|
+
},
|
156
|
+
{
|
157
|
+
"cell_type": "code",
|
158
|
+
"execution_count": null,
|
159
|
+
"id": "13",
|
160
|
+
"metadata": {},
|
161
|
+
"outputs": [],
|
162
|
+
"source": [
|
163
|
+
"df_main = df_main.merge(df_rs, on=\"subject_identifier\", how=\"left\")"
|
164
|
+
]
|
165
|
+
},
|
166
|
+
{
|
167
|
+
"cell_type": "code",
|
168
|
+
"execution_count": null,
|
169
|
+
"id": "14",
|
170
|
+
"metadata": {},
|
171
|
+
"outputs": [],
|
172
|
+
"source": [
|
173
|
+
"df_main = df_main.merge(df_v1ext, on=\"subject_identifier\", how=\"outer\")\n",
|
174
|
+
"df_main.rename(columns={\"report_datetime\": \"v1_ext_datetime\", \"agrees_to_extension\": \"agreed\", \"visit_code\": \"last_visit_code\"}, inplace=True)\n"
|
175
|
+
]
|
176
|
+
},
|
177
|
+
{
|
178
|
+
"cell_type": "code",
|
179
|
+
"execution_count": null,
|
180
|
+
"id": "15",
|
181
|
+
"metadata": {},
|
182
|
+
"outputs": [],
|
183
|
+
"source": [
|
184
|
+
"df_main = df_main.merge(df_eos[[\"subject_identifier\", \"offstudy_datetime\"]], on=\"subject_identifier\", how=\"left\")\n"
|
185
|
+
]
|
186
|
+
},
|
187
|
+
{
|
188
|
+
"cell_type": "code",
|
189
|
+
"execution_count": null,
|
190
|
+
"id": "16",
|
191
|
+
"metadata": {},
|
192
|
+
"outputs": [],
|
193
|
+
"source": [
|
194
|
+
"df_main[[\"subject_identifier\",\"registration_datetime\", \"last_visit_code\", \"appt_status\", \"appt_datetime\", \"date_reconsented\", \"v1_ext_datetime\", \"agreed\"]]"
|
195
|
+
]
|
196
|
+
},
|
197
|
+
{
|
198
|
+
"cell_type": "code",
|
199
|
+
"execution_count": null,
|
200
|
+
"id": "17",
|
201
|
+
"metadata": {},
|
202
|
+
"outputs": [],
|
203
|
+
"source": []
|
204
|
+
}
|
205
|
+
],
|
206
|
+
"metadata": {
|
207
|
+
"kernelspec": {
|
208
|
+
"display_name": "Python 3",
|
209
|
+
"language": "python",
|
210
|
+
"name": "python3"
|
211
|
+
},
|
212
|
+
"language_info": {
|
213
|
+
"codemirror_mode": {
|
214
|
+
"name": "ipython",
|
215
|
+
"version": 2
|
216
|
+
},
|
217
|
+
"file_extension": ".py",
|
218
|
+
"mimetype": "text/x-python",
|
219
|
+
"name": "python",
|
220
|
+
"nbconvert_exporter": "python",
|
221
|
+
"pygments_lexer": "ipython2",
|
222
|
+
"version": "2.7.6"
|
223
|
+
}
|
224
|
+
},
|
225
|
+
"nbformat": 4,
|
226
|
+
"nbformat_minor": 5
|
227
|
+
}
|