mem1 0.0.5__py3-none-any.whl → 0.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mem1/__init__.py CHANGED
@@ -1,9 +1,15 @@
1
1
  """
2
2
  Mem1 - 基于 Elasticsearch 的用户记忆系统
3
3
  """
4
+ import logging
4
5
 
5
6
  __version__ = "0.0.5"
6
7
 
8
+ # 屏蔽第三方库的详细日志(必须在导入前设置)
9
+ logging.getLogger("elastic_transport").setLevel(logging.WARNING)
10
+ logging.getLogger("elastic_transport.transport").setLevel(logging.WARNING)
11
+ logging.getLogger("httpx").setLevel(logging.WARNING)
12
+
7
13
  from mem1.memory_es import Mem1Memory
8
14
  from mem1.config import Mem1Config, LLMConfig
9
15
 
mem1/config.py CHANGED
@@ -1,5 +1,6 @@
1
1
  """配置管理"""
2
2
  import os
3
+ from typing import Optional
3
4
  from pydantic import BaseModel
4
5
 
5
6
 
@@ -11,6 +12,17 @@ class LLMConfig(BaseModel):
11
12
  base_url: str
12
13
 
13
14
 
15
+ class VLConfig(BaseModel):
16
+ """视觉语言模型配置(可选,配置了 model 即启用,使用 dashscope SDK)"""
17
+ model: str = ""
18
+ api_key: str = ""
19
+
20
+ @property
21
+ def enabled(self) -> bool:
22
+ """只要配置了 model 就启用"""
23
+ return bool(self.model)
24
+
25
+
14
26
  class MemoryConfig(BaseModel):
15
27
  """记忆系统配置"""
16
28
  memory_dir: str
@@ -37,6 +49,7 @@ class ImagesConfig(BaseModel):
37
49
  class Mem1Config(BaseModel):
38
50
  """Mem1 总配置"""
39
51
  llm: LLMConfig
52
+ vl: VLConfig
40
53
  memory: MemoryConfig
41
54
  es: ESConfig
42
55
  images: ImagesConfig
@@ -56,6 +69,10 @@ class Mem1Config(BaseModel):
56
69
  - MEM1_MAX_PROFILE_CHARS: 画像最大字符数
57
70
  - MEM1_UPDATE_INTERVAL_ROUNDS: 画像更新间隔轮数
58
71
  - MEM1_UPDATE_INTERVAL_MINUTES: 画像更新间隔分钟数
72
+
73
+ 可选的环境变量(VL 模型,使用 dashscope SDK):
74
+ - MEM1_VL_MODEL: VL 模型名(如 qwen-vl-max),配置即启用
75
+ - MEM1_VL_API_KEY: dashscope API 密钥
59
76
  """
60
77
  # 必需配置检查
61
78
  required_vars = {
@@ -84,6 +101,12 @@ class Mem1Config(BaseModel):
84
101
  memory_dir = required_vars["MEM1_MEMORY_DIR"]
85
102
  images_dir = f"{memory_dir}/images"
86
103
 
104
+ # VL 模型配置(可选,配置了 model 即启用,使用 dashscope SDK)
105
+ vl_config = VLConfig(
106
+ model=os.getenv("MEM1_VL_MODEL", ""),
107
+ api_key=os.getenv("MEM1_VL_API_KEY", "")
108
+ )
109
+
87
110
  return cls(
88
111
  llm=LLMConfig(
89
112
  provider="openai",
@@ -91,6 +114,7 @@ class Mem1Config(BaseModel):
91
114
  api_key=required_vars["MEM1_LLM_API_KEY"],
92
115
  base_url=required_vars["MEM1_LLM_BASE_URL"]
93
116
  ),
117
+ vl=vl_config,
94
118
  memory=MemoryConfig(
95
119
  memory_dir=memory_dir,
96
120
  auto_update_profile=required_vars["MEM1_AUTO_UPDATE_PROFILE"].lower() == "true",
mem1/llm.py CHANGED
@@ -1,7 +1,7 @@
1
1
  """LLM 客户端"""
2
- from typing import List, Dict
2
+ from typing import List, Dict, Optional
3
3
  from openai import OpenAI
4
- from mem1.config import LLMConfig
4
+ from mem1.config import LLMConfig, VLConfig
5
5
 
6
6
 
7
7
  class LLMClient:
@@ -41,3 +41,50 @@ class LLMClient:
41
41
  response = self.client.chat.completions.create(**kwargs)
42
42
 
43
43
  return response.choices[0].message.content
44
+
45
+
46
+ class VLClient:
47
+ """视觉语言模型客户端(基于 dashscope SDK)"""
48
+
49
+ def __init__(self, config: VLConfig):
50
+ self.config = config
51
+ import dashscope
52
+ dashscope.api_key = config.api_key
53
+
54
+ def understand_image(
55
+ self,
56
+ image_path: str,
57
+ user_description: str = ""
58
+ ) -> str:
59
+ """理解图片内容(OCR + 图片理解)
60
+
61
+ Args:
62
+ image_path: 图片本地路径
63
+ user_description: 用户对图片的描述(可选)
64
+
65
+ Returns:
66
+ 图片理解结果(包含 OCR 文字和内容描述)
67
+ """
68
+ import dashscope
69
+
70
+ prompt = "请分析这张图片,完成以下任务:\n1. OCR识别:提取图片中的所有文字\n2. 内容理解:描述图片的主要内容和关键信息\n\n请用简洁的中文回答,格式如下:\n【文字内容】...\n【图片描述】..."
71
+
72
+ if user_description:
73
+ prompt += f"\n\n用户补充说明:{user_description}"
74
+
75
+ messages = [
76
+ {
77
+ "role": "user",
78
+ "content": [
79
+ {"image": image_path},
80
+ {"text": prompt}
81
+ ]
82
+ }
83
+ ]
84
+
85
+ response = dashscope.MultiModalConversation.call(
86
+ model=self.config.model,
87
+ messages=messages
88
+ )
89
+
90
+ return response.output.choices[0].message.content[0]["text"]
mem1/memory_es.py CHANGED
@@ -1,5 +1,5 @@
1
1
  """基于 Elasticsearch 的记忆管理系统"""
2
- import json
2
+ import re
3
3
  import shutil
4
4
  import base64
5
5
  import logging
@@ -8,7 +8,7 @@ from typing import List, Dict, Any, Optional
8
8
  from pathlib import Path
9
9
  from elasticsearch import Elasticsearch
10
10
  from mem1.config import Mem1Config
11
- from mem1.llm import LLMClient
11
+ from mem1.llm import LLMClient, VLClient
12
12
  from mem1.prompts import ProfileTemplate, RECALL_DECISION_PROMPT, IMAGE_SEARCH_PROMPT, ASSISTANT_SUMMARY_PROMPT
13
13
 
14
14
  logger = logging.getLogger(__name__)
@@ -23,10 +23,10 @@ class Mem1Memory:
23
23
  """基于 Elasticsearch 的用户记忆系统
24
24
 
25
25
  数据存储(全部在 ES):
26
- - ES 索引 conversation_history: 历史对话记录(按 user_id + topic_id 隔离)
26
+ - ES 索引 {index_name}: 历史对话记录 + 图片索引(按 user_id + topic_id 隔离)
27
27
  - ES 索引 mem1_user_state: 用户更新状态(轮数、上次更新时间)
28
28
  - ES 索引 mem1_user_profile: 用户画像(按 user_id 共享,跨话题)
29
- - 本地文件 _images.json: 图片索引(仅图片相关)
29
+ - 本地文件: 图片文件存储
30
30
  """
31
31
 
32
32
  def __init__(
@@ -63,6 +63,9 @@ class Mem1Memory:
63
63
  # LLM 客户端
64
64
  self.llm = LLMClient(config.llm)
65
65
 
66
+ # VL 客户端(可选)
67
+ self.vl = VLClient(config.vl) if config.vl.enabled else None
68
+
66
69
  # 业务场景模板
67
70
  self.profile_template = profile_template or ProfileTemplate()
68
71
 
@@ -74,7 +77,7 @@ class Mem1Memory:
74
77
  self.save_assistant_messages = config.memory.save_assistant_messages
75
78
  self.max_assistant_chars = config.memory.max_assistant_chars
76
79
 
77
- # 确保用户状态索引存在
80
+ # 确保索引存在
78
81
  self._ensure_state_index()
79
82
 
80
83
  def _get_user_images_dir(self, user_id: str) -> Path:
@@ -83,21 +86,36 @@ class Mem1Memory:
83
86
  images_dir.mkdir(parents=True, exist_ok=True)
84
87
  return images_dir
85
88
 
86
- def _get_images_index_path(self, user_id: str) -> Path:
87
- """获取图片索引文件路径"""
88
- return self.images_dir / user_id / "_images.json"
89
-
90
89
  def _load_images_index(self, user_id: str) -> List[Dict[str, str]]:
91
- """加载图片索引"""
92
- path = self._get_images_index_path(user_id)
93
- if path.exists():
94
- return json.loads(path.read_text(encoding="utf-8"))
95
- return []
90
+ """从对话记录中提取用户所有图片"""
91
+ try:
92
+ response = self.es.search(
93
+ index=self.index_name,
94
+ query={
95
+ "bool": {
96
+ "must": [
97
+ {"term": {"user_id": user_id}},
98
+ {"exists": {"field": "images"}}
99
+ ]
100
+ }
101
+ },
102
+ size=1000,
103
+ sort=[{"timestamp": {"order": "asc"}}]
104
+ )
105
+
106
+ images = []
107
+ for hit in response["hits"]["hits"]:
108
+ conv_images = hit["_source"].get("images", [])
109
+ images.extend(conv_images)
110
+ return images
111
+ except Exception:
112
+ return []
96
113
 
97
- def _save_images_index(self, user_id: str, index: List[Dict[str, str]]) -> None:
98
- """保存图片索引"""
99
- path = self._get_images_index_path(user_id)
100
- path.write_text(json.dumps(index, ensure_ascii=False, indent=2), encoding="utf-8")
114
+ def _save_image_to_conversation(self, conversation_entry: Dict, image_doc: Dict[str, str]) -> None:
115
+ """将图片信息添加到对话记录"""
116
+ if "images" not in conversation_entry:
117
+ conversation_entry["images"] = []
118
+ conversation_entry["images"].append(image_doc)
101
119
 
102
120
  def _get_profile(self, user_id: str) -> Optional[str]:
103
121
  """从 ES 获取用户画像"""
@@ -264,11 +282,19 @@ class Mem1Memory:
264
282
  user_id = self.user_id
265
283
  topic_id = self.topic_id
266
284
 
285
+ # 构建对话记录
286
+ conversation_entry = {
287
+ "user_id": user_id,
288
+ "topic_id": topic_id,
289
+ "timestamp": ts,
290
+ "messages": [],
291
+ "metadata": metadata or {}
292
+ }
293
+
267
294
  # 处理图片
268
295
  image_refs = []
269
296
  if images:
270
297
  user_images_dir = self._get_user_images_dir(user_id)
271
- images_index = self._load_images_index(user_id)
272
298
  timestamp_str = datetime.now().strftime('%Y%m%d_%H%M%S')
273
299
 
274
300
  for img in images:
@@ -281,46 +307,49 @@ class Mem1Memory:
281
307
  elif 'path' in img:
282
308
  shutil.copy(img['path'], img_path)
283
309
 
284
- rel_path = f"./images/{filename}"
285
- image_refs.append(rel_path)
310
+ image_refs.append(filename)
286
311
 
287
- description = img.get('description', '')
288
- if not description:
289
- for msg in messages:
290
- if msg["role"] == "user":
291
- description = msg["content"][:100]
292
- break
312
+ # 生成图片描述(用户描述 + VL 理解)
313
+ user_desc = ""
314
+ for msg in messages:
315
+ if msg["role"] == "user":
316
+ user_desc = msg["content"]
317
+ break
293
318
 
294
- images_index.append({
319
+ # 如果启用了 VL 模型,调用视觉理解
320
+ if self.vl:
321
+ try:
322
+ vl_result = self.vl.understand_image(str(img_path), user_desc)
323
+ if user_desc:
324
+ description = f"【用户描述】{user_desc}\n\n{vl_result}"
325
+ else:
326
+ description = vl_result
327
+ logger.info(f"🖼️ VL 图片理解完成: {filename}")
328
+ except Exception as e:
329
+ logger.warning(f"⚠️ VL 图片理解失败: {e}, 使用用户描述")
330
+ description = user_desc or img['filename']
331
+ else:
332
+ description = user_desc or img['filename']
333
+
334
+ # 图片信息存入对话记录
335
+ self._save_image_to_conversation(conversation_entry, {
295
336
  "filename": filename,
296
- "path": rel_path,
297
337
  "description": description,
298
338
  "timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
299
339
  "original_name": img['filename']
300
340
  })
301
-
302
- self._save_images_index(user_id, images_index)
303
-
304
- # 构建对话记录(包含 topic_id)
305
- conversation_entry = {
306
- "user_id": user_id,
307
- "topic_id": topic_id,
308
- "timestamp": ts,
309
- "messages": [],
310
- "metadata": metadata or {}
311
- }
312
341
 
342
+ # 处理消息
313
343
  first_user_msg = True
314
344
  for msg in messages:
315
345
  if msg["role"] == "user":
316
346
  msg_obj = {"role": "user", "content": msg["content"]}
317
347
  if first_user_msg and image_refs:
318
- msg_obj["images"] = image_refs
348
+ msg_obj["image_refs"] = image_refs
319
349
  first_user_msg = False
320
350
  conversation_entry["messages"].append(msg_obj)
321
351
  elif self.save_assistant_messages and msg["role"] == "assistant":
322
352
  content = msg["content"]
323
- # 超长回复触发摘要
324
353
  if len(content) > self.max_assistant_chars:
325
354
  content = self._summarize_assistant_response(content)
326
355
  conversation_entry["messages"].append({
@@ -575,7 +604,7 @@ class Mem1Memory:
575
604
  return []
576
605
 
577
606
  images_desc = "\n".join([
578
- f"[{i}] 文件名: {img['original_name']}, 时间: {img['timestamp']}, 描述: {img['description'][:100]}"
607
+ f"[{i}] 文件名: {img['original_name']}, 时间: {img['timestamp']}, 描述: {img['description']}"
579
608
  for i, img in enumerate(images_index)
580
609
  ])
581
610
 
@@ -589,12 +618,16 @@ class Mem1Memory:
589
618
  response = self.llm.generate(messages, response_format="text")
590
619
 
591
620
  results = []
592
- for line in response.strip().split('\n'):
593
- line = line.strip()
594
- if line.isdigit():
595
- idx = int(line)
596
- if 0 <= idx < len(images_index):
597
- results.append(images_index[idx])
621
+ # 提取所有数字(支持多种格式:纯数字、[0]、0. 等)
622
+ import re
623
+ numbers = re.findall(r'\b(\d+)\b', response)
624
+ for num_str in numbers:
625
+ idx = int(num_str)
626
+ if 0 <= idx < len(images_index):
627
+ img = images_index[idx].copy()
628
+ img['abs_path'] = str((self._get_user_images_dir(user_id) / img['filename']).resolve())
629
+ if img not in results: # 去重
630
+ results.append(img)
598
631
 
599
632
  logger.info(f"🖼️ 图片搜索: query='{query}', 找到 {len(results)} 张")
600
633
  return results
mem1/prompts.py CHANGED
@@ -32,6 +32,14 @@ class ProfileTemplate:
32
32
  - 关注重点:
33
33
  - 特殊要求:
34
34
 
35
+ ## 周期性任务
36
+ (固定日程和重复性工作,格式:[周期] 任务内容)
37
+ - 例:[每周一] 提交周报、[每周五] 制定下周计划、[每月底] 月度汇总
38
+
39
+ ## 关键数据
40
+ (重要的数字、金额、数量,用加粗标记)
41
+ - 例:处置 **97起** 案件、涉及金额 **230万元**、完成 **365个** 检查点
42
+
35
43
  ## 任务时间线
36
44
  (用户提到的计划、截止日期、里程碑,格式:[YYYY-MM-DD] 事项)
37
45
 
@@ -111,15 +119,26 @@ DEFAULT_PROFILE_UPDATE_PROMPT = """你是用户画像分析专家。从对话记
111
119
  4. 只记录用户明确表达的信息,不要推测
112
120
  5. 如果某个章节没有信息,保留标题但内容留空
113
121
 
122
+ ## 周期性任务提取
123
+ 6. 识别固定日程:用户提到"每周一"、"每周五"、"每天"、"每月"等周期性任务
124
+ 7. 记录到「周期性任务」章节,格式:[周期] 任务内容
125
+ 8. 示例:[每周一] 提交周报、[每周五] 制定下周计划
126
+
127
+ ## 关键数字保留【重要】
128
+ 9. 所有具体数字必须原样保留并用 **加粗** 标记,禁止概括为"多个"、"若干"、"大量"
129
+ 10. 记录到「关键数据」章节,格式:事项描述 **数字**
130
+ 11. 正确示例:处置 **97起** 案件、涉及金额 **230万元** ✓
131
+ 12. 错误示例:处置多起案件、涉及大额资金 ✗
132
+
114
133
  ## 时间敏感信息提取
115
- 6. 任务时间线:提取用户提到的日期、截止时间、计划安排、里程碑,记录到「任务时间线」
116
- 7. 待办事项:识别用户说"下次"、"回头"、"先这样"、"稍后"、"改天"等挂起信号,将未完成的请求记录到「待办事项」
117
- 8. 已完成事项:如果对话中确认某个待办已完成,将其从「待办事项」移除或标记为 [x]
134
+ 13. 任务时间线:提取用户提到的日期、截止时间、计划安排、里程碑,记录到「任务时间线」
135
+ 14. 待办事项:识别用户说"下次"、"回头"、"先这样"、"稍后"、"改天"等挂起信号,将未完成的请求记录到「待办事项」
136
+ 15. 已完成事项:如果对话中确认某个待办已完成,将其从「待办事项」移除或标记为 [x]
118
137
 
119
138
  ## 矛盾检测
120
- 9. 发现用户前后说法矛盾时(如偏好、身份、需求不一致),不要直接覆盖旧信息
121
- 10. 将矛盾记录到「待澄清事项」,格式:⚠️ 用户曾说"..."(日期),但又说"..."(日期)
122
- 11. 只有用户明确澄清后,才能更新对应信息并移除待澄清标记
139
+ 16. 发现用户前后说法矛盾时(如偏好、身份、需求不一致),不要直接覆盖旧信息
140
+ 17. 将矛盾记录到「待澄清事项」,格式:⚠️ 用户曾说"..."(日期),但又说"..."(日期)
141
+ 18. 只有用户明确澄清后,才能更新对应信息并移除待澄清标记
123
142
 
124
143
  ---
125
144
  *最后更新: {timestamp}*
@@ -220,6 +239,14 @@ YUQING_PROFILE_TEMPLATE = ProfileTemplate(
220
239
  - 关注重点:(时效性/准确性/全面性等)
221
240
  - 图表偏好:
222
241
 
242
+ ## 周期性任务
243
+ (固定日程和重复性工作,格式:[周期] 任务内容)
244
+ - 例:[每周一] 提交周报、[每周五] 制定下周计划、[每月底] 月度汇总
245
+
246
+ ## 关键数据
247
+ (重要的数字、金额、数量,用加粗标记)
248
+ - 例:处置 **97起** 案件、涉及金额 **230万元**
249
+
223
250
  ## 任务时间线
224
251
  (报告截止日期、汇报计划、定期任务,格式:[YYYY-MM-DD] 事项)
225
252
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mem1
3
- Version: 0.0.5
3
+ Version: 0.0.6
4
4
  Summary: 基于云服务的用户记忆系统
5
5
  Project-URL: Homepage, https://github.com/sougannkyou/mem1
6
6
  Project-URL: Repository, https://github.com/sougannkyou/mem1
@@ -14,6 +14,7 @@ Classifier: Programming Language :: Python :: 3
14
14
  Classifier: Programming Language :: Python :: 3.12
15
15
  Classifier: Programming Language :: Python :: 3.13
16
16
  Requires-Python: >=3.12
17
+ Requires-Dist: dashscope>=1.14.0
17
18
  Requires-Dist: elasticsearch>=8.0.0
18
19
  Requires-Dist: openai>=1.0.0
19
20
  Requires-Dist: pydantic>=2.0.0
@@ -30,7 +31,7 @@ Description-Content-Type: text/markdown
30
31
 
31
32
  - **三层记忆架构**:短期会话 → 用户画像 → 长期记录
32
33
  - **话题隔离**:同一用户可有多个话题,对话按话题隔离,画像跨话题共享
33
- - **图片记忆**:支持存储和语义搜索用户发送的图片
34
+ - **图片记忆**:存储图片时自动调用 VL 模型生成描述(OCR + 内容理解),搜索时基于文字描述召回
34
35
  - **业务解耦**:通过 ProfileTemplate 适配不同场景
35
36
  - **画像自动更新**:基于对话轮数/时间自动触发 LLM 更新用户画像
36
37
 
@@ -87,6 +88,57 @@ MEM1_UPDATE_INTERVAL_MINUTES=3
87
88
  MEM1_SAVE_ASSISTANT_MESSAGES=true
88
89
  MEM1_MAX_ASSISTANT_CHARS=500
89
90
  MEM1_CONTEXT_DAYS_LIMIT=31
91
+
92
+ # VL 视觉模型(可选,配置 MODEL 即启用,使用 dashscope SDK)
93
+ MEM1_VL_MODEL=qwen-vl-max
94
+ MEM1_VL_API_KEY=your-dashscope-key
95
+ ```
96
+
97
+ ## 图片记忆
98
+
99
+ ### 实现机制
100
+
101
+ 1. **存储阶段**:`add_conversation()` 遇到图片时自动调用 VL 模型(如 Qwen-VL)
102
+ 2. **VL 处理**:生成包含三部分的描述文本
103
+ - 【用户描述】用户发送图片时的文字说明
104
+ - 【文字内容】OCR 识别图片中的文字
105
+ - 【图片描述】VL 模型对图片内容的理解
106
+ 3. **数据存储**:图片信息存入 ES 对话记录的 `images` 字段,图片文件存本地
107
+ 4. **搜索召回**:`search_images()` 基于描述文本进行关键词匹配,返回图片路径
108
+
109
+ ### ES 数据结构
110
+
111
+ ```json
112
+ {
113
+ "user_id": "user001",
114
+ "topic_id": "default",
115
+ "timestamp": "2026-01-06 16:46:03",
116
+ "messages": [
117
+ {"role": "user", "content": "...", "image_refs": ["20260106_164603_report.png"]}
118
+ ],
119
+ "images": [
120
+ {
121
+ "filename": "20260106_164603_report.png",
122
+ "description": "【用户描述】...\n\n【文字内容】...\n\n【图片描述】...",
123
+ "timestamp": "2026-01-06 16:46:16",
124
+ "original_name": "report.png"
125
+ }
126
+ ]
127
+ }
128
+ ```
129
+
130
+ ### 使用示例
131
+
132
+ ```python
133
+ # 添加带图片的对话
134
+ memory.add_conversation(
135
+ messages=[{"role": "user", "content": "这是今天的报表"}],
136
+ images=[{"path": "./report.png", "filename": "report.png"}]
137
+ )
138
+
139
+ # 搜索图片(基于 VL 生成的描述)
140
+ results = memory.search_images(query="报表")
141
+ # 返回: [{"filename": "...", "description": "...", "abs_path": "..."}]
90
142
  ```
91
143
 
92
144
  ## 核心接口
@@ -117,7 +169,7 @@ memory.delete_user()
117
169
 
118
170
  | 索引 | 用途 |
119
171
  |------|------|
120
- | `conversation_history` | 对话记录 |
172
+ | `conversation_history` | 对话记录(含图片索引) |
121
173
  | `mem1_user_state` | 用户状态 |
122
174
  | `mem1_user_profile` | 用户画像 |
123
175
 
@@ -0,0 +1,11 @@
1
+ mem1/__init__.py,sha256=tNsBrO4d7fujDIPpvl6pweVcg5kHr_EYRgslR8nWWEI,494
2
+ mem1/config.py,sha256=YWMzO3AIRp0PEa37fBzScRuY0TsoVJmHMi1xzDpmLsk,5123
3
+ mem1/langchain_middleware.py,sha256=h2mG7K2Tq1N7IovXMvCyvOhsAwTWOR1NAqivF4db2AE,6648
4
+ mem1/llm.py,sha256=Mq5a-3RMXeIXjVyv_W2-1JGzCSZ1PJ8hKGyXpQF8r6M,2632
5
+ mem1/memory_es.py,sha256=P836RJjA4TcOEqrA3ja9kQMD092mBokMRjllgsk0ki0,29198
6
+ mem1/memory_md.py,sha256=uu_TvdBoUpAncT1eissOSe1Y3vCy3iWMcuvCy3vCjEA,26258
7
+ mem1/memory_tools.py,sha256=b1YBiRNet0gXnW-KGIZ2KQclluB9Q6dli_DbWLS571k,3646
8
+ mem1/prompts.py,sha256=ISVnCnrZ1QJGcQOO6bK30ZPJPCpasd2Hs9n_MsVY_R4,9987
9
+ mem1-0.0.6.dist-info/METADATA,sha256=oaqbpU3W2JjdAyBUwb-3tyMOFeIlf9BNwMicShInxoQ,5642
10
+ mem1-0.0.6.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
11
+ mem1-0.0.6.dist-info/RECORD,,
@@ -1,11 +0,0 @@
1
- mem1/__init__.py,sha256=D-o5MjyTl565vqyVOyigm9LiZmsk9S5DfyV4QobLNo8,219
2
- mem1/config.py,sha256=Tr91k9P9T-znshYAFGSyL3KGNy38xQLjbSJWlHxxeIo,4309
3
- mem1/langchain_middleware.py,sha256=h2mG7K2Tq1N7IovXMvCyvOhsAwTWOR1NAqivF4db2AE,6648
4
- mem1/llm.py,sha256=EKsZHxLrRn-OTxCsPHOYcUTjnEF5RVMnEM8fqWzdkbg,1114
5
- mem1/memory_es.py,sha256=nVkZ2W-MWL0ZLzNqDoZ7e5Ccgde8SKzy2ogMm1CKZu8,27787
6
- mem1/memory_md.py,sha256=uu_TvdBoUpAncT1eissOSe1Y3vCy3iWMcuvCy3vCjEA,26258
7
- mem1/memory_tools.py,sha256=b1YBiRNet0gXnW-KGIZ2KQclluB9Q6dli_DbWLS571k,3646
8
- mem1/prompts.py,sha256=L0JGVa--V_h9KqqZnb1n1N9oaPqxBhxHFL71Us9J5qM,8685
9
- mem1-0.0.5.dist-info/METADATA,sha256=ZbNrxTHxutoP5zK65emlcymBSFagU2AE2dLhpX74bjE,3957
10
- mem1-0.0.5.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
11
- mem1-0.0.5.dist-info/RECORD,,
File without changes