memorysafe 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- memorysafe/__init__.py +5 -0
- memorysafe/buffer.py +91 -0
- memorysafe/demo.py +0 -0
- memorysafe-0.1.0.dist-info/METADATA +11 -0
- memorysafe-0.1.0.dist-info/RECORD +8 -0
- memorysafe-0.1.0.dist-info/WHEEL +5 -0
- memorysafe-0.1.0.dist-info/licenses/LICENSE +17 -0
- memorysafe-0.1.0.dist-info/top_level.txt +1 -0
memorysafe/__init__.py
ADDED
memorysafe/buffer.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import List, Optional, Tuple, Dict
|
|
3
|
+
import numpy as np
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn.functional as F
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@dataclass
|
|
9
|
+
class MemoryItem:
|
|
10
|
+
x: torch.Tensor
|
|
11
|
+
y: int
|
|
12
|
+
protect_score: float
|
|
13
|
+
seen_step: int
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class TasteMemorySafeBuffer:
|
|
17
|
+
"""
|
|
18
|
+
Public demo buffer (non-IP). Not the proprietary MemorySafe policy/MVI.
|
|
19
|
+
Keeps top protect_score items under fixed capacity and replays samples.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
def __init__(self, capacity: int = 300):
|
|
23
|
+
self.capacity = int(capacity)
|
|
24
|
+
self.items: List[MemoryItem] = []
|
|
25
|
+
self.step = 0
|
|
26
|
+
|
|
27
|
+
@torch.no_grad()
|
|
28
|
+
def compute_protect_score(self, y: torch.Tensor, logits: torch.Tensor) -> torch.Tensor:
|
|
29
|
+
probs = F.softmax(logits, dim=1)
|
|
30
|
+
p_true = probs.gather(1, y.view(-1, 1)).squeeze(1)
|
|
31
|
+
|
|
32
|
+
loss_proxy = (-torch.log(p_true + 1e-8))
|
|
33
|
+
top2 = torch.topk(probs, k=2, dim=1).values
|
|
34
|
+
margin = (top2[:, 0] - top2[:, 1]).clamp(min=0.0)
|
|
35
|
+
|
|
36
|
+
loss_n = (loss_proxy / (loss_proxy.max() + 1e-8)).clamp(0, 1)
|
|
37
|
+
margin_n = (1.0 - (margin / (margin.max() + 1e-8))).clamp(0, 1)
|
|
38
|
+
|
|
39
|
+
score = 0.6 * loss_n + 0.4 * margin_n
|
|
40
|
+
return score.clamp(0, 1)
|
|
41
|
+
|
|
42
|
+
def add_batch(self, x: torch.Tensor, y: torch.Tensor, score: torch.Tensor) -> None:
|
|
43
|
+
x = x.detach().cpu()
|
|
44
|
+
y = y.detach().cpu()
|
|
45
|
+
score = score.detach().cpu()
|
|
46
|
+
|
|
47
|
+
for i in range(x.size(0)):
|
|
48
|
+
self.items.append(
|
|
49
|
+
MemoryItem(
|
|
50
|
+
x=x[i],
|
|
51
|
+
y=int(y[i]),
|
|
52
|
+
protect_score=float(score[i].item()),
|
|
53
|
+
seen_step=self.step,
|
|
54
|
+
)
|
|
55
|
+
)
|
|
56
|
+
self.step += 1
|
|
57
|
+
|
|
58
|
+
if len(self.items) > self.capacity:
|
|
59
|
+
self.items.sort(key=lambda it: it.protect_score, reverse=True)
|
|
60
|
+
self.items = self.items[: self.capacity]
|
|
61
|
+
|
|
62
|
+
def sample(
|
|
63
|
+
self,
|
|
64
|
+
n: int = 64,
|
|
65
|
+
device: Optional[torch.device] = None,
|
|
66
|
+
) -> Optional[Tuple[torch.Tensor, torch.Tensor]]:
|
|
67
|
+
if not self.items:
|
|
68
|
+
return None
|
|
69
|
+
|
|
70
|
+
n = min(int(n), len(self.items))
|
|
71
|
+
idx = np.random.choice(len(self.items), size=n, replace=False)
|
|
72
|
+
|
|
73
|
+
xs = torch.stack([self.items[i].x for i in idx])
|
|
74
|
+
ys = torch.tensor([self.items[i].y for i in idx], dtype=torch.long)
|
|
75
|
+
|
|
76
|
+
if device is not None:
|
|
77
|
+
xs = xs.to(device)
|
|
78
|
+
ys = ys.to(device)
|
|
79
|
+
|
|
80
|
+
return xs, ys
|
|
81
|
+
|
|
82
|
+
def stats(self) -> Dict[str, float]:
|
|
83
|
+
if not self.items:
|
|
84
|
+
return {"size": 0.0, "avg_score": 0.0, "p90_score": 0.0}
|
|
85
|
+
|
|
86
|
+
scores = np.array([it.protect_score for it in self.items], dtype=float)
|
|
87
|
+
return {
|
|
88
|
+
"size": float(len(self.items)),
|
|
89
|
+
"avg_score": float(scores.mean()),
|
|
90
|
+
"p90_score": float(np.percentile(scores, 90)),
|
|
91
|
+
}
|
memorysafe/demo.py
ADDED
|
File without changes
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: memorysafe
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: MemorySafe: MVI-driven memory governance for continual learning systems.
|
|
5
|
+
Author: Carla P. Centeno
|
|
6
|
+
License: MIT
|
|
7
|
+
Requires-Python: >=3.10
|
|
8
|
+
License-File: LICENSE
|
|
9
|
+
Requires-Dist: mvi-metrics
|
|
10
|
+
Requires-Dist: numpy
|
|
11
|
+
Dynamic: license-file
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
memorysafe/__init__.py,sha256=KcSUwIvlc0YX4mh67CsZsyuQA0CoaGZgQeoouGMzBo8,117
|
|
2
|
+
memorysafe/buffer.py,sha256=Vs720tsYK84AjUreHbZaN84tPuAEGwh51nPIjWbRg2c,2830
|
|
3
|
+
memorysafe/demo.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
|
+
memorysafe-0.1.0.dist-info/licenses/LICENSE,sha256=IcOH5RGd5Sd4PIdCEkPpG-ibb5qoP_R4DMTdKjoZ2bk,634
|
|
5
|
+
memorysafe-0.1.0.dist-info/METADATA,sha256=FJBfwHJ5_N55B5XwJRbksJXTa9Oh1yGwLNMKZEKdkw0,290
|
|
6
|
+
memorysafe-0.1.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
7
|
+
memorysafe-0.1.0.dist-info/top_level.txt,sha256=8vY8F97skgmHRq2AfHyyp9NUuyO8mBoD6RZLB-nf7_c,11
|
|
8
|
+
memorysafe-0.1.0.dist-info/RECORD,,
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# Apache License
|
|
2
|
+
Version 2.0, January 2004
|
|
3
|
+
http://www.apache.org/licenses/
|
|
4
|
+
|
|
5
|
+
Copyright 2026 MemorySafe Labs
|
|
6
|
+
|
|
7
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
8
|
+
you may not use this file except in compliance with the License.
|
|
9
|
+
You may obtain a copy of the License at
|
|
10
|
+
|
|
11
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
12
|
+
|
|
13
|
+
Unless required by applicable law or agreed to in writing, software
|
|
14
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
15
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
16
|
+
See the License for the specific language governing permissions and
|
|
17
|
+
limitations under the License.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
memorysafe
|