mem0ai-azure-mysql 0.1.116.12__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. mem0/__init__.py +1 -2
  2. mem0/configs/llms/base.py +1 -1
  3. mem0/embeddings/configs.py +3 -14
  4. mem0/graphs/configs.py +6 -62
  5. mem0/llms/azure_openai.py +1 -1
  6. mem0/llms/configs.py +2 -20
  7. mem0/memory/main.py +0 -861
  8. mem0/utils/factory.py +3 -55
  9. mem0/vector_stores/configs.py +2 -23
  10. mem0ai_azure_mysql-0.2.1.dist-info/METADATA +202 -0
  11. mem0ai_azure_mysql-0.2.1.dist-info/RECORD +47 -0
  12. mem0/client/__init__.py +0 -0
  13. mem0/client/main.py +0 -1538
  14. mem0/client/project.py +0 -860
  15. mem0/client/utils.py +0 -29
  16. mem0/configs/llms/anthropic.py +0 -56
  17. mem0/configs/llms/aws_bedrock.py +0 -191
  18. mem0/configs/llms/deepseek.py +0 -56
  19. mem0/configs/llms/lmstudio.py +0 -59
  20. mem0/configs/llms/ollama.py +0 -56
  21. mem0/configs/llms/openai.py +0 -76
  22. mem0/configs/llms/vllm.py +0 -56
  23. mem0/configs/vector_stores/baidu.py +0 -29
  24. mem0/configs/vector_stores/chroma.py +0 -40
  25. mem0/configs/vector_stores/databricks.py +0 -63
  26. mem0/configs/vector_stores/elasticsearch.py +0 -65
  27. mem0/configs/vector_stores/faiss.py +0 -39
  28. mem0/configs/vector_stores/langchain.py +0 -32
  29. mem0/configs/vector_stores/milvus.py +0 -44
  30. mem0/configs/vector_stores/mongodb.py +0 -25
  31. mem0/configs/vector_stores/opensearch.py +0 -41
  32. mem0/configs/vector_stores/pgvector.py +0 -50
  33. mem0/configs/vector_stores/pinecone.py +0 -57
  34. mem0/configs/vector_stores/qdrant.py +0 -49
  35. mem0/configs/vector_stores/redis.py +0 -26
  36. mem0/configs/vector_stores/supabase.py +0 -44
  37. mem0/configs/vector_stores/upstash_vector.py +0 -36
  38. mem0/configs/vector_stores/vertex_ai_vector_search.py +0 -27
  39. mem0/configs/vector_stores/weaviate.py +0 -43
  40. mem0/embeddings/aws_bedrock.py +0 -100
  41. mem0/embeddings/gemini.py +0 -39
  42. mem0/embeddings/huggingface.py +0 -41
  43. mem0/embeddings/langchain.py +0 -35
  44. mem0/embeddings/lmstudio.py +0 -29
  45. mem0/embeddings/mock.py +0 -11
  46. mem0/embeddings/ollama.py +0 -53
  47. mem0/embeddings/openai.py +0 -49
  48. mem0/embeddings/together.py +0 -31
  49. mem0/embeddings/vertexai.py +0 -54
  50. mem0/graphs/neptune/__init__.py +0 -0
  51. mem0/graphs/neptune/base.py +0 -410
  52. mem0/graphs/neptune/main.py +0 -373
  53. mem0/llms/anthropic.py +0 -87
  54. mem0/llms/aws_bedrock.py +0 -600
  55. mem0/llms/azure_openai_structured.py +0 -91
  56. mem0/llms/deepseek.py +0 -107
  57. mem0/llms/gemini.py +0 -201
  58. mem0/llms/groq.py +0 -88
  59. mem0/llms/langchain.py +0 -65
  60. mem0/llms/litellm.py +0 -87
  61. mem0/llms/lmstudio.py +0 -114
  62. mem0/llms/ollama.py +0 -106
  63. mem0/llms/openai.py +0 -141
  64. mem0/llms/openai_structured.py +0 -52
  65. mem0/llms/sarvam.py +0 -89
  66. mem0/llms/together.py +0 -88
  67. mem0/llms/vllm.py +0 -107
  68. mem0/llms/xai.py +0 -52
  69. mem0/memory/kuzu_memory.py +0 -710
  70. mem0/memory/memgraph_memory.py +0 -638
  71. mem0/proxy/__init__.py +0 -0
  72. mem0/proxy/main.py +0 -189
  73. mem0/vector_stores/baidu.py +0 -368
  74. mem0/vector_stores/chroma.py +0 -254
  75. mem0/vector_stores/databricks.py +0 -759
  76. mem0/vector_stores/elasticsearch.py +0 -237
  77. mem0/vector_stores/faiss.py +0 -473
  78. mem0/vector_stores/langchain.py +0 -180
  79. mem0/vector_stores/milvus.py +0 -247
  80. mem0/vector_stores/mongodb.py +0 -312
  81. mem0/vector_stores/opensearch.py +0 -281
  82. mem0/vector_stores/pgvector.py +0 -368
  83. mem0/vector_stores/pinecone.py +0 -382
  84. mem0/vector_stores/qdrant.py +0 -270
  85. mem0/vector_stores/redis.py +0 -295
  86. mem0/vector_stores/supabase.py +0 -237
  87. mem0/vector_stores/upstash_vector.py +0 -293
  88. mem0/vector_stores/vertex_ai_vector_search.py +0 -629
  89. mem0/vector_stores/weaviate.py +0 -316
  90. mem0ai_azure_mysql-0.1.116.12.data/data/README.md +0 -24
  91. mem0ai_azure_mysql-0.1.116.12.dist-info/METADATA +0 -89
  92. mem0ai_azure_mysql-0.1.116.12.dist-info/RECORD +0 -126
  93. {mem0ai_azure_mysql-0.1.116.12.dist-info → mem0ai_azure_mysql-0.2.1.dist-info}/WHEEL +0 -0
mem0/__init__.py CHANGED
@@ -2,5 +2,4 @@ import importlib.metadata
2
2
 
3
3
  __version__ = importlib.metadata.version("mem0ai-azure-mysql")
4
4
 
5
- from mem0.client.main import AsyncMemoryClient, MemoryClient # noqa
6
- from mem0.memory.main import AsyncMemory, Memory # noqa
5
+ from mem0.memory.main import AsyncMemory # noqa
mem0/configs/llms/base.py CHANGED
@@ -29,7 +29,7 @@ class BaseLlmConfig(ABC):
29
29
  Initialize a base configuration class instance for the LLM.
30
30
 
31
31
  Args:
32
- model: The model identifier to use (e.g., "gpt-4o-mini", "claude-3-5-sonnet-20240620")
32
+ model: The model identifier to use (e.g., "gpt-5.1", "claude-3-5-sonnet-20240620")
33
33
  Defaults to None (will be set by provider-specific configs)
34
34
  temperature: Controls the randomness of the model's output.
35
35
  Higher values (closer to 1) make output more random, lower values make it more deterministic.
@@ -5,26 +5,15 @@ from pydantic import BaseModel, Field, field_validator
5
5
 
6
6
  class EmbedderConfig(BaseModel):
7
7
  provider: str = Field(
8
- description="Provider of the embedding model (e.g., 'ollama', 'openai')",
9
- default="openai",
8
+ description="Provider of the embedding model (e.g., 'azure_openai')",
9
+ default="azure_openai",
10
10
  )
11
11
  config: Optional[dict] = Field(description="Configuration for the specific embedding model", default={})
12
12
 
13
13
  @field_validator("config")
14
14
  def validate_config(cls, v, values):
15
15
  provider = values.data.get("provider")
16
- if provider in [
17
- "openai",
18
- "ollama",
19
- "huggingface",
20
- "azure_openai",
21
- "gemini",
22
- "vertexai",
23
- "together",
24
- "lmstudio",
25
- "langchain",
26
- "aws_bedrock",
27
- ]:
16
+ if provider in ["azure_openai"]:
28
17
  return v
29
18
  else:
30
19
  raise ValueError(f"Unsupported embedding provider: {provider}")
mem0/graphs/configs.py CHANGED
@@ -1,4 +1,4 @@
1
- from typing import Optional, Union
1
+ from typing import Optional
2
2
 
3
3
  from pydantic import BaseModel, Field, field_validator, model_validator
4
4
 
@@ -8,7 +8,7 @@ from mem0.llms.configs import LlmConfig
8
8
  class RerankConfig(BaseModel):
9
9
  provider: str = Field(
10
10
  description="Provider of the rerank model (e.g., 'openai', 'azure', 'cohere')",
11
- default="cohere",
11
+ default="cohere",
12
12
  )
13
13
  config: Optional[dict] = Field(
14
14
  description="Configuration for the specific rerank model", default={}
@@ -33,7 +33,7 @@ class Neo4jConfig(BaseModel):
33
33
  )
34
34
  if not url or not username or not password:
35
35
  raise ValueError("Please provide 'url', 'username' and 'password'.")
36
-
36
+
37
37
  if values.get("rerank") is not None:
38
38
  values["rerank"] = RerankConfig(**values.get("rerank"))
39
39
  if values["rerank"].provider not in ("cohere"):
@@ -42,62 +42,12 @@ class Neo4jConfig(BaseModel):
42
42
  return values
43
43
 
44
44
 
45
- class MemgraphConfig(BaseModel):
46
- url: Optional[str] = Field(None, description="Host address for the graph database")
47
- username: Optional[str] = Field(None, description="Username for the graph database")
48
- password: Optional[str] = Field(None, description="Password for the graph database")
49
-
50
- @model_validator(mode="before")
51
- def check_host_port_or_path(cls, values):
52
- url, username, password = (
53
- values.get("url"),
54
- values.get("username"),
55
- values.get("password"),
56
- )
57
- if not url or not username or not password:
58
- raise ValueError("Please provide 'url', 'username' and 'password'.")
59
- return values
60
-
61
-
62
- class NeptuneConfig(BaseModel):
63
- endpoint: Optional[str] = (
64
- Field(
65
- None,
66
- description="Endpoint to connect to a Neptune Analytics Server as neptune-graph://<graphid>",
67
- ),
68
- )
69
- base_label: Optional[bool] = Field(None, description="Whether to use base node label __Entity__ for all entities")
70
-
71
- @model_validator(mode="before")
72
- def check_host_port_or_path(cls, values):
73
- endpoint = values.get("endpoint")
74
- if not endpoint:
75
- raise ValueError("Please provide 'endpoint' with the format as 'neptune-graph://<graphid>'.")
76
- if endpoint.startswith("neptune-db://"):
77
- raise ValueError("neptune-db server is not yet supported")
78
- elif endpoint.startswith("neptune-graph://"):
79
- # This is a Neptune Analytics Graph
80
- graph_identifier = endpoint.replace("neptune-graph://", "")
81
- if not graph_identifier.startswith("g-"):
82
- raise ValueError("Provide a valid 'graph_identifier'.")
83
- values["graph_identifier"] = graph_identifier
84
- return values
85
- else:
86
- raise ValueError(
87
- "You must provide an endpoint to create a NeptuneServer as either neptune-db://<endpoint> or neptune-graph://<graphid>"
88
- )
89
-
90
-
91
- class KuzuConfig(BaseModel):
92
- db: Optional[str] = Field(":memory:", description="Path to a Kuzu database file")
93
-
94
-
95
45
  class GraphStoreConfig(BaseModel):
96
46
  provider: str = Field(
97
- description="Provider of the data store (e.g., 'neo4j', 'memgraph', 'neptune', 'kuzu')",
47
+ description="Provider of the data store (e.g., 'neo4j')",
98
48
  default="neo4j",
99
49
  )
100
- config: Union[Neo4jConfig, MemgraphConfig, NeptuneConfig, KuzuConfig] = Field(
50
+ config: Optional[Neo4jConfig] = Field(
101
51
  description="Configuration for the specific data store", default=None
102
52
  )
103
53
  llm: Optional[LlmConfig] = Field(description="LLM configuration for querying the graph store", default=None)
@@ -108,13 +58,7 @@ class GraphStoreConfig(BaseModel):
108
58
  @field_validator("config")
109
59
  def validate_config(cls, v, values):
110
60
  provider = values.data.get("provider")
111
- if provider == "neo4j":
61
+ if provider in ("neo4j", "default"):
112
62
  return Neo4jConfig(**v.model_dump())
113
- elif provider == "memgraph":
114
- return MemgraphConfig(**v.model_dump())
115
- elif provider == "neptune":
116
- return NeptuneConfig(**v.model_dump())
117
- elif provider == "kuzu":
118
- return KuzuConfig(**v.model_dump())
119
63
  else:
120
64
  raise ValueError(f"Unsupported graph store provider: {provider}")
mem0/llms/azure_openai.py CHANGED
@@ -36,7 +36,7 @@ class AzureOpenAILLM(LLMBase):
36
36
 
37
37
  # Model name should match the custom deployment name chosen for it.
38
38
  if not self.config.model:
39
- self.config.model = "gpt-4o"
39
+ self.config.model = "gpt-5.1"
40
40
 
41
41
  api_key = self.config.azure_kwargs.api_key or os.getenv("LLM_AZURE_API_KEY")
42
42
  azure_ad_token = self.config.azure_kwargs.azure_ad_token or os.getenv("LLM_AZURE_AD_TOKEN")
mem0/llms/configs.py CHANGED
@@ -4,31 +4,13 @@ from pydantic import BaseModel, Field, field_validator
4
4
 
5
5
 
6
6
  class LlmConfig(BaseModel):
7
- provider: str = Field(description="Provider of the LLM (e.g., 'ollama', 'openai')", default="openai")
7
+ provider: str = Field(description="Provider of the LLM (e.g., 'azure_openai')", default="azure_openai")
8
8
  config: Optional[dict] = Field(description="Configuration for the specific LLM", default={})
9
9
 
10
10
  @field_validator("config")
11
11
  def validate_config(cls, v, values):
12
12
  provider = values.data.get("provider")
13
- if provider in (
14
- "openai",
15
- "ollama",
16
- "anthropic",
17
- "groq",
18
- "together",
19
- "aws_bedrock",
20
- "litellm",
21
- "azure_openai",
22
- "openai_structured",
23
- "azure_openai_structured",
24
- "gemini",
25
- "deepseek",
26
- "xai",
27
- "sarvam",
28
- "lmstudio",
29
- "vllm",
30
- "langchain",
31
- ):
13
+ if provider in ("azure_openai",):
32
14
  return v
33
15
  else:
34
16
  raise ValueError(f"Unsupported LLM provider: {provider}")