mergeron 2024.739127.0__py3-none-any.whl → 2024.739127.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mergeron might be problematic. Click here for more details.
- mergeron/__init__.py +8 -9
- mergeron/core/ftc_merger_investigations_data.py +2 -2
- mergeron/core/guidelines_boundaries.py +2 -2
- mergeron/demo/visualize_empirical_margin_distribution.py +2 -3
- mergeron/gen/upp_tests.py +6 -4
- {mergeron-2024.739127.0.dist-info → mergeron-2024.739127.1.dist-info}/METADATA +6 -6
- {mergeron-2024.739127.0.dist-info → mergeron-2024.739127.1.dist-info}/RECORD +8 -8
- {mergeron-2024.739127.0.dist-info → mergeron-2024.739127.1.dist-info}/WHEEL +0 -0
mergeron/__init__.py
CHANGED
|
@@ -2,14 +2,13 @@ from __future__ import annotations
|
|
|
2
2
|
|
|
3
3
|
import enum
|
|
4
4
|
from pathlib import Path
|
|
5
|
-
from typing import TypeAlias
|
|
6
5
|
|
|
7
6
|
import numpy as np
|
|
8
7
|
from numpy.typing import NDArray
|
|
9
8
|
|
|
10
9
|
_PKG_NAME: str = Path(__file__).parent.stem
|
|
11
10
|
|
|
12
|
-
VERSION = "2024.739127.
|
|
11
|
+
VERSION = "2024.739127.1"
|
|
13
12
|
|
|
14
13
|
__version__ = VERSION
|
|
15
14
|
|
|
@@ -25,21 +24,21 @@ if not DATA_DIR.is_dir():
|
|
|
25
24
|
np.set_printoptions(precision=18)
|
|
26
25
|
|
|
27
26
|
|
|
28
|
-
ArrayINT = NDArray[np.intp]
|
|
29
|
-
ArrayFloat = NDArray[np.half | np.single | np.double]
|
|
27
|
+
type ArrayINT = NDArray[np.intp]
|
|
28
|
+
type ArrayFloat = NDArray[np.half | np.single | np.double]
|
|
30
29
|
|
|
31
30
|
|
|
32
|
-
ArrayBoolean
|
|
31
|
+
type ArrayBoolean = NDArray[np.bool_]
|
|
33
32
|
|
|
34
|
-
ArrayDouble
|
|
35
|
-
ArrayBIGINT
|
|
33
|
+
type ArrayDouble = NDArray[np.double]
|
|
34
|
+
type ArrayBIGINT = NDArray[np.int64]
|
|
36
35
|
|
|
37
36
|
DEFAULT_REC_RATE = 0.85
|
|
38
37
|
|
|
39
38
|
|
|
40
39
|
@enum.unique
|
|
41
40
|
class RECForm(enum.StrEnum):
|
|
42
|
-
"""
|
|
41
|
+
"""For derivation of recapture rate from market shares."""
|
|
43
42
|
|
|
44
43
|
INOUT = "inside-out"
|
|
45
44
|
OUTIN = "outside-in"
|
|
@@ -49,7 +48,7 @@ class RECForm(enum.StrEnum):
|
|
|
49
48
|
@enum.unique
|
|
50
49
|
class UPPAggrSelector(enum.StrEnum):
|
|
51
50
|
"""
|
|
52
|
-
Aggregator
|
|
51
|
+
Aggregator for GUPPI and diversion ratio estimates.
|
|
53
52
|
|
|
54
53
|
"""
|
|
55
54
|
|
|
@@ -14,7 +14,7 @@ from importlib import resources
|
|
|
14
14
|
from operator import itemgetter
|
|
15
15
|
from pathlib import Path
|
|
16
16
|
from types import MappingProxyType
|
|
17
|
-
from typing import Any, NamedTuple
|
|
17
|
+
from typing import Any, NamedTuple
|
|
18
18
|
|
|
19
19
|
import msgpack # type: ignore
|
|
20
20
|
import msgpack_numpy as m # type: ignore
|
|
@@ -95,7 +95,7 @@ class INVTableData(NamedTuple):
|
|
|
95
95
|
data_array: ArrayBIGINT
|
|
96
96
|
|
|
97
97
|
|
|
98
|
-
INVData
|
|
98
|
+
type INVData = Mapping[str, Mapping[str, Mapping[str, INVTableData]]]
|
|
99
99
|
|
|
100
100
|
|
|
101
101
|
def construct_data(
|
|
@@ -7,7 +7,7 @@ with a canvas on which to draw boundaries for Guidelines standards.
|
|
|
7
7
|
from __future__ import annotations
|
|
8
8
|
|
|
9
9
|
from dataclasses import dataclass
|
|
10
|
-
from typing import Literal
|
|
10
|
+
from typing import Literal
|
|
11
11
|
|
|
12
12
|
import numpy as np
|
|
13
13
|
from attrs import Attribute, field, frozen, validators
|
|
@@ -28,7 +28,7 @@ __version__ = VERSION
|
|
|
28
28
|
mp.prec = 80
|
|
29
29
|
mp.trap_complex = True
|
|
30
30
|
|
|
31
|
-
HMGPubYear
|
|
31
|
+
type HMGPubYear = Literal[1992, 2004, 2010, 2023]
|
|
32
32
|
|
|
33
33
|
|
|
34
34
|
@dataclass(frozen=True)
|
|
@@ -48,10 +48,9 @@ with warnings.catch_warnings():
|
|
|
48
48
|
mgn_kde = stats.gaussian_kde(mgn_data_obs, weights=mgn_data_wts, bw_method="silverman")
|
|
49
49
|
mgn_kde.set_bandwidth(bw_method=mgn_kde.factor / 3.0)
|
|
50
50
|
|
|
51
|
-
mgn_xvec = np.linspace(0, BIN_COUNT, 10**5) / BIN_COUNT
|
|
52
51
|
mgn_ax.plot(
|
|
53
|
-
|
|
54
|
-
mgn_kde(
|
|
52
|
+
(_xv := np.linspace(0, BIN_COUNT, 10**5) / BIN_COUNT),
|
|
53
|
+
mgn_kde(_xv),
|
|
55
54
|
color="#004488",
|
|
56
55
|
rasterized=True,
|
|
57
56
|
label="Estimated Density",
|
mergeron/gen/upp_tests.py
CHANGED
|
@@ -7,11 +7,12 @@ from generated market data.
|
|
|
7
7
|
from collections.abc import Sequence
|
|
8
8
|
from contextlib import suppress
|
|
9
9
|
from pathlib import Path
|
|
10
|
-
from typing import
|
|
10
|
+
from typing import Any, Literal, TypedDict
|
|
11
11
|
|
|
12
12
|
import numpy as np
|
|
13
13
|
import tables as ptb # type: ignore
|
|
14
14
|
from numpy.random import SeedSequence
|
|
15
|
+
from numpy.typing import NDArray
|
|
15
16
|
|
|
16
17
|
from .. import ( # noqa
|
|
17
18
|
VERSION,
|
|
@@ -40,7 +41,7 @@ __version__ = VERSION
|
|
|
40
41
|
ptb.parameters.MAX_NUMEXPR_THREADS = 8
|
|
41
42
|
ptb.parameters.MAX_BLOSC_THREADS = 4
|
|
42
43
|
|
|
43
|
-
SaveData
|
|
44
|
+
type SaveData = Literal[False] | tuple[Literal[True], ptb.File, ptb.Group]
|
|
44
45
|
|
|
45
46
|
|
|
46
47
|
class INVRESCntsArgs(TypedDict, total=False):
|
|
@@ -213,7 +214,8 @@ def compute_upp_test_arrays(
|
|
|
213
214
|
|
|
214
215
|
"""
|
|
215
216
|
_g_bar, _divr_bar, _cmcr_bar, _ipr_bar = (
|
|
216
|
-
getattr(_upp_test_parms, _f) for _f in ("guppi", "divr", "cmcr", "ipr")
|
|
217
|
+
getattr(_upp_test_parms, _f) for _f in ("guppi", "divr", "cmcr", "ipr")
|
|
218
|
+
)
|
|
217
219
|
|
|
218
220
|
_guppi_array, _ipr_array, _cmcr_array = (
|
|
219
221
|
np.empty_like(_market_data.price_array) for _ in range(3)
|
|
@@ -366,7 +368,7 @@ def save_data_to_hdf5(
|
|
|
366
368
|
|
|
367
369
|
|
|
368
370
|
def save_array_to_hdf5(
|
|
369
|
-
_array_obj:
|
|
371
|
+
_array_obj: NDArray[Any],
|
|
370
372
|
_array_name: str,
|
|
371
373
|
_h5_group: ptb.Group,
|
|
372
374
|
_h5_file: ptb.File,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mergeron
|
|
3
|
-
Version: 2024.739127.
|
|
3
|
+
Version: 2024.739127.1
|
|
4
4
|
Summary: Merger Policy Analysis using Python
|
|
5
5
|
License: MIT
|
|
6
6
|
Keywords: merger policy analysis,merger guidelines,merger screening,policy presumptions,concentration standards,upward pricing pressure,GUPPI
|
|
@@ -41,16 +41,16 @@ Description-Content-Type: text/x-rst
|
|
|
41
41
|
mergeron: Merger Policy Analysis using Python
|
|
42
42
|
=============================================
|
|
43
43
|
|
|
44
|
-
|
|
44
|
+
Visualize the sets of mergers conforming to concentration and diversion-ratio standards. Estimate intrinsic enforcement rates, and intrinsic clearance rates, under concentration, diversion ratio, GUPPI, CMCR, and IPR bounds using generated data with specified distributions of market shares, price-cost margins, firm counts, and prices, optionally imposing restrictions implied by statutory filing thresholds and/or Bertrand-Nash oligopoly with MNL demand. Download and analyze merger investigations data published by the U.S. Federal Trade Commission in various reports on extended merger investigations (Second Requests) during 1996 to 2011.
|
|
45
45
|
|
|
46
46
|
Here, enforcement rates derived with merger enforcement as being exogenous to firm conduct are defined as intrinsic enforcement rates, and similarly intrinsic clearance rates. Depending on the merger enforcement regime, or merger control regime, intrinsic enforcement rates may also not be the complement of intrinsic clearance rates, i.e, it is not necessarily true that the intrinsic clearance rate estimate for a given enforcement regime is 1 minus the intrinsic enforcement rate. In contrast, observed enforcement rates reflect the deterrent effects of merger enforcement on firm conduct as well as the effects of merger screening on the level of enforcement; and, by definition, the observed clearance rate is 1 minus the observed enforcement rate.
|
|
47
47
|
|
|
48
48
|
Introduction
|
|
49
49
|
------------
|
|
50
50
|
|
|
51
|
-
Module :code:`.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`.core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`.core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary
|
|
51
|
+
Module :code:`.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`.core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`.core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary, as an array of share-pairs, and area. This module also includes a function for generating plots of concentration and diversion-ratio boundaries, and functions for mapping GUPPI standards to concentration (ΔHHI) standards, and vice-versa.
|
|
52
52
|
|
|
53
|
-
Module :code:`.gen.data_generation` includes the :code:`.gen.data_generation.MarketSample` which provides for a rich specification of shares and diversion ratios (:code:`.gen.data_generation.MarketSample.share_spec`), margins (:code:`.gen.data_generation.MarketSample.pcm_spec`, prices (:code:`.gen.data_generation.MarketSample.price_spec`), and HSR filing requirements (:code:`.gen.data_generation.MarketSample.hsr_filing_test_type`), and with methods for, (i) generating sample data (:code:`.gen.data_generation.MarketSample.generate_sample`), and (ii)
|
|
53
|
+
Module :code:`.gen.data_generation` includes the :code:`.gen.data_generation.MarketSample` which provides for a rich specification of shares and diversion ratios (:code:`.gen.data_generation.MarketSample.share_spec`), margins (:code:`.gen.data_generation.MarketSample.pcm_spec`, prices (:code:`.gen.data_generation.MarketSample.price_spec`), and HSR filing requirements (:code:`.gen.data_generation.MarketSample.hsr_filing_test_type`), and with methods for, (i) generating sample data (:code:`.gen.data_generation.MarketSample.generate_sample`), and (ii) computing the intrinsic enforcement rate and intrinsic clearance rate for the generated sample, given a method (:code:`.UPPAggrSelector`) of aggregating diversion ratio or GUPPI estimates for the firms in a merger (:code:`.gen.data_generation.MarketSample.estimate_enf_counts`). While the latter populate the properties, :code:`.gen.data_generation.MarketSample.data`
|
|
54
54
|
and :code:`.gen.data_generation.MarketSample.enf_counts`, respectively, the underlying methods for generating standalone :code:`MarketDataSample` and :code:`UPPTestCounts` objects are included in the class definition, with helper functions defined in the modules, :code:`.gen.data_generation_functions` and :code:`.gen.upp_tests`. Notably, market shares are generated for a sample of markets with firm-count distributed as specified in :code:`.gen.data_generation.MarketSample.share_spec.firm_count_weights`, with defaults as discussed below (also see, :code:`.gen.ShareSpec.firm_count_weights`.
|
|
55
55
|
|
|
56
56
|
By default, merging-firm shares are drawn with uniform distribution over the space :math:`s_1 + s_2 \leqslant 1` for an unspecified number of firms. Alternatively, shares may be drawn from the Dirichlet distribution (see property `dist_type` of :code:`.gen.data_generation.MarketSample.share_spec`, of type, :code:`.gen.SHRDistribution`), with specified shape parameters (property `dist_parms` of :code:`.gen.data_generation.MarketSample.share_spec`. When drawing shares from the Dirichlet distribution, the user specifies the `firm_count_weights` property of :code:`.gen.data_generation.MarketSample.share_spec`, as a vector of weights specifying the frequency distribution over sequential firm counts, e.g., :code:`[133, 184, 134, 52, 32, 10, 12, 4, 3]` to specify shares drawn from Dirichlet distributions with 2 to 10 pre-merger firms distributed as in data for FTC merger investigations during 1996--2003 (See, for example, Table 4.1 of `FTC, Horizontal Merger Investigations Data, Fiscal Years 1996--2003 (Revised: August 31, 2004) <https://www.ftc.gov/sites/default/files/documents/reports/horizontal-merger-investigation-data-fiscal-years-1996-2003/040831horizmergersdata96-03.pdf>`_). If the property `firm_count_weights` is not explicitly assigned a value when defining :code:`.gen.data_generation.MarketSample.share_spec`, the default values is used, which results in a sample of markets with 2 to 7 firms with relative frequency in inverse proportion to firm-count, with 2-firm markets being 6 times as likely to be drawn as 7-firm markets.
|
|
@@ -65,11 +65,11 @@ The market sample may be restricted to mergers meeting the HSR filing requiremen
|
|
|
65
65
|
|
|
66
66
|
The full specification of a market sample is given in a :code:`.gen.data_generation.MarketSample` object, including the above parameters. Data are drawn by invoking :code:`.gen.data_generation.MarketSample.generate_sample` which adds a :code:`data` property of class, :code:`.gen.MarketDataSample`. Enforcement or clearance counts are computed by invoking :code:`.gen.data_generation.MarketSample.estimate_enf_counts`, which adds an :code:`enf_counts` property of class :code:`.gen.UPPTestsCounts`. For fast, parallel generation of enforcement or clearance counts over large market data samples that ordinarily would exceed available limits on machine memory, the user can invoke the method :code:`.gen.data_generation.MarketSample.estimate_enf_counts` on a :code:`.gen.data_generation.MarketSample` object without first invoking :code:`.gen.data_generation.MarketSample.generate_sample`. Note, however, that this strategy does not retain the market sample in memory in the interests of conserving memory and maintaining high performance (the user can specify that the market sample and enforcement statistics be stored to permanent storage; when saving to current PCIe NVMe storage, the performance penalty is slight, but can be considerable if saving to SATA storage).
|
|
67
67
|
|
|
68
|
-
Enforcement statistics based on FTC investigations data and test data are
|
|
68
|
+
Enforcement statistics based on FTC investigations data and test data are tabulated using methods provided in :code:`.gen.enforcement_stats`.
|
|
69
69
|
|
|
70
70
|
Programs demonstrating the use of this package are included in the sub-package, :code:`.demo`.
|
|
71
71
|
|
|
72
|
-
This package includes a class, :code:`.core.pseudorandom_numbers.MultithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple virtual, logical, or physical
|
|
72
|
+
This package includes a class, :code:`.core.pseudorandom_numbers.MultithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple CPU cores, be they virtual, logical, or physical cores. This class is an adaptation from the documentation for the external :code:`numpy.random` subpackage, from the discussion on, "`Multithreaded generation <https://numpy.org/doc/stable/reference/random/multithreading.html>`_"; the version included here permits selection of the distribution with pre-tests to catch and inform on common errors. To access these directly:
|
|
73
73
|
|
|
74
74
|
.. code-block:: python
|
|
75
75
|
|
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
mergeron/License.txt,sha256=7iX-y0EyjkbVJKJLS4ZKzuuE1wd0lryfsD_IytLG8lQ,1246
|
|
2
|
-
mergeron/__init__.py,sha256=
|
|
2
|
+
mergeron/__init__.py,sha256=SJjvuKqKcQsybbuFoLgA4PrvV8gB6TJFoQL7qbd2Jr4,1459
|
|
3
3
|
mergeron/core/__init__.py,sha256=KtjBlZOl7jwBCAUhrTJB9PdrN39YLYytNiSUSM_gRmA,62
|
|
4
4
|
mergeron/core/damodaran_margin_data.py,sha256=rMrgN1Qtw572a0ftY97OOj4otq8ldlLrcOi-bcE-org,8554
|
|
5
|
-
mergeron/core/ftc_merger_investigations_data.py,sha256=
|
|
6
|
-
mergeron/core/guidelines_boundaries.py,sha256=
|
|
5
|
+
mergeron/core/ftc_merger_investigations_data.py,sha256=eldNU4hX9oKE4Rb08YE9_1LgolvNKZnhOXW6KyWSwnM,28622
|
|
6
|
+
mergeron/core/guidelines_boundaries.py,sha256=aOpSOaZPsN3CKcLMgkjtCXT2O-l0qb8Qh0Xv4chdSgM,15593
|
|
7
7
|
mergeron/core/guidelines_boundary_functions.py,sha256=GGn5mwBWmxkqcat4Ya0D-J6-7ujosgCCK3eJ9RFWASI,29749
|
|
8
8
|
mergeron/core/guidelines_boundary_functions_extra.py,sha256=HDwwKZDWlrj3Tw-I0gHm0TCSDcIyb9jDfwbuDvK55B8,11322
|
|
9
9
|
mergeron/core/pseudorandom_numbers.py,sha256=cJEWDTfy9CUTzR_di6Fm1Vl1Le6xWoU8wFHbYVMEuLI,9225
|
|
@@ -12,13 +12,13 @@ mergeron/data/damodaran_margin_data.xls,sha256=Qggl1p5nkOMJI8YUXhkwXQRz-OhRSqBTz
|
|
|
12
12
|
mergeron/data/damodaran_margin_data_dict.msgpack,sha256=sr6s4L69kposEpzGI7jpPb4ULz0UpY-bEYfeNi6UlRA,57621
|
|
13
13
|
mergeron/data/ftc_invdata.msgpack,sha256=WBFHgi7Ld4R-h2zL2Zc3TOIlKqVrbVFMH1LoI4-T-M0,264664
|
|
14
14
|
mergeron/demo/__init__.py,sha256=KtjBlZOl7jwBCAUhrTJB9PdrN39YLYytNiSUSM_gRmA,62
|
|
15
|
-
mergeron/demo/visualize_empirical_margin_distribution.py,sha256=
|
|
15
|
+
mergeron/demo/visualize_empirical_margin_distribution.py,sha256=R-sGC87kVovWBqcM5U6GiNC9oLsbNaMTJgljv8ts8w0,2347
|
|
16
16
|
mergeron/gen/__init__.py,sha256=0rfcWpKDhYE_jNsw6xKTGFJqgNtfJ-5JFxHS89CIEuI,16575
|
|
17
17
|
mergeron/gen/data_generation.py,sha256=jSpwB2BHBDPVTsT1-NZhTSCcUV6816qn5oZBe6S0Hio,16797
|
|
18
18
|
mergeron/gen/data_generation_functions.py,sha256=bP3E0IPXINRc8s0dUxS_Wqo1byVzheZLX811A17WNbU,28571
|
|
19
19
|
mergeron/gen/enforcement_stats.py,sha256=ZjrV_VkFMF0D1myc-fj-W99M1EhJMA9-nCfyE5g9e54,10890
|
|
20
|
-
mergeron/gen/upp_tests.py,sha256=
|
|
20
|
+
mergeron/gen/upp_tests.py,sha256=uRF4RrBo3amwQQSu661Xa50xKGMUxtnM3zRtYy3nyB0,12581
|
|
21
21
|
mergeron/py.typed,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
22
|
-
mergeron-2024.739127.
|
|
23
|
-
mergeron-2024.739127.
|
|
24
|
-
mergeron-2024.739127.
|
|
22
|
+
mergeron-2024.739127.1.dist-info/METADATA,sha256=crHd8c-F-fRENxyWbg7kjVS0a-GhPDozGn2UxvLssB4,13967
|
|
23
|
+
mergeron-2024.739127.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
24
|
+
mergeron-2024.739127.1.dist-info/RECORD,,
|
|
File without changes
|