mergeron 2024.739125.3__py3-none-any.whl → 2024.739127.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mergeron might be problematic. Click here for more details.
- mergeron/__init__.py +8 -9
- mergeron/core/ftc_merger_investigations_data.py +2 -2
- mergeron/core/guidelines_boundaries.py +2 -2
- mergeron/demo/visualize_empirical_margin_distribution.py +2 -3
- mergeron/gen/data_generation.py +21 -21
- mergeron/gen/enforcement_stats.py +3 -538
- mergeron/gen/upp_tests.py +19 -18
- {mergeron-2024.739125.3.dist-info → mergeron-2024.739127.1.dist-info}/METADATA +6 -6
- mergeron-2024.739127.1.dist-info/RECORD +24 -0
- mergeron/data/jinja2_LaTeX_templates/clrrate_cis_summary_table_template.tex.jinja2 +0 -121
- mergeron/data/jinja2_LaTeX_templates/ftcinvdata_byhhianddelta_table_template.tex.jinja2 +0 -82
- mergeron/data/jinja2_LaTeX_templates/ftcinvdata_summary_table_template.tex.jinja2 +0 -57
- mergeron/data/jinja2_LaTeX_templates/ftcinvdata_summarypaired_table_template_tabularray.tex.jinja2 +0 -81
- mergeron/data/jinja2_LaTeX_templates/ftcinvdata_summarypaired_table_template_tikz.tex.jinja2 +0 -142
- mergeron/data/jinja2_LaTeX_templates/mergeron.cls +0 -155
- mergeron/data/jinja2_LaTeX_templates/mergeron_table_collection_template.tex.jinja2 +0 -93
- mergeron/data/jinja2_LaTeX_templates/setup_tikz_tables.sty +0 -129
- mergeron-2024.739125.3.dist-info/RECORD +0 -32
- {mergeron-2024.739125.3.dist-info → mergeron-2024.739127.1.dist-info}/WHEEL +0 -0
mergeron/gen/upp_tests.py
CHANGED
|
@@ -7,11 +7,12 @@ from generated market data.
|
|
|
7
7
|
from collections.abc import Sequence
|
|
8
8
|
from contextlib import suppress
|
|
9
9
|
from pathlib import Path
|
|
10
|
-
from typing import
|
|
10
|
+
from typing import Any, Literal, TypedDict
|
|
11
11
|
|
|
12
12
|
import numpy as np
|
|
13
13
|
import tables as ptb # type: ignore
|
|
14
14
|
from numpy.random import SeedSequence
|
|
15
|
+
from numpy.typing import NDArray
|
|
15
16
|
|
|
16
17
|
from .. import ( # noqa
|
|
17
18
|
VERSION,
|
|
@@ -40,7 +41,7 @@ __version__ = VERSION
|
|
|
40
41
|
ptb.parameters.MAX_NUMEXPR_THREADS = 8
|
|
41
42
|
ptb.parameters.MAX_BLOSC_THREADS = 4
|
|
42
43
|
|
|
43
|
-
SaveData
|
|
44
|
+
type SaveData = Literal[False] | tuple[Literal[True], ptb.File, ptb.Group]
|
|
44
45
|
|
|
45
46
|
|
|
46
47
|
class INVRESCntsArgs(TypedDict, total=False):
|
|
@@ -53,7 +54,7 @@ class INVRESCntsArgs(TypedDict, total=False):
|
|
|
53
54
|
saved_array_name_suffix: str
|
|
54
55
|
|
|
55
56
|
|
|
56
|
-
def
|
|
57
|
+
def compute_upp_test_counts(
|
|
57
58
|
_market_data_sample: MarketDataSample,
|
|
58
59
|
_upp_test_parms: gbl.HMGThresholds,
|
|
59
60
|
_upp_test_regime: UPPTestRegime,
|
|
@@ -84,7 +85,7 @@ def enf_cnts(
|
|
|
84
85
|
"""
|
|
85
86
|
|
|
86
87
|
_enf_cnts_sim_array = -1 * np.ones((6, 2), np.int64)
|
|
87
|
-
_upp_test_arrays =
|
|
88
|
+
_upp_test_arrays = compute_upp_test_arrays(
|
|
88
89
|
_market_data_sample, _upp_test_parms, _upp_test_regime
|
|
89
90
|
)
|
|
90
91
|
|
|
@@ -191,7 +192,7 @@ def enf_cnts(
|
|
|
191
192
|
)
|
|
192
193
|
|
|
193
194
|
|
|
194
|
-
def
|
|
195
|
+
def compute_upp_test_arrays(
|
|
195
196
|
_market_data: MarketDataSample,
|
|
196
197
|
_upp_test_parms: gbl.HMGThresholds,
|
|
197
198
|
_sim_test_regime: UPPTestRegime,
|
|
@@ -236,13 +237,13 @@ def gen_upp_test_arrays(
|
|
|
236
237
|
|
|
237
238
|
np.divide(_ipr_array, 1 - _market_data.pcm_array, out=_cmcr_array)
|
|
238
239
|
|
|
239
|
-
(_divr_test_vector,) =
|
|
240
|
+
(_divr_test_vector,) = _compute_test_array_seq(
|
|
240
241
|
(_market_data.divr_array,),
|
|
241
242
|
_market_data.frmshr_array,
|
|
242
243
|
_sim_test_regime.divr_aggregator,
|
|
243
244
|
)
|
|
244
245
|
|
|
245
|
-
(_guppi_test_vector, _cmcr_test_vector, _ipr_test_vector) =
|
|
246
|
+
(_guppi_test_vector, _cmcr_test_vector, _ipr_test_vector) = _compute_test_array_seq(
|
|
246
247
|
(_guppi_array, _cmcr_array, _ipr_array),
|
|
247
248
|
_market_data.frmshr_array,
|
|
248
249
|
_sim_test_regime.guppi_aggregator,
|
|
@@ -267,7 +268,7 @@ def gen_upp_test_arrays(
|
|
|
267
268
|
return _upp_test_arrays
|
|
268
269
|
|
|
269
270
|
|
|
270
|
-
def
|
|
271
|
+
def _compute_test_array_seq(
|
|
271
272
|
_test_measure_seq: tuple[ArrayDouble, ...],
|
|
272
273
|
_wt_array: ArrayDouble,
|
|
273
274
|
_aggregator: UPPAggrSelector,
|
|
@@ -286,45 +287,45 @@ def _compute_test_value_seq(
|
|
|
286
287
|
|
|
287
288
|
match _aggregator:
|
|
288
289
|
case UPPAggrSelector.AVG:
|
|
289
|
-
|
|
290
|
+
_test_array_seq = (
|
|
290
291
|
1 / 2 * np.einsum("ij->i", _g)[:, None] for _g in _test_measure_seq
|
|
291
292
|
)
|
|
292
293
|
case UPPAggrSelector.CPA:
|
|
293
|
-
|
|
294
|
+
_test_array_seq = (
|
|
294
295
|
np.einsum("ij,ij->i", _wt_array[:, ::-1], _g)[:, None]
|
|
295
296
|
for _g in _test_measure_seq
|
|
296
297
|
)
|
|
297
298
|
case UPPAggrSelector.CPD:
|
|
298
|
-
|
|
299
|
+
_test_array_seq = (
|
|
299
300
|
np.sqrt(np.einsum("ij,ij,ij->i", _wt_array[:, ::-1], _g, _g))[:, None]
|
|
300
301
|
for _g in _test_measure_seq
|
|
301
302
|
)
|
|
302
303
|
case UPPAggrSelector.DIS:
|
|
303
|
-
|
|
304
|
+
_test_array_seq = (
|
|
304
305
|
np.sqrt(1 / 2 * np.einsum("ij,ij->i", _g, _g))[:, None]
|
|
305
306
|
for _g in _test_measure_seq
|
|
306
307
|
)
|
|
307
308
|
case UPPAggrSelector.MAX:
|
|
308
|
-
|
|
309
|
+
_test_array_seq = (
|
|
309
310
|
_g.max(axis=1, keepdims=True) for _g in _test_measure_seq
|
|
310
311
|
)
|
|
311
312
|
case UPPAggrSelector.MIN:
|
|
312
|
-
|
|
313
|
+
_test_array_seq = (
|
|
313
314
|
_g.min(axis=1, keepdims=True) for _g in _test_measure_seq
|
|
314
315
|
)
|
|
315
316
|
case UPPAggrSelector.OSA:
|
|
316
|
-
|
|
317
|
+
_test_array_seq = (
|
|
317
318
|
np.einsum("ij,ij->i", _wt_array, _g)[:, None]
|
|
318
319
|
for _g in _test_measure_seq
|
|
319
320
|
)
|
|
320
321
|
case UPPAggrSelector.OSD:
|
|
321
|
-
|
|
322
|
+
_test_array_seq = (
|
|
322
323
|
np.sqrt(np.einsum("ij,ij,ij->i", _wt_array, _g, _g))[:, None]
|
|
323
324
|
for _g in _test_measure_seq
|
|
324
325
|
)
|
|
325
326
|
case _:
|
|
326
327
|
raise ValueError("GUPPI/diversion ratio aggregation method is invalid.")
|
|
327
|
-
return tuple(
|
|
328
|
+
return tuple(_test_array_seq)
|
|
328
329
|
|
|
329
330
|
|
|
330
331
|
def initialize_hd5(
|
|
@@ -367,7 +368,7 @@ def save_data_to_hdf5(
|
|
|
367
368
|
|
|
368
369
|
|
|
369
370
|
def save_array_to_hdf5(
|
|
370
|
-
_array_obj:
|
|
371
|
+
_array_obj: NDArray[Any],
|
|
371
372
|
_array_name: str,
|
|
372
373
|
_h5_group: ptb.Group,
|
|
373
374
|
_h5_file: ptb.File,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mergeron
|
|
3
|
-
Version: 2024.
|
|
3
|
+
Version: 2024.739127.1
|
|
4
4
|
Summary: Merger Policy Analysis using Python
|
|
5
5
|
License: MIT
|
|
6
6
|
Keywords: merger policy analysis,merger guidelines,merger screening,policy presumptions,concentration standards,upward pricing pressure,GUPPI
|
|
@@ -41,16 +41,16 @@ Description-Content-Type: text/x-rst
|
|
|
41
41
|
mergeron: Merger Policy Analysis using Python
|
|
42
42
|
=============================================
|
|
43
43
|
|
|
44
|
-
|
|
44
|
+
Visualize the sets of mergers conforming to concentration and diversion-ratio standards. Estimate intrinsic enforcement rates, and intrinsic clearance rates, under concentration, diversion ratio, GUPPI, CMCR, and IPR bounds using generated data with specified distributions of market shares, price-cost margins, firm counts, and prices, optionally imposing restrictions implied by statutory filing thresholds and/or Bertrand-Nash oligopoly with MNL demand. Download and analyze merger investigations data published by the U.S. Federal Trade Commission in various reports on extended merger investigations (Second Requests) during 1996 to 2011.
|
|
45
45
|
|
|
46
46
|
Here, enforcement rates derived with merger enforcement as being exogenous to firm conduct are defined as intrinsic enforcement rates, and similarly intrinsic clearance rates. Depending on the merger enforcement regime, or merger control regime, intrinsic enforcement rates may also not be the complement of intrinsic clearance rates, i.e, it is not necessarily true that the intrinsic clearance rate estimate for a given enforcement regime is 1 minus the intrinsic enforcement rate. In contrast, observed enforcement rates reflect the deterrent effects of merger enforcement on firm conduct as well as the effects of merger screening on the level of enforcement; and, by definition, the observed clearance rate is 1 minus the observed enforcement rate.
|
|
47
47
|
|
|
48
48
|
Introduction
|
|
49
49
|
------------
|
|
50
50
|
|
|
51
|
-
Module :code:`.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`.core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`.core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary
|
|
51
|
+
Module :code:`.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`.core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`.core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary, as an array of share-pairs, and area. This module also includes a function for generating plots of concentration and diversion-ratio boundaries, and functions for mapping GUPPI standards to concentration (ΔHHI) standards, and vice-versa.
|
|
52
52
|
|
|
53
|
-
Module :code:`.gen.data_generation` includes the :code:`.gen.data_generation.MarketSample` which provides for a rich specification of shares and diversion ratios (:code:`.gen.data_generation.MarketSample.share_spec`), margins (:code:`.gen.data_generation.MarketSample.pcm_spec`, prices (:code:`.gen.data_generation.MarketSample.price_spec`), and HSR filing requirements (:code:`.gen.data_generation.MarketSample.hsr_filing_test_type`), and with methods for, (i) generating sample data (:code:`.gen.data_generation.MarketSample.generate_sample`), and (ii)
|
|
53
|
+
Module :code:`.gen.data_generation` includes the :code:`.gen.data_generation.MarketSample` which provides for a rich specification of shares and diversion ratios (:code:`.gen.data_generation.MarketSample.share_spec`), margins (:code:`.gen.data_generation.MarketSample.pcm_spec`, prices (:code:`.gen.data_generation.MarketSample.price_spec`), and HSR filing requirements (:code:`.gen.data_generation.MarketSample.hsr_filing_test_type`), and with methods for, (i) generating sample data (:code:`.gen.data_generation.MarketSample.generate_sample`), and (ii) computing the intrinsic enforcement rate and intrinsic clearance rate for the generated sample, given a method (:code:`.UPPAggrSelector`) of aggregating diversion ratio or GUPPI estimates for the firms in a merger (:code:`.gen.data_generation.MarketSample.estimate_enf_counts`). While the latter populate the properties, :code:`.gen.data_generation.MarketSample.data`
|
|
54
54
|
and :code:`.gen.data_generation.MarketSample.enf_counts`, respectively, the underlying methods for generating standalone :code:`MarketDataSample` and :code:`UPPTestCounts` objects are included in the class definition, with helper functions defined in the modules, :code:`.gen.data_generation_functions` and :code:`.gen.upp_tests`. Notably, market shares are generated for a sample of markets with firm-count distributed as specified in :code:`.gen.data_generation.MarketSample.share_spec.firm_count_weights`, with defaults as discussed below (also see, :code:`.gen.ShareSpec.firm_count_weights`.
|
|
55
55
|
|
|
56
56
|
By default, merging-firm shares are drawn with uniform distribution over the space :math:`s_1 + s_2 \leqslant 1` for an unspecified number of firms. Alternatively, shares may be drawn from the Dirichlet distribution (see property `dist_type` of :code:`.gen.data_generation.MarketSample.share_spec`, of type, :code:`.gen.SHRDistribution`), with specified shape parameters (property `dist_parms` of :code:`.gen.data_generation.MarketSample.share_spec`. When drawing shares from the Dirichlet distribution, the user specifies the `firm_count_weights` property of :code:`.gen.data_generation.MarketSample.share_spec`, as a vector of weights specifying the frequency distribution over sequential firm counts, e.g., :code:`[133, 184, 134, 52, 32, 10, 12, 4, 3]` to specify shares drawn from Dirichlet distributions with 2 to 10 pre-merger firms distributed as in data for FTC merger investigations during 1996--2003 (See, for example, Table 4.1 of `FTC, Horizontal Merger Investigations Data, Fiscal Years 1996--2003 (Revised: August 31, 2004) <https://www.ftc.gov/sites/default/files/documents/reports/horizontal-merger-investigation-data-fiscal-years-1996-2003/040831horizmergersdata96-03.pdf>`_). If the property `firm_count_weights` is not explicitly assigned a value when defining :code:`.gen.data_generation.MarketSample.share_spec`, the default values is used, which results in a sample of markets with 2 to 7 firms with relative frequency in inverse proportion to firm-count, with 2-firm markets being 6 times as likely to be drawn as 7-firm markets.
|
|
@@ -65,11 +65,11 @@ The market sample may be restricted to mergers meeting the HSR filing requiremen
|
|
|
65
65
|
|
|
66
66
|
The full specification of a market sample is given in a :code:`.gen.data_generation.MarketSample` object, including the above parameters. Data are drawn by invoking :code:`.gen.data_generation.MarketSample.generate_sample` which adds a :code:`data` property of class, :code:`.gen.MarketDataSample`. Enforcement or clearance counts are computed by invoking :code:`.gen.data_generation.MarketSample.estimate_enf_counts`, which adds an :code:`enf_counts` property of class :code:`.gen.UPPTestsCounts`. For fast, parallel generation of enforcement or clearance counts over large market data samples that ordinarily would exceed available limits on machine memory, the user can invoke the method :code:`.gen.data_generation.MarketSample.estimate_enf_counts` on a :code:`.gen.data_generation.MarketSample` object without first invoking :code:`.gen.data_generation.MarketSample.generate_sample`. Note, however, that this strategy does not retain the market sample in memory in the interests of conserving memory and maintaining high performance (the user can specify that the market sample and enforcement statistics be stored to permanent storage; when saving to current PCIe NVMe storage, the performance penalty is slight, but can be considerable if saving to SATA storage).
|
|
67
67
|
|
|
68
|
-
Enforcement statistics based on FTC investigations data and test data are
|
|
68
|
+
Enforcement statistics based on FTC investigations data and test data are tabulated using methods provided in :code:`.gen.enforcement_stats`.
|
|
69
69
|
|
|
70
70
|
Programs demonstrating the use of this package are included in the sub-package, :code:`.demo`.
|
|
71
71
|
|
|
72
|
-
This package includes a class, :code:`.core.pseudorandom_numbers.MultithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple virtual, logical, or physical
|
|
72
|
+
This package includes a class, :code:`.core.pseudorandom_numbers.MultithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple CPU cores, be they virtual, logical, or physical cores. This class is an adaptation from the documentation for the external :code:`numpy.random` subpackage, from the discussion on, "`Multithreaded generation <https://numpy.org/doc/stable/reference/random/multithreading.html>`_"; the version included here permits selection of the distribution with pre-tests to catch and inform on common errors. To access these directly:
|
|
73
73
|
|
|
74
74
|
.. code-block:: python
|
|
75
75
|
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
mergeron/License.txt,sha256=7iX-y0EyjkbVJKJLS4ZKzuuE1wd0lryfsD_IytLG8lQ,1246
|
|
2
|
+
mergeron/__init__.py,sha256=SJjvuKqKcQsybbuFoLgA4PrvV8gB6TJFoQL7qbd2Jr4,1459
|
|
3
|
+
mergeron/core/__init__.py,sha256=KtjBlZOl7jwBCAUhrTJB9PdrN39YLYytNiSUSM_gRmA,62
|
|
4
|
+
mergeron/core/damodaran_margin_data.py,sha256=rMrgN1Qtw572a0ftY97OOj4otq8ldlLrcOi-bcE-org,8554
|
|
5
|
+
mergeron/core/ftc_merger_investigations_data.py,sha256=eldNU4hX9oKE4Rb08YE9_1LgolvNKZnhOXW6KyWSwnM,28622
|
|
6
|
+
mergeron/core/guidelines_boundaries.py,sha256=aOpSOaZPsN3CKcLMgkjtCXT2O-l0qb8Qh0Xv4chdSgM,15593
|
|
7
|
+
mergeron/core/guidelines_boundary_functions.py,sha256=GGn5mwBWmxkqcat4Ya0D-J6-7ujosgCCK3eJ9RFWASI,29749
|
|
8
|
+
mergeron/core/guidelines_boundary_functions_extra.py,sha256=HDwwKZDWlrj3Tw-I0gHm0TCSDcIyb9jDfwbuDvK55B8,11322
|
|
9
|
+
mergeron/core/pseudorandom_numbers.py,sha256=cJEWDTfy9CUTzR_di6Fm1Vl1Le6xWoU8wFHbYVMEuLI,9225
|
|
10
|
+
mergeron/data/__init__.py,sha256=KtjBlZOl7jwBCAUhrTJB9PdrN39YLYytNiSUSM_gRmA,62
|
|
11
|
+
mergeron/data/damodaran_margin_data.xls,sha256=Qggl1p5nkOMJI8YUXhkwXQRz-OhRSqBTzz57N0JQyYA,79360
|
|
12
|
+
mergeron/data/damodaran_margin_data_dict.msgpack,sha256=sr6s4L69kposEpzGI7jpPb4ULz0UpY-bEYfeNi6UlRA,57621
|
|
13
|
+
mergeron/data/ftc_invdata.msgpack,sha256=WBFHgi7Ld4R-h2zL2Zc3TOIlKqVrbVFMH1LoI4-T-M0,264664
|
|
14
|
+
mergeron/demo/__init__.py,sha256=KtjBlZOl7jwBCAUhrTJB9PdrN39YLYytNiSUSM_gRmA,62
|
|
15
|
+
mergeron/demo/visualize_empirical_margin_distribution.py,sha256=R-sGC87kVovWBqcM5U6GiNC9oLsbNaMTJgljv8ts8w0,2347
|
|
16
|
+
mergeron/gen/__init__.py,sha256=0rfcWpKDhYE_jNsw6xKTGFJqgNtfJ-5JFxHS89CIEuI,16575
|
|
17
|
+
mergeron/gen/data_generation.py,sha256=jSpwB2BHBDPVTsT1-NZhTSCcUV6816qn5oZBe6S0Hio,16797
|
|
18
|
+
mergeron/gen/data_generation_functions.py,sha256=bP3E0IPXINRc8s0dUxS_Wqo1byVzheZLX811A17WNbU,28571
|
|
19
|
+
mergeron/gen/enforcement_stats.py,sha256=ZjrV_VkFMF0D1myc-fj-W99M1EhJMA9-nCfyE5g9e54,10890
|
|
20
|
+
mergeron/gen/upp_tests.py,sha256=uRF4RrBo3amwQQSu661Xa50xKGMUxtnM3zRtYy3nyB0,12581
|
|
21
|
+
mergeron/py.typed,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
22
|
+
mergeron-2024.739127.1.dist-info/METADATA,sha256=crHd8c-F-fRENxyWbg7kjVS0a-GhPDozGn2UxvLssB4,13967
|
|
23
|
+
mergeron-2024.739127.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
24
|
+
mergeron-2024.739127.1.dist-info/RECORD,,
|
|
@@ -1,121 +0,0 @@
|
|
|
1
|
-
\begin{table}[bt]
|
|
2
|
-
%# jinja2 code blocks for creating variables here
|
|
3
|
-
%# Spurious blank lines don't matter?
|
|
4
|
-
((* if tmpl_data.obs_merger_class == 'Entry Difficult' *))
|
|
5
|
-
((* set table_ref, obs_merger_class_desc = "9.2", "Markets with Strong Entry Barriers (``" + tmpl_data.obs_merger_class + "'')" *))
|
|
6
|
-
((* else *))
|
|
7
|
-
((* set table_ref, obs_merger_class_desc = "3.1", tmpl_data.obs_merger_class *))
|
|
8
|
-
((* endif *))
|
|
9
|
-
|
|
10
|
-
((* if tmpl_data.test_res == 'Enforcement' *))
|
|
11
|
-
((* set prop_title = "Proportion Enforced" *))
|
|
12
|
-
((* else *))
|
|
13
|
-
((* set prop_title = "Proportion Cleared" *))
|
|
14
|
-
((* endif *))
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
\centering
|
|
18
|
-
\caption{
|
|
19
|
-
\JINVAR{ prop_title } and Simulated \JINVAR{ tmpl_data.PolicySelector} Rates
|
|
20
|
-
for FTC Investigated Mergers
|
|
21
|
-
}\label{tbl:clearanceRates_\JINVAR{ tmpl_data.obs_summary_type|replace(" ", "") -}_\JINVAR{ tmpl_data.obs_merger_class|replace(" ", "") -}_\JINVAR{ tmpl_data.obs_period|last -}}
|
|
22
|
-
{\footnotesize
|
|
23
|
-
\JINVAR{ tmpl_data.obs_summary_type_title } \\
|
|
24
|
-
\JINVAR{ obs_merger_class_desc +", " + tmpl_data.obs_period|join('--') } \\[0.5\baselineskip]
|
|
25
|
-
}
|
|
26
|
-
\begin{tikzpicture}[auto, font = \sffamily]
|
|
27
|
-
\begin{pgfonlayer}{background}
|
|
28
|
-
\matrix[datatable,
|
|
29
|
-
column 1/.style = {nodes = {align=right, text width = 27pt,},},
|
|
30
|
-
column 2/.style = {nodes = {align=right, text width = 77pt,},},
|
|
31
|
-
] (stats_cis) {
|
|
32
|
-
\JINVAR{ tmpl_data.stats_cis -}
|
|
33
|
-
};
|
|
34
|
-
\draw[color = OBSHDRFill, line width = 1pt,] (stats_cis-\JINVAR{- tmpl_data.stats_numrows -}-1.north west) -- (stats_cis-\JINVAR{- tmpl_data.stats_numrows -}-2.north east);
|
|
35
|
-
\end{pgfonlayer}
|
|
36
|
-
% Header row - column heads
|
|
37
|
-
\matrix[hrow,
|
|
38
|
-
above = 0 pt of stats_cis,
|
|
39
|
-
column 1/.style = {
|
|
40
|
-
nodes = {
|
|
41
|
-
minimum height = 33pt,
|
|
42
|
-
text width = 60pt,
|
|
43
|
-
text depth = 8pt,
|
|
44
|
-
align = left,
|
|
45
|
-
inner sep = 3pt,
|
|
46
|
-
},
|
|
47
|
-
},
|
|
48
|
-
column 2/.style = {
|
|
49
|
-
nodes = {
|
|
50
|
-
minimum height = 83pt,
|
|
51
|
-
text width = 60pt,
|
|
52
|
-
text depth = 8pt,
|
|
53
|
-
align = left,
|
|
54
|
-
inner sep = 3pt,
|
|
55
|
-
},
|
|
56
|
-
},
|
|
57
|
-
] (hdrrow_cis) {
|
|
58
|
-
\node[rotate = 90] (hdr1) {Relative \\ Frequency \\}; &
|
|
59
|
-
\node[rotate = 90] (hdr2) {\JINVAR{ prop_title|replace(" ", "\\\\") } \\ {[95\% CI]} \\}; \\
|
|
60
|
-
};
|
|
61
|
-
% Header row - columns description
|
|
62
|
-
\matrix[hrow,
|
|
63
|
-
above = 0pt of hdrrow_cis,
|
|
64
|
-
nodes = {minimum height = 12.5pt, text width = 115.6pt,}
|
|
65
|
-
] (descrow_cis) {
|
|
66
|
-
Observed Data \\
|
|
67
|
-
};
|
|
68
|
-
|
|
69
|
-
% Header column - row heads
|
|
70
|
-
\matrix[hcol, left = 0pt of stats_cis, nodes = {
|
|
71
|
-
text width = \JINVAR{ tmpl_data.hdrcol_cis_width -},
|
|
72
|
-
inner xsep = 3 pt,
|
|
73
|
-
},] (hdrcol_cis) {
|
|
74
|
-
\JINVAR{ tmpl_data.stats_hdrstr -}
|
|
75
|
-
};
|
|
76
|
-
% Header column - row heads - description
|
|
77
|
-
\JINVAR{ tmpl_data.hdrcoldescstr }
|
|
78
|
-
|
|
79
|
-
% Fill along header
|
|
80
|
-
\draw[color = OBSHDRFill, fill = OBSHDRFill,]
|
|
81
|
-
(hdrcoldesc_cis.north west |- descrow_cis.north west)
|
|
82
|
-
rectangle
|
|
83
|
-
(hdrcoldesc_cis.north east); % (x1, y2); -| gives (x2, y1)
|
|
84
|
-
|
|
85
|
-
% Notes below table
|
|
86
|
-
\matrix[anytable,
|
|
87
|
-
below right = 4pt and 8pt of hdrcol_cis.south west,
|
|
88
|
-
nodes = {notetext, minimum height = 10pt, text width = \JINVAR{ tmpl_data.stats_cis_notewidth -}\linewidth,},
|
|
89
|
-
] (notestext) {
|
|
90
|
-
NOTES: \\
|
|
91
|
-
\JINVAR{ tmpl_data.stats_cis_notestr -}
|
|
92
|
-
\\
|
|
93
|
-
SOURCES: \\
|
|
94
|
-
\(\cdot\) See notes to Table~\ref{tbl:FTCInvData_\JINVAR{ tmpl_data.obs_summary_type|replace(" ", "") -}} for Observed Data \\
|
|
95
|
-
};
|
|
96
|
-
|
|
97
|
-
% === Simulated clearance rate data and headers ===
|
|
98
|
-
\begin{pgfonlayer}{background}
|
|
99
|
-
\matrix[datatable, right = 3pt of stats_cis, nodes = {text width = 27pt,},
|
|
100
|
-
] (stats_sim) {
|
|
101
|
-
\JINVAR{ tmpl_data.stats_sim -}
|
|
102
|
-
};
|
|
103
|
-
\draw[color = SIMHDRFill, line width = 1pt,] (stats_sim-\JINVAR{- tmpl_data.stats_numrows -}-1.north west) -- (stats_sim-\JINVAR{- tmpl_data.stats_numrows -}-4.north east);
|
|
104
|
-
\end{pgfonlayer}
|
|
105
|
-
% Header row - column heads
|
|
106
|
-
\matrix[hrow,
|
|
107
|
-
above = 0pt of stats_sim,
|
|
108
|
-
nodes = {fill = SIMHDRFill, minimum height = 33pt, text width = 60pt, text depth = 16pt, align = left, inner sep = 3pt,}, %
|
|
109
|
-
column 1/.style = {nodes = {text depth = 8pt, },},
|
|
110
|
-
] (hdrrow_sim) {
|
|
111
|
-
\node [rotate = 90, pos = 0.0] {Relative \\ Frequency \\}; &
|
|
112
|
-
\node [rotate = 90, pos = 0.0] {\JINVAR{tmpl_data.PolicySelector -} \\ Rate \\ {\tiny \(\safeharb{g} = \JINVAR{ tmpl_data.guppi_bound -}; \safeharb{d} = \JINVAR{ tmpl_data.rbar -}\)} \\}; &
|
|
113
|
-
\node [rotate = 90, pos = 0.0] {\JINVAR{tmpl_data.PolicySelector -} \\ Rate \\ {\tiny \(\safeharb{g} = \JINVAR{ tmpl_data.guppi_bound -}; \safeharb{d} = \JINVAR{ tmpl_data.dbar -}\)} \\}; &
|
|
114
|
-
\node [rotate = 90, pos = 0.0] {\JINVAR{tmpl_data.PolicySelector -} \\ Rate \\ {\tiny \(\safeharb{CMCR} = \JINVAR{ tmpl_data.cmcr_bound -}\)} \\}; \\
|
|
115
|
-
};
|
|
116
|
-
\matrix[hrow, above = 0pt of hdrrow_sim,
|
|
117
|
-
nodes = {fill = SIMHDRFill, minimum height = 12.5pt, text width = 130.8pt}] (hdrrowdesc_sim) {
|
|
118
|
-
Generated Data \\
|
|
119
|
-
};
|
|
120
|
-
\end{tikzpicture}
|
|
121
|
-
\end{table}
|
|
@@ -1,82 +0,0 @@
|
|
|
1
|
-
\begin{table}[bt]
|
|
2
|
-
((* set obs_period_last = tmpl_data.obs_period|last *))
|
|
3
|
-
((* if tmpl_data.obs_merger_class == 'Entry Difficult' *))
|
|
4
|
-
((* set table_ref, obs_merger_class_desc = "9.2", "Markets with Strong Entry Barriers (``" + tmpl_data.obs_merger_class + "'')" *))
|
|
5
|
-
((* else *))
|
|
6
|
-
((* set table_ref, obs_merger_class_desc = "3.1", tmpl_data.obs_merger_class *))
|
|
7
|
-
((* endif *))
|
|
8
|
-
|
|
9
|
-
((* if obs_period_last == "2003" *))
|
|
10
|
-
((* set data_pub_year = "2004" *))
|
|
11
|
-
((* elif obs_period_last == "2011" *))
|
|
12
|
-
((* set data_pub_year = "2013" *))
|
|
13
|
-
((* else *))
|
|
14
|
-
((* set data_pub_year = "" *))
|
|
15
|
-
((* endif *))
|
|
16
|
-
|
|
17
|
-
\centering
|
|
18
|
-
\caption{FTC Merger Investigations Data, Fiscal Years \JINVAR{ tmpl_data.obs_period|join('--') }}\label{tbl:FTCInvData_ByConc_\JINVAR{ tmpl_data.obs_merger_class|replace(" ", "") -}_\JINVAR{ obs_period_last -}}
|
|
19
|
-
|
|
20
|
-
{\footnotesize
|
|
21
|
-
Odds ratio --- Enforced to Closed, by Post-Merger HHI and Change in Concentration \\
|
|
22
|
-
\JINVAR{ obs_merger_class_desc } \\[0.5\baselineskip]
|
|
23
|
-
}
|
|
24
|
-
\begin{tikzpicture}[font = \sffamily]
|
|
25
|
-
\matrix[datatable, nodes = {align = center, inner xsep = 0pt, text width = 40pt,}] (datamtrx) {
|
|
26
|
-
\JINVAR{ tmpl_data.invdata_byhhianddelta -}
|
|
27
|
-
};
|
|
28
|
-
% Demarcate totals row (#9) and totals column (#9)
|
|
29
|
-
\draw[color = OBSHDRFill, line width = 1pt,] (datamtrx-1-9.north west) -- (datamtrx-9-9.south west);
|
|
30
|
-
\draw[color = OBSHDRFill, line width = 1pt,] (datamtrx-9-1.north west) -- (datamtrx-9-9.north east);
|
|
31
|
-
% Header row - column heads
|
|
32
|
-
\matrix[hrow, above = 0pt of datamtrx, nodes = {minimum height = 36pt}] (hdrrow) {
|
|
33
|
-
{0 -- \\ 99} & {100 -- \\ 199} & {200 -- \\ 299} & {300 -- \\ 499} & {500 -- \\ 799} & {800 -- \\ 1,199} & {1,200 -- \\ 2,499} & 2,500 -- 5,000 & TOTAL \\
|
|
34
|
-
};
|
|
35
|
-
% Header column - row headings
|
|
36
|
-
\matrix[hcol, left = 0pt of datamtrx] (hdrcol) {
|
|
37
|
-
0 -- 1,799 \\
|
|
38
|
-
1,800 -- 1,999 \\
|
|
39
|
-
2,000 -- 2,399 \\
|
|
40
|
-
2,400 -- 2,999 \\
|
|
41
|
-
3,000 -- 3,999 \\
|
|
42
|
-
4,000 -- 4,999 \\
|
|
43
|
-
5,000 -- 6,999 \\
|
|
44
|
-
7,000 -- 10,000 \\
|
|
45
|
-
TOTAL \\
|
|
46
|
-
};
|
|
47
|
-
% Notes below table
|
|
48
|
-
\matrix[anytable, below right = 4pt and -4pt of hdrcol.south west, nodes = {notetext, minimum height = 10pt, text width = 0.92*\linewidth,},] (notestext) {%
|
|
49
|
-
\JINVAR{ tmpl_data.invdata_notestr -}
|
|
50
|
-
SOURCES: \\
|
|
51
|
-
\JINVAR{ tmpl_data.invdata_sourcestr -}
|
|
52
|
-
\(\cdot\) Guidelines standards from (a.) \fullcite{USHMG1992} and (b.) \fullcite{USHMG2010} \\
|
|
53
|
-
};
|
|
54
|
-
|
|
55
|
-
% Demarcate the yellow(?) and red zones in 1992 Guidelines standards
|
|
56
|
-
\draw[draw = VibrRed, line width = 1.25pt]
|
|
57
|
-
(datamtrx-9-1.south east)
|
|
58
|
-
-- (datamtrx-1-1.south east)
|
|
59
|
-
-- (datamtrx-1-9.south east)
|
|
60
|
-
;
|
|
61
|
-
\draw[draw = VibrRed, line width = 1.25pt, dashed]
|
|
62
|
-
(datamtrx-9-2.south east)
|
|
63
|
-
-- (datamtrx-3-2.south east)
|
|
64
|
-
-- (datamtrx-3-9.south east)
|
|
65
|
-
;
|
|
66
|
-
|
|
67
|
-
% Text height for descriptive titles is defined as 12pt (at two places below, one for each descriptor)
|
|
68
|
-
% Header (first) row - description of column heads
|
|
69
|
-
\draw[hdrtext, draw = OBSHDRFill] %
|
|
70
|
-
($(hdrrow.north west) + (0pt, +12pt)$) node (hdrrowdescNW) {}
|
|
71
|
-
rectangle
|
|
72
|
-
(hdrrow.north east) node[pos=0.5, anchor = north] {Change in Concentration (\Deltah{})};
|
|
73
|
-
% Header (first) colum - description of row heads
|
|
74
|
-
\draw[hdrtext, draw = OBSHDRFill]
|
|
75
|
-
($(hdrcol.north west) + (-12pt, 0pt)$) node (hdrcoldescNW) {}
|
|
76
|
-
rectangle
|
|
77
|
-
(hdrcol.south west) node[pos=0.5, rotate = 90] {Post-merger HHI \(\left(\mathrm{HHI}_{post}\right)\)};
|
|
78
|
-
|
|
79
|
-
% Fill top left corner, with more or fewer header/descriptor rows, only the top-left coordinates change
|
|
80
|
-
\draw[hdrtext, draw = OBSHDRFill] (hdrcoldescNW |- hdrrowdescNW) rectangle (datamtrx.north west); % (x1, y2); -| gives (x2, y1)
|
|
81
|
-
\end{tikzpicture}
|
|
82
|
-
\end{table}
|
|
@@ -1,57 +0,0 @@
|
|
|
1
|
-
\begin{table}[bt]
|
|
2
|
-
%# jinja2 code blocks for creating variables here
|
|
3
|
-
%# Spurious blank lines don't matter?
|
|
4
|
-
((* if tmpl_data.obs_merger_class == 'Entry Difficult' *))
|
|
5
|
-
((* set table_ref, obs_merger_class_desc = "9.2", "Markets with Strong Entry Barriers (``" + tmpl_data.obs_merger_class + "'')" *))
|
|
6
|
-
((* else *))
|
|
7
|
-
((* set table_ref, obs_merger_class_desc = "3.1", tmpl_data.obs_merger_class *))
|
|
8
|
-
((* endif *))
|
|
9
|
-
|
|
10
|
-
\centering
|
|
11
|
-
\caption{FTC Merger Investigations Data}\label{tbl:FTCInvData_\JINVAR{ tmpl_data.obs_summary_type|replace(" ", "") -}_\JINVAR{ tmpl_data.obs_merger_class|replace(" ", "") -}}
|
|
12
|
-
{\footnotesize \JINVAR{ tmpl_data.obs_summary_type_title } \\
|
|
13
|
-
\JINVAR{ obs_merger_class_desc } \\[0.5\baselineskip]}
|
|
14
|
-
\begin{tikzpicture}[auto, font = \sffamily]
|
|
15
|
-
\begin{pgfonlayer}{background}
|
|
16
|
-
\matrix[datatable, nodes = {text width = 42pt,},] (clr_rate_raw) {
|
|
17
|
-
\JINVAR{ tmpl_data.invdata_datstr|replace("nan\%", "---") -}
|
|
18
|
-
};
|
|
19
|
-
\draw[color = OBSHDRFill, line width = 1pt] (clr_rate_raw-11-1.north west) -- (clr_rate_raw-11-4.north east);
|
|
20
|
-
\draw[color = OBSHDRFill, line width = 1pt] (clr_rate_raw-1-2.north east) -- (clr_rate_raw-11-2.south east);
|
|
21
|
-
\end{pgfonlayer}
|
|
22
|
-
|
|
23
|
-
% Header row - column heads
|
|
24
|
-
\matrix[hrow, above = 0 pt of clr_rate_raw, nodes = {align = right, inner xsep = 3pt, minimum height = 12.5pt, text width = 42pt},] (hdrrow_raw) {
|
|
25
|
-
Relative & Proportion & Relative & Proportion \\
|
|
26
|
-
Frequency & Cleared & Frequency & Cleared \\
|
|
27
|
-
};
|
|
28
|
-
% Header row - columns description -- period 1
|
|
29
|
-
\matrix[hrow, above right = 0pt of hdrrow_raw.north west, nodes = {minimum height = 12.5pt, text width = 95.6pt,},] (descrow_raw_pd1) {
|
|
30
|
-
1996--2003 \\
|
|
31
|
-
};
|
|
32
|
-
% Header row - columns description -- period 2
|
|
33
|
-
\matrix[hrow, above left = 0pt of hdrrow_raw.north east, nodes = {minimum height = 12.5pt, text width = 95.6pt,},] (descrow_raw_pd2) {
|
|
34
|
-
2004--2011 \\
|
|
35
|
-
};
|
|
36
|
-
% Header row - columns description
|
|
37
|
-
\matrix[hrow, above left = 0pt of descrow_raw_pd2.north east, nodes = {minimum height = 12.5pt, text width = 190.8pt},] (descrow_raw) {
|
|
38
|
-
Observed Data \\
|
|
39
|
-
};
|
|
40
|
-
% Header column - row heads
|
|
41
|
-
\matrix[hcol, left = 0pt of clr_rate_raw, nodes = {text width = 108pt},] (hdrcol_raw) {
|
|
42
|
-
\JINVAR{ tmpl_data.invdata_hdrstr -}
|
|
43
|
-
};
|
|
44
|
-
% Header column - row heads - description
|
|
45
|
-
\JINVAR{ tmpl_data.invdata_hdrcoldescstr }
|
|
46
|
-
|
|
47
|
-
% Notes below table
|
|
48
|
-
\matrix[anytable, below right = 4pt and 4pt of hdrcol_raw.south west, nodes = {notetext, minimum height = 10pt, text width = 0.72*\linewidth,},] (notestext) {
|
|
49
|
-
\JINVAR{ tmpl_data.invdata_notestr }
|
|
50
|
-
SOURCES: \\
|
|
51
|
-
% \(\cdot\) Fed. Trade Comm'n (2004), \textit{supra} note~\ref{fn:FTCInvData1996to2003}, Table~4.1 and Table~10.2 \\
|
|
52
|
-
\JINVAR{ tmpl_data.invdata_sourcestr }
|
|
53
|
-
% \(\cdot\) Fed. Trade Comm'n (2013), \textit{supra} note~\ref{fn:FTCInvData1996to2011}, Table~4.1 and Table~10.2 \\
|
|
54
|
-
};
|
|
55
|
-
\end{tikzpicture}
|
|
56
|
-
\end{table}
|
|
57
|
-
|
mergeron/data/jinja2_LaTeX_templates/ftcinvdata_summarypaired_table_template_tabularray.tex.jinja2
DELETED
|
@@ -1,81 +0,0 @@
|
|
|
1
|
-
\begin{table}[t]
|
|
2
|
-
|
|
3
|
-
((* if tmpl_data.obs_merger_class_0 == 'All Markets' *))
|
|
4
|
-
((* set obs_merger_class_0 = "All Markets" *))
|
|
5
|
-
((* else *))
|
|
6
|
-
((* set obs_merger_class_0 = "Markets with, ``" + tmpl_data.obs_merger_class_0 + "''" *))
|
|
7
|
-
((* endif *))
|
|
8
|
-
|
|
9
|
-
((* set obs_merger_class_1 = "Markets with, ``" + tmpl_data.obs_merger_class_1 + "''" *))
|
|
10
|
-
|
|
11
|
-
\centering
|
|
12
|
-
\caption{FTC Merger Investigations Data}\label{tbl:FTCInvData_\JINVAR{- tmpl_data.obs_summary_type }_alt}
|
|
13
|
-
{\footnotesize
|
|
14
|
-
\JINVAR{ tmpl_data.obs_summary_type_title } \\
|
|
15
|
-
Grouped by Entry Conditions and Reporting Period \\[0.5\baselineskip]
|
|
16
|
-
}
|
|
17
|
-
|
|
18
|
-
\sffamily\scriptsize\addfontfeatures{Numbers={Monospaced,Lining}}
|
|
19
|
-
\SetTblrInner{stretch=0, rowsep=3pt, colsep=3pt, hspan=even}
|
|
20
|
-
\begin{tikzpicture}[auto, font = \sffamily]
|
|
21
|
-
\begin{tblr}{
|
|
22
|
-
baseline=T,
|
|
23
|
-
width=\textwidth,
|
|
24
|
-
colspec = {%
|
|
25
|
-
Q[c,m,wd=\JINVAR{ tmpl_data.hdrcol_width }]%
|
|
26
|
-
Q[r,m]%
|
|
27
|
-
Q[r,m]%
|
|
28
|
-
Q[r,m]%
|
|
29
|
-
Q[r,m]%
|
|
30
|
-
Q[r,m]%
|
|
31
|
-
Q[r,m]%
|
|
32
|
-
Q[r,m]%
|
|
33
|
-
Q[r,m]%
|
|
34
|
-
},
|
|
35
|
-
row{odd[6]} = {bg=table_bar_green},
|
|
36
|
-
row{1-5} = {fg=white, bg=OBSHDRFill},
|
|
37
|
-
column{1} = {fg=white, bg=OBSHDRFill},
|
|
38
|
-
cell{1}{1} = {r=5, c=1}{c, f},
|
|
39
|
-
cell{1}{2} = {r=1, c=8}{c},
|
|
40
|
-
cell{2}{2,6} = {r=1, c=4}{c},
|
|
41
|
-
cell{3,4}{2,4,6,8} = {r=1, c=2}{c},
|
|
42
|
-
cell{5}{2-9} = {r, m, cmd=\rothead},
|
|
43
|
-
vline{4,8} = {3-5}{1pt, white},
|
|
44
|
-
vline{6} = {2-5}{1pt, white},
|
|
45
|
-
vline{4,6,8} = {6-Z}{1pt, OBSHDRFill},
|
|
46
|
-
hline{Y} = {1-Z}{1pt, OBSHDRFill},
|
|
47
|
-
}
|
|
48
|
-
{ \JINVAR{- tmpl_data.hdrcol_desc_text } } &
|
|
49
|
-
Observed Data & & & & & & & \\
|
|
50
|
-
sp0 &
|
|
51
|
-
\JINVAR{ obs_merger_class_0 } & sp0 & sp0 & sp0 &
|
|
52
|
-
\JINVAR{ obs_merger_class_1 } & sp0 & sp0 & sp0 \\
|
|
53
|
-
sp0 &
|
|
54
|
-
\JINVAR{ tmpl_data.obs_periods_str|replace(" & ", " & sp0 & ") } & sp0 &
|
|
55
|
-
\JINVAR{ tmpl_data.obs_periods_str|replace(" & ", " & sp0 & ") } & sp0 \\
|
|
56
|
-
sp0 &
|
|
57
|
-
\JINVAR{ tmpl_data.mkt_counts_str_class_0|replace(" & ", " & sp0 & ") } & sp0 &
|
|
58
|
-
\JINVAR{ tmpl_data.mkt_counts_str_class_0|replace(" & ", " & sp0 & ") } & sp0 \\
|
|
59
|
-
sp0 &
|
|
60
|
-
{Relative \\ Frequency} &
|
|
61
|
-
{Proportion \\ Enforced} &
|
|
62
|
-
{Relative \\ Frequency} &
|
|
63
|
-
{Proportion \\ Enforced} &
|
|
64
|
-
{Relative\\ Frequency} &
|
|
65
|
-
{Proportion \\ Enforced} &
|
|
66
|
-
{Relative \\ Frequency} &
|
|
67
|
-
{Proportion \\ Enforced} \\
|
|
68
|
-
%
|
|
69
|
-
\JINVAR{ tmpl_data.invdata_datstr -}
|
|
70
|
-
\end{tblr}
|
|
71
|
-
\end{tikzpicture}
|
|
72
|
-
|
|
73
|
-
\setlist{nosep}
|
|
74
|
-
\vspace{\baselineskip}
|
|
75
|
-
{\raggedright\sffamily\tiny
|
|
76
|
-
\JINVAR{ tmpl_data.invdata_notestr }
|
|
77
|
-
\vspace{\baselineskip}
|
|
78
|
-
\JINVAR{ tmpl_data.invdata_sourcestr }
|
|
79
|
-
}
|
|
80
|
-
\vspace{\baselineskip}
|
|
81
|
-
\end{table}
|