mergeron 2024.739104.1__py3-none-any.whl → 2024.739105.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mergeron might be problematic. Click here for more details.

mergeron/__init__.py CHANGED
@@ -9,7 +9,7 @@ from numpy.typing import NDArray
9
9
 
10
10
  _PKG_NAME: str = Path(__file__).parent.stem
11
11
 
12
- VERSION = "2024.739104.1"
12
+ VERSION = "2024.739105.2"
13
13
 
14
14
  __version__ = VERSION
15
15
 
@@ -36,7 +36,7 @@ ArrayBIGINT: TypeAlias = NDArray[np.int64]
36
36
 
37
37
 
38
38
  @enum.unique
39
- class RECTypes(enum.StrEnum):
39
+ class RECForm(enum.StrEnum):
40
40
  """Recapture rate - derivation methods."""
41
41
 
42
42
  INOUT = "inside-out"
@@ -13,7 +13,7 @@ import numpy as np
13
13
  from attrs import Attribute, field, frozen, validators
14
14
  from mpmath import mp, mpf # type: ignore
15
15
 
16
- from .. import VERSION, ArrayDouble, RECTypes, UPPAggrSelector # noqa: TID252
16
+ from .. import VERSION, ArrayDouble, RECForm, UPPAggrSelector # noqa: TID252
17
17
  from . import guidelines_boundary_functions as gbfn
18
18
 
19
19
  __version__ = VERSION
@@ -223,14 +223,14 @@ def _divr_value_validator(
223
223
 
224
224
  def _rec_spec_validator(
225
225
  _instance: DiversionRatioBoundary,
226
- _attribute: Attribute[RECTypes],
227
- _value: RECTypes,
226
+ _attribute: Attribute[RECForm],
227
+ _value: RECForm,
228
228
  /,
229
229
  ) -> None:
230
- if _value == RECTypes.OUTIN and _instance.recapture_rate:
230
+ if _value == RECForm.OUTIN and _instance.recapture_rate:
231
231
  raise ValueError(
232
232
  f"Invalid recapture specification, {_value!r}. "
233
- "You may consider specifying `mergeron.RECTypes.INOUT` here, and "
233
+ "You may consider specifying `mergeron.RECForm.INOUT` here, and "
234
234
  'assigning the default recapture rate as attribute, "recapture_rate" of '
235
235
  "this `DiversionRatioBoundarySpec` object."
236
236
  )
@@ -265,24 +265,24 @@ class DiversionRatioBoundary:
265
265
  kw_only=False, default=0.85, validator=validators.instance_of(float)
266
266
  )
267
267
 
268
- recapture_form: RECTypes | None = field(
268
+ recapture_form: RECForm | None = field(
269
269
  kw_only=True,
270
- default=RECTypes.INOUT,
270
+ default=RECForm.INOUT,
271
271
  validator=(
272
- validators.instance_of((type(None), RECTypes)),
272
+ validators.instance_of((type(None), RECForm)),
273
273
  _rec_spec_validator,
274
274
  ),
275
275
  )
276
276
  """
277
277
  The form of the recapture rate.
278
278
 
279
- When :attr:`mergeron.RECTypes.INOUT`, the recapture rate for
279
+ When :attr:`mergeron.RECForm.INOUT`, the recapture rate for
280
280
  he product having the smaller market-share is assumed to equal the default,
281
281
  and the recapture rate for the product with the larger market-share is
282
282
  computed assuming MNL demand. Fixed recapture rates are specified as
283
- :attr:`mergeron.RECTypes.FIXED`. (To specify that recapture rates be
283
+ :attr:`mergeron.RECForm.FIXED`. (To specify that recapture rates be
284
284
  constructed from the generated purchase-probabilities for products in
285
- the market and for the outside good, specify :attr:`mergeron.RECTypes.OUTIN`.)
285
+ the market and for the outside good, specify :attr:`mergeron.RECForm.OUTIN`.)
286
286
 
287
287
  The GUPPI boundary is a continuum of diversion ratio boundaries conditional on
288
288
  price-cost margins, :math:`d_{ij} = g_i * p_i / (m_j * p_j)`,
mergeron/gen/__init__.py CHANGED
@@ -21,7 +21,7 @@ from .. import ( # noqa: TID252
21
21
  ArrayDouble,
22
22
  ArrayFloat,
23
23
  ArrayINT,
24
- RECTypes,
24
+ RECForm,
25
25
  UPPAggrSelector,
26
26
  )
27
27
  from ..core.pseudorandom_numbers import DIST_PARMS_DEFAULT # noqa: TID252
@@ -57,7 +57,7 @@ class PriceSpec(tuple[bool, str | None], enum.ReprEnum):
57
57
 
58
58
 
59
59
  @enum.unique
60
- class SHRDistributions(enum.StrEnum):
60
+ class SHRDistribution(enum.StrEnum):
61
61
  """Market share distributions."""
62
62
 
63
63
  UNI = "Uniform"
@@ -98,26 +98,26 @@ class ShareSpec:
98
98
  A key feature of market-share specification in this package is that
99
99
  the draws represent markets with multiple different firm-counts.
100
100
  Firm-counts are unspecified if the share distribution is
101
- :attr:`mergeron.SHRDistributions.UNI`, for Dirichlet-distributed market-shares,
101
+ :attr:`mergeron.SHRDistribution.UNI`, for Dirichlet-distributed market-shares,
102
102
  the default specification is that firm-counts vary between
103
103
  2 and 7 firms with each value equally likely.
104
104
 
105
105
  Notes
106
106
  -----
107
- If :attr:`mergeron.gen.ShareSpec.dist_type`:code:` == `:attr:`mergeron.gen.SHRDistributions.UNI`,
107
+ If :attr:`mergeron.gen.ShareSpec.dist_type`:code:` == `:attr:`mergeron.gen.SHRDistribution.UNI`,
108
108
  then it is infeasible that
109
- :attr:`mergeron.gen.ShareSpec.recapture_form`:code:` == `:attr:`mergeron.RECTypes.OUTIN`.
109
+ :attr:`mergeron.gen.ShareSpec.recapture_form`:code:` == `:attr:`mergeron.RECForm.OUTIN`.
110
110
  In other words, if firm-counts are unspecified, the recapture rate cannot be
111
111
  estimated using outside good choice probabilities.
112
112
 
113
113
  For a sample with explicit firm counts, market shares must
114
114
  be specified as having a supported Dirichlet distribution
115
- (see :class:`mergeron.gen.SHRDistributions`).
115
+ (see :class:`mergeron.gen.SHRDistribution`).
116
116
 
117
117
  """
118
118
 
119
- dist_type: SHRDistributions
120
- """See :class:`SHRDistributions`"""
119
+ dist_type: SHRDistribution
120
+ """See :class:`SHRDistribution`"""
121
121
 
122
122
  dist_parms: ArrayDouble | None = field(
123
123
  default=None, eq=cmp_using(eq=np.array_equal)
@@ -143,22 +143,22 @@ class ShareSpec:
143
143
 
144
144
  @firm_counts_weights.validator
145
145
  def _check_fcw(_i: ShareSpec, _a: Attribute[ArrayDouble], _v: ArrayDouble) -> None:
146
- if _v is not None and _i.dist_type == SHRDistributions.UNI:
146
+ if _v is not None and _i.dist_type == SHRDistribution.UNI:
147
147
  raise ValueError(
148
148
  "Generated data for markets with specified firm-counts or "
149
149
  "varying firm counts are not feasible for market shares "
150
150
  "with Uniform distribution. Consider revising the "
151
- r"distribution type to {SHRDistributions.DIR_FLAT}, which gives "
151
+ r"distribution type to {SHRDistribution.DIR_FLAT}, which gives "
152
152
  "uniformly distributed draws on the :math:`n+1` simplex "
153
153
  "for firm-count, :math:`n`."
154
154
  )
155
155
 
156
- recapture_form: RECTypes = field(default=RECTypes.INOUT)
157
- """See :class:`mergeron.RECTypes`"""
156
+ recapture_form: RECForm = field(default=RECForm.INOUT)
157
+ """See :class:`mergeron.RECForm`"""
158
158
 
159
159
  @recapture_form.validator
160
- def _check_rf(_i: ShareSpec, _a: Attribute[RECTypes], _v: RECTypes) -> None:
161
- if _v == RECTypes.OUTIN and _i.dist_type == SHRDistributions.UNI:
160
+ def _check_rf(_i: ShareSpec, _a: Attribute[RECForm], _v: RECForm) -> None:
161
+ if _v == RECForm.OUTIN and _i.dist_type == SHRDistribution.UNI:
162
162
  raise ValueError(
163
163
  "Market share specification requires estimation of recapture rate from "
164
164
  "generated data. Either delete recapture rate specification or set it to None."
@@ -168,7 +168,7 @@ class ShareSpec:
168
168
  """A value between 0 and 1, typically 0.8.
169
169
 
170
170
  :code:`None` if market share specification requires direct generation of
171
- outside good choice probabilities (:attr:`mergeron.RECTypes.OUTIN`).
171
+ outside good choice probabilities (:attr:`mergeron.RECForm.OUTIN`).
172
172
 
173
173
  The recapture rate is usually calibrated to the numbers-equivalent of the
174
174
  HHI threshold for the presumtion of harm from unilateral competitive effects
@@ -191,7 +191,7 @@ class ShareSpec:
191
191
  def _check_rr(_i: ShareSpec, _a: Attribute[float], _v: float) -> None:
192
192
  if _v and not (0 < _v <= 1):
193
193
  raise ValueError("Recapture rate must lie in the interval, [0, 1).")
194
- elif _v is None and _i.recapture_form != RECTypes.OUTIN:
194
+ elif _v is None and _i.recapture_form != RECForm.OUTIN:
195
195
  raise ValueError(
196
196
  f"Recapture specification, {_i.recapture_form!r} requires that "
197
197
  "the market sample specification inclues a recapture rate in the "
@@ -200,7 +200,7 @@ class ShareSpec:
200
200
 
201
201
 
202
202
  @enum.unique
203
- class PCMDistributions(enum.StrEnum):
203
+ class PCMDistribution(enum.StrEnum):
204
204
  """Margin distributions."""
205
205
 
206
206
  UNI = "Uniform"
@@ -210,7 +210,7 @@ class PCMDistributions(enum.StrEnum):
210
210
 
211
211
 
212
212
  @enum.unique
213
- class FM2Constants(enum.StrEnum):
213
+ class FM2Constraint(enum.StrEnum):
214
214
  """Firm 2 margins - derivation methods."""
215
215
 
216
216
  IID = "i.i.d"
@@ -234,8 +234,8 @@ class PCMSpec:
234
234
 
235
235
  """
236
236
 
237
- dist_type: PCMDistributions = field(kw_only=False, default=PCMDistributions.UNI)
238
- """See :class:`PCMDistributions`"""
237
+ dist_type: PCMDistribution = field(kw_only=False, default=PCMDistribution.UNI)
238
+ """See :class:`PCMDistribution`"""
239
239
 
240
240
  dist_parms: ArrayDouble | None = field(kw_only=False, default=None)
241
241
  """Parameter specification for tailoring PCM distribution
@@ -260,9 +260,9 @@ class PCMSpec:
260
260
  "are not valid with margin distribution, {_dist_type_pcm!r}"
261
261
  )
262
262
  elif (
263
- _i.dist_type == PCMDistributions.BETA and len(_v) != len(("a", "b"))
263
+ _i.dist_type == PCMDistribution.BETA and len(_v) != len(("a", "b"))
264
264
  ) or (
265
- _i.dist_type == PCMDistributions.BETA_BND
265
+ _i.dist_type == PCMDistribution.BETA_BND
266
266
  and len(_v) != len(("mu", "sigma", "max", "min"))
267
267
  ):
268
268
  raise ValueError(
@@ -270,18 +270,18 @@ class PCMSpec:
270
270
  f'for PCM with distribution, "{_i.dist_type}" is incorrect.'
271
271
  )
272
272
 
273
- elif _i.dist_type == PCMDistributions.EMPR and _v is not None:
273
+ elif _i.dist_type == PCMDistribution.EMPR and _v is not None:
274
274
  raise ValueError(
275
275
  f"Empirical distribution does not require additional parameters; "
276
276
  f'"given value, {_v!r} is ignored."'
277
277
  )
278
278
 
279
- firm2_pcm_constraint: FM2Constants = field(kw_only=False, default=FM2Constants.IID)
280
- """See :class:`FM2Constants`"""
279
+ firm2_pcm_constraint: FM2Constraint = field(kw_only=False, default=FM2Constraint.IID)
280
+ """See :class:`FM2Constraint`"""
281
281
 
282
282
 
283
283
  @enum.unique
284
- class SSZConstants(float, enum.ReprEnum):
284
+ class SSZConstant(float, enum.ReprEnum):
285
285
  """
286
286
  Scale factors to offset sample size reduction.
287
287
 
@@ -13,18 +13,18 @@ from attrs import Attribute, define, field, validators
13
13
  from joblib import Parallel, cpu_count, delayed # type: ignore
14
14
  from numpy.random import SeedSequence
15
15
 
16
- from .. import VERSION, RECTypes # noqa: TID252 # noqa
16
+ from .. import VERSION, RECForm # noqa: TID252 # noqa
17
17
  from ..core import guidelines_boundaries as gbl # noqa: TID252
18
18
  from ..core.guidelines_boundaries import HMGThresholds # noqa: TID252
19
19
  from . import (
20
- FM2Constants,
20
+ FM2Constraint,
21
21
  MarketDataSample,
22
- PCMDistributions,
22
+ PCMDistribution,
23
23
  PCMSpec,
24
24
  PriceSpec,
25
25
  ShareSpec,
26
- SHRDistributions,
27
- SSZConstants,
26
+ SHRDistribution,
27
+ SSZConstant,
28
28
  UPPTestRegime,
29
29
  UPPTestsCounts,
30
30
  )
@@ -40,7 +40,7 @@ __version__ = VERSION
40
40
 
41
41
 
42
42
  class SamplingFunctionKWArgs(TypedDict, total=False):
43
- "Keyword arguments of function, :func:`MarketSample.sim_enf_cnts`"
43
+ "Keyword arguments of sampling methods defined below"
44
44
 
45
45
  sample_size: int
46
46
  """number of draws to generate"""
@@ -73,26 +73,26 @@ class MarketSample:
73
73
 
74
74
  share_spec: ShareSpec = field(
75
75
  kw_only=True,
76
- default=ShareSpec(SHRDistributions.UNI, None, None, RECTypes.INOUT, 0.8),
76
+ default=ShareSpec(SHRDistribution.UNI, None, None, RECForm.INOUT, 0.8),
77
77
  validator=validators.instance_of(ShareSpec),
78
78
  )
79
79
  """Market-share specification, see :class:`ShareSpec`"""
80
80
 
81
81
  pcm_spec: PCMSpec = field(
82
- kw_only=True, default=PCMSpec(PCMDistributions.UNI, None, FM2Constants.IID)
82
+ kw_only=True, default=PCMSpec(PCMDistribution.UNI, None, FM2Constraint.IID)
83
83
  )
84
84
  """Margin specification, see :class:`PCMSpec`"""
85
85
 
86
86
  @pcm_spec.validator
87
87
  def _check_pcm(self, _a: Attribute[PCMSpec], _v: PCMSpec, /) -> None:
88
88
  if (
89
- self.share_spec.recapture_form == RECTypes.FIXED
90
- and _v.firm2_pcm_constraint == FM2Constants.MNL
89
+ self.share_spec.recapture_form == RECForm.FIXED
90
+ and _v.firm2_pcm_constraint == FM2Constraint.MNL
91
91
  ):
92
92
  raise ValueError(
93
93
  f'Specification of "recapture_form", "{self.share_spec.recapture_form}" '
94
94
  "requires Firm 2 margin must have property, "
95
- f'"{FM2Constants.IID}" or "{FM2Constants.SYM}".'
95
+ f'"{FM2Constraint.IID}" or "{FM2Constraint.SYM}".'
96
96
  )
97
97
 
98
98
  price_spec: PriceSpec = field(
@@ -100,12 +100,12 @@ class MarketSample:
100
100
  )
101
101
  """Price specification, see :class:`PriceSpec`"""
102
102
 
103
- hsr_filing_test_type: SSZConstants = field(
103
+ hsr_filing_test_type: SSZConstant = field(
104
104
  kw_only=True,
105
- default=SSZConstants.ONE,
106
- validator=validators.instance_of(SSZConstants),
105
+ default=SSZConstant.ONE,
106
+ validator=validators.instance_of(SSZConstant),
107
107
  )
108
- """Method for modeling HSR filing threholds, see :class:`SSZConstants`"""
108
+ """Method for modeling HSR filing threholds, see :class:`SSZConstant`"""
109
109
 
110
110
  data: MarketDataSample = field(default=None)
111
111
 
@@ -124,7 +124,7 @@ class MarketSample:
124
124
  """
125
125
  Generate share, diversion ratio, price, and margin data for MarketSpec.
126
126
 
127
- see :attr:`SamplingFunctionKWArgs` for description of parameters
127
+ see :attr:`SamplingFunctionKWArgs` for description of keyord parameters
128
128
 
129
129
  Returns
130
130
  -------
@@ -149,8 +149,8 @@ class MarketSample:
149
149
  _shr_sample_size = 1.0 * sample_size
150
150
  # Scale up sample size to offset discards based on specified criteria
151
151
  _shr_sample_size *= _hsr_filing_test_type
152
- if _dist_firm2_pcm == FM2Constants.MNL:
153
- _shr_sample_size *= SSZConstants.MNL_DEP
152
+ if _dist_firm2_pcm == FM2Constraint.MNL:
153
+ _shr_sample_size *= SSZConstant.MNL_DEP
154
154
  _shr_sample_size = int(_shr_sample_size)
155
155
 
156
156
  # Generate share data
@@ -195,7 +195,7 @@ class MarketSample:
195
195
 
196
196
  _mnl_test_rows = _mnl_test_rows * _hsr_filing_test
197
197
  _s_size = sample_size # originally-specified sample size
198
- if _dist_firm2_pcm == FM2Constants.MNL:
198
+ if _dist_firm2_pcm == FM2Constraint.MNL:
199
199
  _mktshr_array = _mktshr_array[_mnl_test_rows][:_s_size]
200
200
  _pcm_array = _pcm_array[_mnl_test_rows][:_s_size]
201
201
  _price_array = _price_array[_mnl_test_rows][:_s_size]
@@ -240,13 +240,21 @@ class MarketSample:
240
240
  self,
241
241
  /,
242
242
  *,
243
- sample_size: int = 10**6,
244
- seed_seq_list: list[SeedSequence] | None,
243
+ sample_size: int,
244
+ seed_seq_list: Sequence[SeedSequence],
245
245
  nthreads: int,
246
- save_data_to_file: SaveData = False,
247
- saved_array_name_suffix: str = "",
246
+ save_data_to_file: SaveData,
247
+ saved_array_name_suffix: str,
248
248
  ) -> None:
249
- """Generate market data"""
249
+ """Populate :attr:`data` with generated data
250
+
251
+ see :attr:`SamplingFunctionKWArgs` for description of keyord parameters
252
+
253
+ Returns
254
+ -------
255
+ None
256
+
257
+ """
250
258
 
251
259
  self.data = self.gen_market_sample(
252
260
  sample_size=sample_size, seed_seq_list=seed_seq_list, nthreads=nthreads
@@ -389,7 +397,8 @@ class MarketSample:
389
397
 
390
398
  Returns
391
399
  -------
392
- Arrays of UPPTestCounts
400
+ Arrays of enforcement counts or clearance counts by firm count,
401
+ ΔHHI and concentration zone
393
402
 
394
403
  """
395
404
  _sample_sz = sample_size
@@ -400,7 +409,7 @@ class MarketSample:
400
409
  _thread_count = cpu_count()
401
410
 
402
411
  if (
403
- self.share_spec.recapture_form != RECTypes.OUTIN
412
+ self.share_spec.recapture_form != RECForm.OUTIN
404
413
  and self.share_spec.recapture_rate != _enf_parm_vec.rec
405
414
  ):
406
415
  raise ValueError(
@@ -458,12 +467,12 @@ class MarketSample:
458
467
  /,
459
468
  *,
460
469
  sample_size: int = 10**6,
461
- seed_seq_list: list[SeedSequence] | None,
462
- nthreads: int,
470
+ seed_seq_list: Sequence[SeedSequence] | None = None,
471
+ nthreads: int = 16,
463
472
  save_data_to_file: SaveData = False,
464
473
  saved_array_name_suffix: str = "",
465
474
  ) -> None:
466
- """Estimate enforcement counts
475
+ """Populate :attr:`enf_counts` etimated test counts.
467
476
 
468
477
  Parameters
469
478
  ----------
@@ -478,16 +487,16 @@ class MarketSample:
478
487
  merging firms
479
488
 
480
489
  sample_size
481
- Size of the market sample drawn
490
+ Number of draws to simulate
482
491
 
483
492
  seed_seq_list
484
- List of :code:`numpy.random.SeedSequence` objects
493
+ List of seed sequences, to assure independent samples in each thread
485
494
 
486
495
  nthreads
487
- Number of threads to use
496
+ Number of parallel processes to use
488
497
 
489
498
  save_data_to_file
490
- Save data to given HDF5 file, at specified group node
499
+ Whether to save data to an HDF5 file, and where to save it
491
500
 
492
501
  saved_array_name_suffix
493
502
  Suffix to add to the array names in the HDF5 file
@@ -11,7 +11,7 @@ import numpy as np
11
11
  from attrs import evolve
12
12
  from numpy.random import SeedSequence
13
13
 
14
- from .. import VERSION, ArrayBIGINT, ArrayDouble, RECTypes # noqa: TID252
14
+ from .. import VERSION, ArrayBIGINT, ArrayDouble, RECForm # noqa: TID252
15
15
  from ..core.damodaran_margin_data import mgn_data_resampler # noqa: TID252
16
16
  from ..core.pseudorandom_numbers import ( # noqa: TID252
17
17
  DIST_PARMS_DEFAULT,
@@ -21,17 +21,17 @@ from ..core.pseudorandom_numbers import ( # noqa: TID252
21
21
  from . import (
22
22
  EMPTY_ARRAY_DEFAULT,
23
23
  FCOUNT_WTS_DEFAULT,
24
- FM2Constants,
24
+ FM2Constraint,
25
25
  MarginDataSample,
26
- PCMDistributions,
26
+ PCMDistribution,
27
27
  PCMSpec,
28
28
  PriceDataSample,
29
29
  PriceSpec,
30
30
  SeedSequenceData,
31
31
  ShareDataSample,
32
32
  ShareSpec,
33
- SHRDistributions,
34
- SSZConstants,
33
+ SHRDistribution,
34
+ SSZConstant,
35
35
  )
36
36
 
37
37
  __version__ = VERSION
@@ -71,7 +71,7 @@ def gen_share_data(
71
71
 
72
72
  _ssz = _sample_size
73
73
 
74
- if _dist_type_mktshr == SHRDistributions.UNI:
74
+ if _dist_type_mktshr == SHRDistribution.UNI:
75
75
  _mkt_share_sample = gen_market_shares_uniform(
76
76
  _ssz, _dist_parms_mktshr, _mktshr_rng_seed_seq, _nthreads
77
77
  )
@@ -101,7 +101,7 @@ def gen_share_data(
101
101
  # If recapture_form == "inside-out", recalculate _aggregate_purchase_prob
102
102
  _frmshr_array = _mkt_share_sample.mktshr_array[:, :2]
103
103
  _r_bar = _share_spec.recapture_rate or 0.8
104
- if _recapture_form == RECTypes.INOUT:
104
+ if _recapture_form == RECForm.INOUT:
105
105
  _mkt_share_sample = ShareDataSample(
106
106
  _mkt_share_sample.mktshr_array,
107
107
  _mkt_share_sample.fcounts,
@@ -177,8 +177,8 @@ def gen_market_shares_uniform(
177
177
 
178
178
  def gen_market_shares_dirichlet_multimarket(
179
179
  _s_size: int = 10**6,
180
- _recapture_form: RECTypes = RECTypes.INOUT,
181
- _dist_type_dir: SHRDistributions = SHRDistributions.DIR_FLAT,
180
+ _recapture_form: RECForm = RECForm.INOUT,
181
+ _dist_type_dir: SHRDistribution = SHRDistribution.DIR_FLAT,
182
182
  _dist_parms_dir: ArrayDouble | None = None,
183
183
  _firm_count_wts: ArrayDouble | None = None,
184
184
  _fcount_rng_seed_seq: SeedSequence | None = None,
@@ -227,7 +227,7 @@ def gen_market_shares_dirichlet_multimarket(
227
227
  )
228
228
 
229
229
  _min_choice_wt = (
230
- 0.03 if _dist_type_dir == SHRDistributions.DIR_FLAT_CONSTR else 0.00
230
+ 0.03 if _dist_type_dir == SHRDistribution.DIR_FLAT_CONSTR else 0.00
231
231
  )
232
232
  _fcount_keys, _choice_wts = zip(
233
233
  *(
@@ -246,10 +246,10 @@ def gen_market_shares_dirichlet_multimarket(
246
246
  _dir_alphas_full = (
247
247
  [1.0] * _fc_max if _dist_parms_dir is None else _dist_parms_dir[:_fc_max]
248
248
  )
249
- if _dist_type_dir == SHRDistributions.DIR_ASYM:
249
+ if _dist_type_dir == SHRDistribution.DIR_ASYM:
250
250
  _dir_alphas_full = [2.0] * 6 + [1.5] * 5 + [1.25] * min(7, _fc_max)
251
251
 
252
- if _dist_type_dir == SHRDistributions.DIR_COND:
252
+ if _dist_type_dir == SHRDistribution.DIR_COND:
253
253
 
254
254
  def _gen_dir_alphas(_fcv: int) -> ArrayDouble:
255
255
  _dat = [2.5] * 2
@@ -322,7 +322,7 @@ def gen_market_shares_dirichlet_multimarket(
322
322
  def gen_market_shares_dirichlet(
323
323
  _dir_alphas: ArrayDouble,
324
324
  _s_size: int = 10**6,
325
- _recapture_form: RECTypes = RECTypes.INOUT,
325
+ _recapture_form: RECForm = RECForm.INOUT,
326
326
  _mktshr_rng_seed_seq: SeedSequence | None = None,
327
327
  _nthreads: int = 16,
328
328
  /,
@@ -338,8 +338,8 @@ def gen_market_shares_dirichlet(
338
338
  sample size to be drawn
339
339
 
340
340
  _recapture_form
341
- r_1 = r_2 if RECTypes.FIXED, otherwise MNL-consistent. If
342
- RECTypes.OUTIN; the number of columns in the output share array
341
+ r_1 = r_2 if RECForm.FIXED, otherwise MNL-consistent. If
342
+ RECForm.OUTIN; the number of columns in the output share array
343
343
  is len(_dir_alphas) - 1.
344
344
 
345
345
  _mktshr_rng_seed_seq
@@ -357,7 +357,7 @@ def gen_market_shares_dirichlet(
357
357
  if not isinstance(_dir_alphas, np.ndarray):
358
358
  _dir_alphas = np.array(_dir_alphas)
359
359
 
360
- if _recapture_form == RECTypes.OUTIN:
360
+ if _recapture_form == RECForm.OUTIN:
361
361
  _dir_alphas = np.concatenate((_dir_alphas, _dir_alphas[-1:]))
362
362
 
363
363
  _mktshr_seed_seq_ch = (
@@ -391,7 +391,7 @@ def gen_market_shares_dirichlet(
391
391
 
392
392
  # If recapture_form == 'inside_out', further calculations downstream
393
393
  _aggregate_purchase_prob = np.nan * np.empty((_s_size, 1))
394
- if _recapture_form == RECTypes.OUTIN:
394
+ if _recapture_form == RECForm.OUTIN:
395
395
  _aggregate_purchase_prob = 1 - _mktshr_array[:, [-1]]
396
396
  _mktshr_array = _mktshr_array[:, :-1] / _aggregate_purchase_prob
397
397
 
@@ -404,7 +404,7 @@ def gen_market_shares_dirichlet(
404
404
 
405
405
 
406
406
  def gen_divr_array(
407
- _recapture_form: RECTypes,
407
+ _recapture_form: RECForm,
408
408
  _recapture_rate: float | None,
409
409
  _frmshr_array: ArrayDouble,
410
410
  _aggregate_purchase_prob: ArrayDouble = EMPTY_ARRAY_DEFAULT,
@@ -413,7 +413,7 @@ def gen_divr_array(
413
413
  """
414
414
  Given merging-firm shares and related parameters, return diverion ratios.
415
415
 
416
- If recapture is specified as :attr:`mergeron.RECTypes.OUTIN`, then the
416
+ If recapture is specified as :attr:`mergeron.RECForm.OUTIN`, then the
417
417
  choice-probability for the outside good must be supplied.
418
418
 
419
419
  Parameters
@@ -445,7 +445,7 @@ def gen_divr_array(
445
445
  """
446
446
 
447
447
  _divr_array: ArrayDouble
448
- if _recapture_form == RECTypes.FIXED:
448
+ if _recapture_form == RECForm.FIXED:
449
449
  _divr_array = _recapture_rate * _frmshr_array[:, ::-1] / (1 - _frmshr_array) # type: ignore
450
450
 
451
451
  else:
@@ -475,7 +475,7 @@ def gen_margin_price_data(
475
475
  _aggregate_purchase_prob: ArrayDouble,
476
476
  _pcm_spec: PCMSpec,
477
477
  _price_spec: PriceSpec,
478
- _hsr_filing_test_type: SSZConstants,
478
+ _hsr_filing_test_type: SSZConstant,
479
479
  _pcm_rng_seed_seq: SeedSequence,
480
480
  _pr_rng_seed_seq: SeedSequence | None = None,
481
481
  _nthreads: int = 16,
@@ -505,7 +505,7 @@ def gen_margin_price_data(
505
505
 
506
506
  _hsr_filing_test_type
507
507
  Enum specifying restriction, if any, to impose on market data sample
508
- to model HSR filing requirements; see :class:`mergeron.gen.SSZConstants`.
508
+ to model HSR filing requirements; see :class:`mergeron.gen.SSZConstant`.
509
509
 
510
510
  _pcm_rng_seed_seq
511
511
  Seed sequence for generating margin data.
@@ -552,7 +552,7 @@ def gen_margin_price_data(
552
552
  # generate the margin data
553
553
  # generate price and margin data
554
554
  _frmshr_array_plus = np.hstack((_frmshr_array, _nth_firm_share))
555
- _pcm_spec_here = evolve(_pcm_spec, firm2_pcm_constraint=FM2Constants.IID)
555
+ _pcm_spec_here = evolve(_pcm_spec, firm2_pcm_constraint=FM2Constraint.IID)
556
556
  _margin_data = _gen_margin_data(
557
557
  _frmshr_array_plus,
558
558
  np.ones_like(_frmshr_array_plus, np.float64),
@@ -569,7 +569,7 @@ def gen_margin_price_data(
569
569
  _price_array_here = 1 / (1 - _pcm_array)
570
570
  _price_array = _price_array_here[:, :2]
571
571
  _nth_firm_price = _price_array_here[:, [-1]]
572
- if _pcm_spec.firm2_pcm_constraint == FM2Constants.MNL:
572
+ if _pcm_spec.firm2_pcm_constraint == FM2Constraint.MNL:
573
573
  # Generate i.i.d. PCMs then take PCM0 and construct PCM1
574
574
  # Regenerate MNL test
575
575
  _purchase_prob_array = _aggregate_purchase_prob * _frmshr_array
@@ -616,7 +616,7 @@ def gen_margin_price_data(
616
616
  _test_rev_ratio, _test_rev_ratio_inv = 10, 1 / 10
617
617
 
618
618
  match _hsr_filing_test_type:
619
- case SSZConstants.HSR_TEN:
619
+ case SSZConstant.HSR_TEN:
620
620
  # See, https://www.ftc.gov/enforcement/premerger-notification-program/
621
621
  # -> Procedures For Submitting Post-Consummation Filings
622
622
  # -> Key Elements to Determine Whether a Post Consummation Filing is Required
@@ -627,7 +627,7 @@ def gen_margin_price_data(
627
627
  _rev_ratio = (_rev_array.min(axis=1) / _rev_array.max(axis=1)).round(4)
628
628
  _hsr_filing_test = _rev_ratio >= _test_rev_ratio_inv
629
629
  # del _rev_array, _rev_ratio
630
- case SSZConstants.HSR_NTH:
630
+ case SSZConstant.HSR_NTH:
631
631
  # To get around the 10-to-1 ratio restriction, specify that the nth firm test:
632
632
  # if the smaller merging firm matches or exceeds the n-th firm in size, and
633
633
  # the larger merging firm has at least 10 times the size of the nth firm,
@@ -642,12 +642,15 @@ def gen_margin_price_data(
642
642
  dtype=np.int64,
643
643
  )
644
644
  == _rev_ratio_to_nth.shape[1]
645
- ) | (_frmshr_array.min(axis=1) >= _test_rev_ratio_inv)
645
+ )
646
646
 
647
647
  # del _nth_firm_rev, _rev_ratio_to_nth
648
648
  case _:
649
649
  # Otherwise, all draws meet the filing test
650
650
  _hsr_filing_test = np.ones(len(_frmshr_array), dtype=bool)
651
+ _hsr_filing_test = _hsr_filing_test | (
652
+ _frmshr_array.min(axis=1) >= _test_rev_ratio_inv
653
+ )
651
654
 
652
655
  return _margin_data, PriceDataSample(_price_array, _hsr_filing_test)
653
656
 
@@ -669,28 +672,28 @@ def _gen_margin_data(
669
672
  _dist_type: Literal["Beta", "Uniform"]
670
673
  _pcm_array = (
671
674
  np.empty((len(_frmshr_array), 1), dtype=np.float64)
672
- if _pcm_spec.firm2_pcm_constraint == FM2Constants.SYM
675
+ if _pcm_spec.firm2_pcm_constraint == FM2Constraint.SYM
673
676
  else np.empty_like(_frmshr_array, dtype=np.float64)
674
677
  )
675
678
 
676
679
  _beta_min, _beta_max = [None] * 2 # placeholder
677
- if _dist_type_pcm == PCMDistributions.EMPR:
680
+ if _dist_type_pcm == PCMDistribution.EMPR:
678
681
  _pcm_array = mgn_data_resampler(
679
682
  _pcm_array.shape, # type: ignore
680
683
  seed_sequence=_pcm_rng_seed_seq,
681
684
  )
682
685
  else:
683
- _dist_type = "Uniform" if _dist_type_pcm == PCMDistributions.UNI else "Beta"
684
- if _dist_type_pcm == PCMDistributions.BETA:
686
+ _dist_type = "Uniform" if _dist_type_pcm == PCMDistribution.UNI else "Beta"
687
+ if _dist_type_pcm == PCMDistribution.BETA:
685
688
  if _dist_parms_pcm is None:
686
689
  _dist_parms_pcm = np.ones(2, np.float64)
687
690
 
688
- elif _dist_type_pcm == PCMDistributions.BETA_BND: # Bounded beta
691
+ elif _dist_type_pcm == PCMDistribution.BETA_BND: # Bounded beta
689
692
  if _dist_parms_pcm is None:
690
693
  _dist_parms_pcm = np.array([0, 1, 0, 1], np.float64)
691
694
  _dist_parms = beta_located_bound(_dist_parms_pcm)
692
695
  else:
693
- # _dist_type_pcm == PCMDistributions.UNI
696
+ # _dist_type_pcm == PCMDistribution.UNI
694
697
  _dist_parms = (
695
698
  DIST_PARMS_DEFAULT if _dist_parms_pcm is None else _dist_parms_pcm
696
699
  )
@@ -705,20 +708,20 @@ def _gen_margin_data(
705
708
  _pcm_rng.fill()
706
709
  del _pcm_rng
707
710
 
708
- if _dist_type_pcm == PCMDistributions.BETA_BND:
711
+ if _dist_type_pcm == PCMDistribution.BETA_BND:
709
712
  _beta_min, _beta_max = _dist_parms_pcm[2:]
710
713
  _pcm_array = (_beta_max - _beta_min) * _pcm_array + _beta_min
711
714
  del _beta_min, _beta_max
712
715
 
713
- if _dist_firm2_pcm == FM2Constants.SYM:
716
+ if _dist_firm2_pcm == FM2Constraint.SYM:
714
717
  _pcm_array = np.column_stack((_pcm_array,) * _frmshr_array.shape[1])
715
- if _dist_firm2_pcm == FM2Constants.MNL:
718
+ if _dist_firm2_pcm == FM2Constraint.MNL:
716
719
  # Impose FOCs from profit-maximization with MNL demand
717
- if _dist_type_pcm == PCMDistributions.EMPR:
720
+ if _dist_type_pcm == PCMDistribution.EMPR:
718
721
  print(
719
722
  "NOTE: Estimated Firm 2 parameters will not be consistent with "
720
723
  "the empirical distribution of margins in the source data. For "
721
- "consistency, respecify pcm_spec.firm2_pcm_constraint = FM2Constants.IID."
724
+ "consistency, respecify pcm_spec.firm2_pcm_constraint = FM2Constraint.IID."
722
725
  )
723
726
  _purchase_prob_array = _aggregate_purchase_prob * _frmshr_array
724
727
 
@@ -800,7 +803,7 @@ def beta_located_bound(_dist_parms: ArrayDouble, /) -> ArrayDouble:
800
803
 
801
804
  def parse_seed_seq_list(
802
805
  _sseq_list: Sequence[SeedSequence] | None,
803
- _mktshr_dist_type: SHRDistributions,
806
+ _mktshr_dist_type: SHRDistribution,
804
807
  _price_spec: PriceSpec,
805
808
  /,
806
809
  ) -> SeedSequenceData:
@@ -841,7 +844,7 @@ def parse_seed_seq_list(
841
844
  else (None, SeedSequence(pool_size=8))
842
845
  )
843
846
 
844
- _seed_count = 2 if _mktshr_dist_type == SHRDistributions.UNI else 3
847
+ _seed_count = 2 if _mktshr_dist_type == SHRDistribution.UNI else 3
845
848
 
846
849
  if _sseq_list:
847
850
  if len(_sseq_list) < _seed_count:
@@ -33,7 +33,7 @@ __version__ = VERSION
33
33
 
34
34
 
35
35
  @enum.unique
36
- class INDGRPConstants(enum.StrEnum):
36
+ class IndustryGroup(enum.StrEnum):
37
37
  ALL = "All Markets"
38
38
  GRO = "Grocery Markets"
39
39
  OIL = "Oil Markets"
@@ -47,7 +47,7 @@ class INDGRPConstants(enum.StrEnum):
47
47
 
48
48
 
49
49
  @enum.unique
50
- class EVIDENConstants(enum.StrEnum):
50
+ class OtherEvidence(enum.StrEnum):
51
51
  HD = "Hot Documents Identified"
52
52
  CC = "Strong Customer Complaints"
53
53
  NE = "No Entry Evidence"
@@ -236,8 +236,8 @@ ZONE_VALS = np.unique(
236
236
  def enf_stats_output(
237
237
  _data_array_dict: fid.INVData,
238
238
  _data_period: str = "1996-2003",
239
- _table_ind_group: INDGRPConstants = INDGRPConstants.ALL,
240
- _table_evid_cond: EVIDENConstants = EVIDENConstants.UR,
239
+ _table_ind_group: IndustryGroup = IndustryGroup.ALL,
240
+ _table_evid_cond: OtherEvidence = OtherEvidence.UR,
241
241
  _stats_group: StatsGrpSelector = StatsGrpSelector.FC,
242
242
  _enf_spec: INVResolution = INVResolution.CLRN,
243
243
  /,
@@ -293,8 +293,8 @@ def enf_stats_output(
293
293
  def enf_stats_listing_by_group(
294
294
  _invdata_array_dict: Mapping[str, Mapping[str, Mapping[str, fid.INVTableData]]],
295
295
  _study_period: str,
296
- _table_ind_grp: INDGRPConstants,
297
- _table_evid_cond: EVIDENConstants,
296
+ _table_ind_grp: IndustryGroup,
297
+ _table_evid_cond: OtherEvidence,
298
298
  _stats_group: StatsGrpSelector,
299
299
  _enf_spec: INVResolution,
300
300
  /,
@@ -329,8 +329,8 @@ def enf_stats_listing_by_group(
329
329
  def enf_cnts_listing_byfirmcount(
330
330
  _data_array_dict: Mapping[str, Mapping[str, Mapping[str, fid.INVTableData]]],
331
331
  _data_period: str = "1996-2003",
332
- _table_ind_group: INDGRPConstants = INDGRPConstants.ALL,
333
- _table_evid_cond: EVIDENConstants = EVIDENConstants.UR,
332
+ _table_ind_group: IndustryGroup = IndustryGroup.ALL,
333
+ _table_evid_cond: OtherEvidence = OtherEvidence.UR,
334
334
  _enf_spec: INVResolution = INVResolution.CLRN,
335
335
  /,
336
336
  ) -> ArrayBIGINT:
@@ -365,8 +365,8 @@ def enf_cnts_listing_byfirmcount(
365
365
  def enf_cnts_listing_byhhianddelta(
366
366
  _data_array_dict: Mapping[str, Mapping[str, Mapping[str, fid.INVTableData]]],
367
367
  _data_period: str = "1996-2003",
368
- _table_ind_group: INDGRPConstants = INDGRPConstants.ALL,
369
- _table_evid_cond: EVIDENConstants = EVIDENConstants.UR,
368
+ _table_ind_group: IndustryGroup = IndustryGroup.ALL,
369
+ _table_evid_cond: OtherEvidence = OtherEvidence.UR,
370
370
  _enf_spec: INVResolution = INVResolution.CLRN,
371
371
  /,
372
372
  ) -> ArrayBIGINT:
@@ -400,8 +400,8 @@ def enf_cnts_listing_byhhianddelta(
400
400
 
401
401
  def table_no_lku(
402
402
  _data_array_dict_sub: Mapping[str, fid.INVTableData],
403
- _table_ind_group: INDGRPConstants = INDGRPConstants.ALL,
404
- _table_evid_cond: EVIDENConstants = EVIDENConstants.UR,
403
+ _table_ind_group: IndustryGroup = IndustryGroup.ALL,
404
+ _table_evid_cond: OtherEvidence = OtherEvidence.UR,
405
405
  /,
406
406
  ) -> str:
407
407
  if _table_ind_group not in (
mergeron/gen/upp_tests.py CHANGED
@@ -20,7 +20,7 @@ from .. import ( # noqa
20
20
  ArrayDouble,
21
21
  ArrayFloat,
22
22
  ArrayINT,
23
- RECTypes,
23
+ RECForm,
24
24
  UPPAggrSelector,
25
25
  )
26
26
  from ..core import guidelines_boundaries as gbl # noqa: TID252
@@ -94,24 +94,23 @@ def enf_cnts(
94
94
 
95
95
  _stats_rowlen = 6
96
96
  # Clearance/enforcement counts --- by firm count
97
- _firm_counts_list = np.unique(_fcounts)
98
- if _firm_counts_list is not None and np.all(_firm_counts_list >= 0):
99
- # _max_firm_count = len(_firm_counts_list)
100
- _max_firm_count = max(_firm_counts_list)
97
+ _firmcounts_list = np.unique(_fcounts)
98
+ if _firmcounts_list is not None and np.all(_firmcounts_list >= 0):
99
+ _max_firmcount = max(_firmcounts_list)
101
100
 
102
101
  _enf_cnts_sim_byfirmcount_array = -1 * np.ones(_stats_rowlen, np.int64)
103
- for _firm_cnt in 1 + np.arange(1, _max_firm_count):
104
- _firm_count_test = _fcounts == _firm_cnt
102
+ for _firmcount in np.arange(2, _max_firmcount + 1):
103
+ _firmcount_test = _fcounts == _firmcount
105
104
 
106
105
  _enf_cnts_sim_byfirmcount_array = np.vstack((
107
106
  _enf_cnts_sim_byfirmcount_array,
108
107
  np.array([
109
- _firm_cnt,
110
- np.einsum("ij->", 1 * _firm_count_test),
108
+ _firmcount,
109
+ np.einsum("ij->", 1 * _firmcount_test),
111
110
  *[
112
111
  np.einsum(
113
112
  "ij->",
114
- 1 * (_firm_count_test & getattr(_upp_test_arrays, _f)),
113
+ 1 * (_firmcount_test & getattr(_upp_test_arrays, _f)),
115
114
  )
116
115
  for _f in _upp_test_arrays.__dataclass_fields__
117
116
  ],
@@ -0,0 +1,115 @@
1
+ Metadata-Version: 2.1
2
+ Name: mergeron
3
+ Version: 2024.739105.2
4
+ Summary: Merger Policy Analysis using Python
5
+ License: MIT
6
+ Keywords: merger policy analysis,merger guidelines,merger screening,policy presumptions,concentration standards,upward pricing pressure,GUPPI
7
+ Author: Murthy Kambhampaty
8
+ Author-email: smk@capeconomics.com
9
+ Requires-Python: >=3.12,<4.0
10
+ Classifier: Development Status :: 4 - Beta
11
+ Classifier: Environment :: Console
12
+ Classifier: Intended Audience :: End Users/Desktop
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Classifier: Operating System :: OS Independent
16
+ Classifier: Programming Language :: Python
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Programming Language :: Python :: 3 :: Only
20
+ Classifier: Programming Language :: Python :: Implementation :: CPython
21
+ Requires-Dist: aenum (>=3.1.15,<4.0.0)
22
+ Requires-Dist: attrs (>=23.2)
23
+ Requires-Dist: bs4 (>=0.0.1)
24
+ Requires-Dist: certifi (>=2023.11.17)
25
+ Requires-Dist: google-re2 (>=1.1)
26
+ Requires-Dist: jinja2 (>=3.1)
27
+ Requires-Dist: joblib (>=1.3)
28
+ Requires-Dist: matplotlib (>=3.8)
29
+ Requires-Dist: mpmath (>=1.3)
30
+ Requires-Dist: msgpack (>=1.0)
31
+ Requires-Dist: msgpack-numpy (>=0.4)
32
+ Requires-Dist: numpy (>=1.26,<2)
33
+ Requires-Dist: scipy (>=1.12)
34
+ Requires-Dist: sympy (>=1.12)
35
+ Requires-Dist: tables (>=3.8)
36
+ Requires-Dist: types-beautifulsoup4 (>=4.11.2)
37
+ Requires-Dist: urllib3 (>=2.2.2,<3.0.0)
38
+ Requires-Dist: xlrd (>=2.0.1,<3.0.0)
39
+ Requires-Dist: xlsxwriter (>=3.1)
40
+ Description-Content-Type: text/x-rst
41
+
42
+ mergeron: Merger Policy Analysis using Python
43
+ =============================================
44
+
45
+ Analyze the sets of mergers conforming to concentration and diversion ratio bounds. Analyze intrinsic enforcement rates, and intrinsic clearance rates, under concentration, diversion ratio, GUPPI, CMCR, and IPR bounds using generated data with specified distributions of market shares, price-cost margins, firm counts, and prices, optionally imposing restrictions implied by statutory filing thresholds and/or Bertrand-Nash oligopoly with MNL demand. Download and analyze merger investigations data published by the U.S. Federal Trade Commission in various reports on extended merger investigations (Second Requests) during 1996 to 2011.
46
+
47
+ Here, enforcement rates derived with merger enforcement as being exogenous to firm conduct are defined as intrinsic enforcement rates, and similarly intrinsic clearance rates. Depending on the merger enforcement regime, or merger control regime, intrinsic enforcement rates may also not be the complement of intrinsic clearance rates, i.e, it is not necessarily true that the intrinsic clearance rate estimate for a given enforcement regime is 1 minus the intrinsic enforcement rate. In contrast, observed enforcement rates reflect the deterrent effects of merger enforcement on firm conduct as well as the effects of merger screening on the level of enforcement; and, by definition, the observed clearance rate is 1 minus the observed enforcement rate.
48
+
49
+ Introduction
50
+ ------------
51
+
52
+ Module :code:`.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`..core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`..core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary (as an array of share-pairs) and area. This module also includes a function for generating plots of concentration and diversion-ratio boundaries, and functions for mapping GUPPI standards to concentration (ΔHHI) standards, and vice-versa.
53
+
54
+ Module :code:`.gen.data_generation` includes the :code:`.gen.data_generation.MarketSample` which provides for a rich specification of shares and diversion ratios (:code:`.gen.data_generation.MarketSample.share_spec`), margins (:code:`.gen.data_generation.MarketSample.pcm_spec`, prices (:code:`.gen.data_generation.MarketSample.price_spec`), and HSR filing requirements (:code:`.gen.data_generation.MarketSample.hsr_filing_test_type`), and with methods for, (i) generating sample data (:code:`.gen.data_generation.MarketSample.generate_sample`), and (ii) estimating enforcement or clearance rates under specified enforcement regimes given a method of aggregating diversion ratio or GUPPI estimates for the firms in a merger (:code:`.gen.data_generation.MarketSample.estimate_enf_counts`). While the latter populate the properties, :code:`.gen.data_generation.MarketSample.data`
55
+ and :code:`.gen.data_generation.MarketSample.enf_counts`, respectively, the underlying methods for generating standalone :code:`MarketDataSample` and :code:`UPPTestCounts` objects are included in the class definition, with helper functions defined in the modules, :code:`.gen.data_generation_functions` and :code:`.gen.upp_tests`. Notably, market shares are generated for a sample of markets with firm-count distributed as specified in :code:`.gen.data_generation.MarketSample.ShareSpec.firm_count_weights`, with defaults as discussed below (also see, :code:`.gen.ShareSpec.firm_count_weights`.
56
+
57
+ By default, merging-firm shares are drawn with uniform distribution over the space :math:`s_1 + s_2 \leqslant 1` for an unspecified number of firms. Alternatively, shares may be drawn from the Dirichlet distribution, with specified shape parameters (see :code:`.gen.data_generation.MarketSample.ShareSpec`, and, specifically, :code:`.gen.SHRDistribution`). When drawing shares from the Dirichlet distribution, the user passes, using :code:`.gen.data_generation.MarketSample.ShareSpec.firm_count_weights`, a vector of weights specifying the frequency distribution over sequential firm counts, e.g., :code:`[133, 184, 134, 52, 32, 10, 12, 4, 3]` to specify shares drawn from Dirichlet distributions with 2 to 10 pre-merger firms distributed as in data for FTC merger investigations during 1996--2003 (See, for example, Table 4.1 of `FTC, Horizontal Merger Investigations Data, Fiscal Years 1996--2003 (Revised: August 31, 2004) <https://www.ftc.gov/sites/default/files/documents/reports/horizontal-merger-investigation-data-fiscal-years-1996-2003/040831horizmergersdata96-03.pdf>`_). If :code:`.gen.data_generation.MarketSample.ShareSpec.firm_count_weights` is not explicitly assigned a value when defining :code:`.gen.data_generation.MarketSample.ShareSpec`, the default values is used, which results in a sample of markets with 2 to 7 firms with relative frequency in inverse proportion to firm-count, with 2-firm markets being 6 times as likely to be drawn as 7-firm markets.
58
+
59
+ Recapture rates can be specified as, "proportional", "inside-out", "outside-in" (see :code:`.RECForm`. The "inside-out" specification (:code:`.gen.data_generation.MarketSample.ShareSpec.recapture_form`:code:` = `:code:`.RECForm.INOUT`) results in recapture ratios consistent with merging-firms' in-market shares and a default recapture rate. The "outside-in" specification (:code:`.gen.data_generation.MarketSample.ShareSpec.recapture_form`:code:` = `:code:`.RECForm.INOUT`) yields diversion ratios from purchase probabilities drawn at random for :math:`N+1` goods, from which are derived market shares and recapture rates for the :math:`N` goods in the putative market (see, :code:`.gen.ShareSpec`). The "outside-in" specification is invalid when the distribution of markets over firm-count is unspecified, i.e., when :code:`.gen.data_generation.MarketSample.ShareSpec.dist_type`:code:` ==`:code:`.gen.ShareDistributions.UNI`, thus raising a :code:`ValueError` exception. The "proportional" form (:code:`.gen.data_generation.MarketSample.ShareSpec.recapture_form`:code:` = `:code:`.RECForm.FIXED`) is often used in the literature, as an approximation to the "inside-out" form. See, for example, Coate (2011).
60
+
61
+ Price-cost-margins may be specified as having uniform distribution, Beta distribution (including a bounded Beta distribution with specified mean and variance), or an empirical distribution (see, :code:`.gen.PCMSpec`). The empirical margin distribution is based on resampling margin data published by Prof. Damodaran of NYU Stern School of Business (see Notes), using an estimated Gaussian KDE. The second merging firm's margin (:code:`.gen.data_generation.MarketSample.PCMSpec.firm2_pcm_constraint`) may be specified as symmetric, i.i.d., or subject to equilibrium conditions for (profit-maximization in) Bertrand-Nash oligopoly with MNL demand (:code:`.gen.FM2Constraint`).
62
+
63
+ Prices may be specified as symmetric or asymmetric, and in the latter case, the direction of correlation between merging firm prices, if any, can also be specified (see, :code:`.gen.PriceSpec`). Prices may also be defined by imposing cost symmetry on firms in the sample, with fixed unit marginal costs normalized to 1 unit, such that price equal :math:`1 / (1 - \pmb{m})`, where :math:`\pmb{m}` represents the array of margins for firms in the sample.
64
+
65
+ The market sample may be restricted to mergers meeting the HSR filing requirement under two alternative approaches: in the one, the smaller of the two merging firms meets the lower HSR size threshold ($10 million, as adjusted) and the larger of the two merging firms meets the size test if it's share is no less than 10 times the share of the smaller firm. In the other, the :math:`n`-th firm's size is maintained as $10 million, as adjusted (see, :code:`.gen.SSZConstant`), and a merger meets the HSR filing test if either, (a.) the smaller merging firm is no smaller than the n-th firm and the larger merging firm is at 10-times as large as the n-th firm, or (b.) the smaller merging firm's market share is in excess of 10%; in effect this version of the test maintains that if the smaller merging firm's market share exceeds 10%, the value of the transaction exceeds $200 million, as adjusted, and the size-of-person test is eliminated (see, FTC (2008, p. 12); the above are simplifications of the statutory HSR filing requirements). The second assumption avoids the unfortunate assumption in the first that, within the resulting sample, the larger merging firm be at least 10 times as large as the smaller merging firm, as a consequence of the full definition of the HSR filing requirement.
66
+
67
+ The full specification of a market sample is given in a :code:`.gen.data_generation.MarketSample` object, including the above parameters. Data are drawn by invoking :code:`.gen.data_generation.MarketSample.generate_sample` which adds a :code:`data` property of class, :code:`.gen.MarketDataSample`. Enforcement or clearance counts are computed by invoking :code:`.gen.data_generation.MarketSample.estimate_enf_counts`, which adds an :code:`enf_counts` property of class :code:`.gen.UPPTestsCounts`. For fast, parallel generation of enforcement or clearance counts over large market data samples that ordinarily would exceed available limits on machine memory, the user can invoke the method :code:`.gen.data_generation.MarketSample.estimate_enf_counts` on a :code:`.gen.data_generation.MarketSample` object without first invoking :code:`.gen.data_generation.MarketSample.generate_sample`. Note, however, that this strategy does not retain the market sample in memory in the interests of conserving memory and maintaining high performance (the user can specify that the market sample and enforcement statistics be stored to permanent storage; when saving to current PCIe NVMe storage, the performance penalty is slight, but can be considerable if saving to SATA storage).
68
+
69
+ Enforcement statistics based on FTC investigations data and test data are printed to screen or rendered to LaTex files (for processing into publication-quality tables) using methods provided in :code:`.gen.enforcement_stats`.
70
+
71
+ Programs demonstrating the use of this package are included in the sub-package, :code:`.demo`.
72
+
73
+ This package includes a class, :code:`.core.pseudorandom_numbers.MulithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple virtual, logical, or physical CPU cores. This class is an adaptation from the documentation of the :code:`numpy` package, from the discussion on `multithreaded random-number generation <https://numpy.org/doc/stable/reference/random/multithreading.html>_`; the version included here permits selection of the distribution with pre-tests to catch and inform on common errors. To access these directly:
74
+
75
+ .. code-block:: python
76
+
77
+ import mergeron.core.pseudorandom_numbers as prng
78
+
79
+ Documentation for this package is in the form of the API Reference. Documentation for individual functions and classes is accessible within a python shell. For example:
80
+
81
+ .. code-block:: python
82
+
83
+ import mergeron.core.market_sample as market_sample
84
+
85
+ help(market_sample.MarketSample)
86
+
87
+ .. rubric:: References
88
+
89
+ .. _coate2011:
90
+
91
+ Coate, M. B. (2011). Benchmarking the upward pricing pressure model with Federal Trade
92
+ Commission evidence. Journal of Competition Law & Economics, 7(4), 825--846. URL: https://doi.org/10.1093/joclec/nhr014.
93
+
94
+ .. _ftc_premerger_guide2:
95
+
96
+ FTC Premerger Notification Office. “To File or Not to File: When You Must File a Premerger Notification Report Form”. 2008 (September, revised). URL: https://www.ftc.gov/sites/default/files/attachments/premerger-introductory-guides/guide2.pdf
97
+
98
+
99
+ .. image:: https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json
100
+ :alt: Poetry
101
+ :target: https://python-poetry.org/
102
+
103
+ .. image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
104
+ :alt: Ruff
105
+ :target: https://github.com/astral-sh/ruff
106
+
107
+ .. image:: https://www.mypy-lang.org/static/mypy_badge.svg
108
+ :alt: Checked with mypy
109
+ :target: https://mypy-lang.org/
110
+
111
+ .. image:: https://img.shields.io/badge/License-MIT-yellow.svg
112
+ :alt: License: MIT
113
+ :target: https://opensource.org/licenses/MIT
114
+
115
+
@@ -1,9 +1,9 @@
1
1
  mergeron/License.txt,sha256=7iX-y0EyjkbVJKJLS4ZKzuuE1wd0lryfsD_IytLG8lQ,1246
2
- mergeron/__init__.py,sha256=MXow5RSpGz49ggTHygQKv5TIJd5iRpTKyQyT9sYGdm4,1455
2
+ mergeron/__init__.py,sha256=-fDaCixxfelCFaf-M1R1psq0eeqYLG5m3YlXNbwgqoM,1454
3
3
  mergeron/core/__init__.py,sha256=KtjBlZOl7jwBCAUhrTJB9PdrN39YLYytNiSUSM_gRmA,62
4
4
  mergeron/core/damodaran_margin_data.py,sha256=rMrgN1Qtw572a0ftY97OOj4otq8ldlLrcOi-bcE-org,8554
5
5
  mergeron/core/ftc_merger_investigations_data.py,sha256=qGAjjXEyqwS1PKKxvJGsSkr0sfI--4oyLss9I1qCNR4,28247
6
- mergeron/core/guidelines_boundaries.py,sha256=Iu7MBg3WzaRUALOobNmzmv_g7l-Njk1k7Y-esLBZBbk,15541
6
+ mergeron/core/guidelines_boundaries.py,sha256=EQ-T-Q94xKhGFp0Y5xheLUS4gptmyRInXfOEaeMHTAA,15530
7
7
  mergeron/core/guidelines_boundary_functions.py,sha256=gohb7Uj1AjJQtD5ew7bVZZjGhJEYCjNNAPB1o6TsA9M,29683
8
8
  mergeron/core/guidelines_boundary_functions_extra.py,sha256=t84dMsaMKnYUNuvvGrMCP6vI8MDn88PJOgGZlNe1Zts,11280
9
9
  mergeron/core/pseudorandom_numbers.py,sha256=cJEWDTfy9CUTzR_di6Fm1Vl1Le6xWoU8wFHbYVMEuLI,9225
@@ -20,12 +20,12 @@ mergeron/data/jinja2_LaTeX_templates/mergeron_table_collection_template.tex.jinj
20
20
  mergeron/data/jinja2_LaTeX_templates/setup_tikz_tables.tex,sha256=1hw3RINDtBrh9ZEToMIiNFIu9rozcPwRly69-5O_0UQ,3207
21
21
  mergeron/demo/__init__.py,sha256=KtjBlZOl7jwBCAUhrTJB9PdrN39YLYytNiSUSM_gRmA,62
22
22
  mergeron/demo/visualize_empirical_margin_distribution.py,sha256=v1xFJumBX2Ooye82kSSgly-_GpFVkYSDqBwM__rcmZY,2363
23
- mergeron/gen/__init__.py,sha256=A-co8RQL-QTsgfErF2O6qC3zcYYR56F6m9PBjH_M1kk,16564
24
- mergeron/gen/data_generation.py,sha256=_sjFm426uIj0MkoMIWQyL8hq3P4XbBIKe0kMUy7aVps,16449
25
- mergeron/gen/data_generation_functions.py,sha256=Pglv9rzeb2mG1SKp01AtkILJdvggDQvDnK-u90019po,28505
26
- mergeron/gen/enforcement_stats.py,sha256=ANnviFnoSUAwZOM5cMG1WrZwbkjuUohplRn5fQmd8Bs,27410
27
- mergeron/gen/upp_tests.py,sha256=iDtfy-lc7uSnBK37f_AxDIz3mO7Gf7-G5tHbX3QRDI0,12647
23
+ mergeron/gen/__init__.py,sha256=bAimsNd7c8lQBBxzSiXyQXXxNRH-wHUe39l1aS1-EkE,16541
24
+ mergeron/gen/data_generation.py,sha256=yEoBYjO6NnGiMEy8QQg1DcbS4E5ytcPNUBONDuzjNns,16720
25
+ mergeron/gen/data_generation_functions.py,sha256=8vWDlmJjvRkBbMC_JQVyc5AVsr3Urvkvi2pVvk4hukc,28531
26
+ mergeron/gen/enforcement_stats.py,sha256=4YQYOeU3dqrOLejhK4chGZMO9ZoID9ZiJZ1V95eSboQ,27370
27
+ mergeron/gen/upp_tests.py,sha256=yzEwWK1bVfjtBYMwXnL5uEWWRiR0_9y0wmjNMB-O3rU,12589
28
28
  mergeron/py.typed,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
29
- mergeron-2024.739104.1.dist-info/METADATA,sha256=A4K7HcIzkIoT7KUmlNOqUic42V1psF1kxNgtIih5l68,10922
30
- mergeron-2024.739104.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
31
- mergeron-2024.739104.1.dist-info/RECORD,,
29
+ mergeron-2024.739105.2.dist-info/METADATA,sha256=kCnvZdz_tS8xmbuVO7KDhSoQDVU-wqGFav1zicjyUcE,13911
30
+ mergeron-2024.739105.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
31
+ mergeron-2024.739105.2.dist-info/RECORD,,
@@ -1,102 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: mergeron
3
- Version: 2024.739104.1
4
- Summary: Merger Policy Analysis using Python
5
- License: MIT
6
- Keywords: merger policy analysis,merger guidelines,merger screening,policy presumptions,concentration standards,upward pricing pressure,GUPPI
7
- Author: Murthy Kambhampaty
8
- Author-email: smk@capeconomics.com
9
- Requires-Python: >=3.12,<4.0
10
- Classifier: Development Status :: 4 - Beta
11
- Classifier: Environment :: Console
12
- Classifier: Intended Audience :: End Users/Desktop
13
- Classifier: Intended Audience :: Science/Research
14
- Classifier: License :: OSI Approved :: MIT License
15
- Classifier: Operating System :: OS Independent
16
- Classifier: Programming Language :: Python
17
- Classifier: Programming Language :: Python :: 3
18
- Classifier: Programming Language :: Python :: 3.12
19
- Classifier: Programming Language :: Python :: 3 :: Only
20
- Classifier: Programming Language :: Python :: Implementation :: CPython
21
- Requires-Dist: aenum (>=3.1.15,<4.0.0)
22
- Requires-Dist: attrs (>=23.2)
23
- Requires-Dist: bs4 (>=0.0.1)
24
- Requires-Dist: certifi (>=2023.11.17)
25
- Requires-Dist: google-re2 (>=1.1)
26
- Requires-Dist: jinja2 (>=3.1)
27
- Requires-Dist: joblib (>=1.3)
28
- Requires-Dist: matplotlib (>=3.8)
29
- Requires-Dist: mpmath (>=1.3)
30
- Requires-Dist: msgpack (>=1.0)
31
- Requires-Dist: msgpack-numpy (>=0.4)
32
- Requires-Dist: numpy (>=1.26,<2)
33
- Requires-Dist: scipy (>=1.12)
34
- Requires-Dist: sympy (>=1.12)
35
- Requires-Dist: tables (>=3.8)
36
- Requires-Dist: types-beautifulsoup4 (>=4.11.2)
37
- Requires-Dist: urllib3 (>=2.2.2,<3.0.0)
38
- Requires-Dist: xlrd (>=2.0.1,<3.0.0)
39
- Requires-Dist: xlsxwriter (>=3.1)
40
- Description-Content-Type: text/x-rst
41
-
42
- mergeron: Merger Policy Analysis using Python
43
- =============================================
44
-
45
- Analyze the sets of mergers conforming to concentration and diversion ratio bounds. Analyze intrinsic enforcement rates, and intrinsic clearance rates, under concentration, diversion ratio, GUPPI, CMCR, and IPR bounds using generated data with specified distributions of market shares, price-cost margins, firm counts, and prices, optionally imposing restrictions implied by statutory filing thresholds and/or Bertrand-Nash oligopoly with MNL demand. Download and analyze merger investigations data published by the U.S. Federal Trade Commission in various reports on extended merger investigations (Second Requests) during 1996 to 2011.
46
-
47
- Here, enforcement rates derived with merger enforcement as being exogenous to firm conduct are defined as intrinsic enforcement rates, and similarly intrinsic clearance rates. Depending on the merger enforcement regime, or merger control regime, intrinsic enforcement rates may also not be the complement of intrinsic clearance rates, i.e, it is not necessarily true that the intrinsic clearance rate estimate for a given enforcement regime is 1 minus the intrinsic enforcement rate. In contrast, observed enforcement rates reflect the deterrent effects of merger enforcement on firm conduct as well as the effects of merger screening on the level of enforcement; and, by definition, the observed clearance rate is 1 minus the observed enforcement rate.
48
-
49
- Introduction
50
- ------------
51
-
52
- Module :code:`mergeron.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`mergeron.core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`mergeron.core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary (as an array of share-pairs) and area. This module also includes a function for generating plots of concentration and diversion-ratio boundaries, and functions for mapping GUPPI standards to concentration (ΔHHI) standards, and vice-versa.
53
-
54
- Module :code:`mergeron.gen.market_sample` includes the :code:`mergeron.gen.market_sample.MarketSample` with methods for, (i) generating sample data under a rich specification of shares, diversion ratios, margins, prices, and HSR filing requirements, and (ii) for estimating enforcement or clearance rates under specified enforcement regimes given a method of aggregating diversion ratio or GUPPI estimates for the firms in a merger. Notably. share are generated not just for markets with a fixed number of firms, but for markets with multiple firm-count weights, which may be left unspecified or explicitly specified.
55
-
56
- Unless otherwise specified, merging-firm shares are drawn with uniform distribution over the space :math:`s_1 + s_2 \leqslant 1` for an unspecified number of firms. Alternatively, shares may be drawn from the Dirichlet distribution, with specified shape parameters (see :code:`mergeron.gen.ShareConstants`. When drawing shares from the Dirichlet distribution, the user passes, using :code:`mergeron.gen.MarketSpec.ShareSpec.firm_count_weights`, a vector of weights specifying the frequency distribution over sequential firm counts, e.g., :code:`[133, 184, 134, 52, 32, 10, 12, 4, 3]` to specify shares drawn from Dirichlet distributions with 2 to 10 pre-merger firms distributed as in data for FTC merger investigations during 1996--2003 (See, for example, Table 4.1 of `FTC, Horizontal Merger Investigations Data, Fiscal Years 1996--2003 (Revised: August 31, 2004) <https://www.ftc.gov/sites/default/files/documents/reports/horizontal-merger-investigation-data-fiscal-years-1996-2003/040831horizmergersdata96-03.pdf>`_). If :code:`mergeron.gen.MarketSpec.ShareSpec.firm_count_weights` is not assigned a value when defining :code:`mergeron.gen.MarketSpec.ShareSpec` (which has type, :code:`mergeron.gen.ShareSpec`), the default values is used, with results in a sample of markets with 2 to 6 firms with equal relative frequency.
57
-
58
- Recapture rates can be specified as, "proportional", "inside-out", "outside-in" (see :code:`mergeron.RECConstants`. The "inside-out" specification results in recapture ratios consistent with merging-firms' in-market shares and a default recapture rate. The "outside-in" specification yields diversion ratios from purchase probabilities drawn at random for :math:`N+1` goods, from which are derived market shares and recapture rates for the :math:`N` goods in the putative market (see, :code:`mergeron.gen.DiversionRatioSpec`). The "outside-in" specification is invalid when the distribution of markets over firm-count is unspecified, i.e., when :code:`mergeron.gen.MarketSpec.ShareSpec.dist_type ==`:code:`mergeron.gen.ShareConstants.UNI`.
59
-
60
- Price-cost-margins may be specified as having uniform distribution, Beta distribution (including a bounded Beta distribution with specified mean and variance), or an empirical distribution. The empirical margin distribution is based on resampling margin data published by Prof. Damodaran of NYU Stern School of Business (see Notes), using an estimated Gaussian KDE. The second merging firm's margin may be specified as symmetric, i.i.d., or subject to equilibrium conditions for (profit-maximization in) Bertrand-Nash oligopoly with MNL demand (see, :code:`mergeron.gen.PCMSpec`).
61
-
62
- Prices may be specified as symmetric or asymmetric, and in the latter case, the direction of correlation between merging firm prices, if any, can also be specified (see, :code:`mergeron.gen.PriceSpec`).
63
-
64
- The market sample may be restricted to mergers meeting the HSR filing requirement under two alternative approaches: in the one, the smaller of the two merging firms meets the HSR filing threshold for the smaller (acquired) firm. In the other, the :math:`n`-th firm's size matches the size requirement for the smaller merging firm (see, :code:`mergeron.gen.SSZConstants`). The second assumption avoids the unfortunate assumption in the first that, within the resulting sample, the larger merging firm be at least 10 times as large as the smaller merging firm, as a consequence of the full definition of the HSR filing requirement.
65
-
66
- The full specification of a market sample is given in a :code:`mergeron.gen.market_sample.MarketSample` object, including the above parameters. Data are drawn by invoking :code:`mergeron.gen.market_sample.MarketSample.generate_sample` which adds a :code:`data` property of class, :code:`mergeron.gen.MarketDataSample`. Enforcement or clearance counts are computed by invoking :code:`mergeron.gen.market_sample.MarketSample.estimate_enf_counts`, which adds an :code:`enf_counts` property of class :code:`mergeron.gen.UPPTestsCounts`. For fast, parallel generation of enforcement or clearance counts over large market data samples that ordinarily would exceed available limits on machine memory, the user can invoke the method :code:`estimate_enf_counts` on a :code:`mergeron.gen.market_sample.MarketSample` object without first invoking :code:`generate_sample`. Note, however, that this strategy does not retain the market sample in memory in the interests of conserving memory and maintaining high performance (the user can specify that the market sample and enforcement statistics be stored to permanent storage; when saving to current PCIe NVMe storage, the performance penalty is slight, but can be considerable if saving to SATA storage).
67
-
68
- Enforcement statistics based on FTC investigations data and test data are printed to screen or rendered to LaTex files (for processing into publication-quality tables) using methods provided in :code:`mergeron.gen.enforcement_stats`.
69
-
70
- Programs demonstrating the use of this package are included in the sub-package, :code:`mergeron.demo`.
71
-
72
- This package includes a class, :code:`mergeron.core.pseudorandom_numbers.MulithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple virtual, logical, or physical CPU cores. This class is an adaptation from the documentation of the :code:`numpy` package, from the discussion on `multithreaded random-number generation <https://numpy.org/doc/stable/reference/random/multithreading.html>_`; the version included here permits selection of the distribution with pre-tests to catch and inform on common errors. To access these directly:
73
-
74
- .. code-block:: python
75
-
76
- import mergeron.core.pseudorandom_numbers as prng
77
-
78
- Documentation for this package is in the form of the API Reference. Documentation for individual functions and classes is accessible within a python shell. For example:
79
-
80
- .. code-block:: python
81
-
82
- import mergeron.core.market_sample as market_sample
83
-
84
- help(market_sample.MarketSample)
85
-
86
- .. image:: https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json
87
- :alt: Poetry
88
- :target: https://python-poetry.org/
89
-
90
- .. image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
91
- :alt: Ruff
92
- :target: https://github.com/astral-sh/ruff
93
-
94
- .. image:: https://www.mypy-lang.org/static/mypy_badge.svg
95
- :alt: Checked with mypy
96
- :target: https://mypy-lang.org/
97
-
98
- .. image:: https://img.shields.io/badge/License-MIT-yellow.svg
99
- :alt: License: MIT
100
- :target: https://opensource.org/licenses/MIT
101
-
102
-