mem-llm 1.3.1__py3-none-any.whl → 1.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mem-llm might be problematic. Click here for more details.
- mem_llm/__init__.py +9 -2
- mem_llm/config_manager.py +3 -1
- mem_llm/mem_agent.py +400 -16
- mem_llm/memory_db.py +186 -4
- mem_llm/memory_manager.py +10 -1
- mem_llm/response_metrics.py +221 -0
- mem_llm/vector_store.py +278 -0
- {mem_llm-1.3.1.dist-info → mem_llm-1.3.2.dist-info}/METADATA +12 -3
- {mem_llm-1.3.1.dist-info → mem_llm-1.3.2.dist-info}/RECORD +12 -10
- {mem_llm-1.3.1.dist-info → mem_llm-1.3.2.dist-info}/WHEEL +0 -0
- {mem_llm-1.3.1.dist-info → mem_llm-1.3.2.dist-info}/entry_points.txt +0 -0
- {mem_llm-1.3.1.dist-info → mem_llm-1.3.2.dist-info}/top_level.txt +0 -0
mem_llm/vector_store.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Vector Store Abstraction Layer
|
|
3
|
+
Supports multiple vector databases (Chroma, FAISS, etc.)
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from abc import ABC, abstractmethod
|
|
7
|
+
from typing import List, Dict, Optional, Any
|
|
8
|
+
import logging
|
|
9
|
+
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class VectorStore(ABC):
|
|
14
|
+
"""Abstract interface for vector stores"""
|
|
15
|
+
|
|
16
|
+
@abstractmethod
|
|
17
|
+
def add_documents(self, documents: List[Dict[str, Any]]) -> None:
|
|
18
|
+
"""
|
|
19
|
+
Add documents to vector store
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
documents: List of dicts with 'id', 'text', 'metadata'
|
|
23
|
+
"""
|
|
24
|
+
pass
|
|
25
|
+
|
|
26
|
+
@abstractmethod
|
|
27
|
+
def search(self, query: str, limit: int = 5, filter_metadata: Optional[Dict] = None) -> List[Dict[str, Any]]:
|
|
28
|
+
"""
|
|
29
|
+
Search similar documents
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
query: Search query text
|
|
33
|
+
limit: Maximum number of results
|
|
34
|
+
filter_metadata: Optional metadata filters
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
List of similar documents with scores
|
|
38
|
+
"""
|
|
39
|
+
pass
|
|
40
|
+
|
|
41
|
+
@abstractmethod
|
|
42
|
+
def delete_collection(self) -> None:
|
|
43
|
+
"""Delete all vectors in collection"""
|
|
44
|
+
pass
|
|
45
|
+
|
|
46
|
+
@abstractmethod
|
|
47
|
+
def get_stats(self) -> Dict[str, Any]:
|
|
48
|
+
"""Get statistics about the vector store"""
|
|
49
|
+
pass
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
try:
|
|
53
|
+
import chromadb
|
|
54
|
+
from chromadb.config import Settings
|
|
55
|
+
CHROMA_AVAILABLE = True
|
|
56
|
+
except ImportError:
|
|
57
|
+
CHROMA_AVAILABLE = False
|
|
58
|
+
logger.warning("ChromaDB not available. Install with: pip install chromadb")
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
class ChromaVectorStore(VectorStore):
|
|
62
|
+
"""ChromaDB implementation of VectorStore"""
|
|
63
|
+
|
|
64
|
+
def __init__(self, collection_name: str = "knowledge_base",
|
|
65
|
+
persist_directory: Optional[str] = None,
|
|
66
|
+
embedding_model: str = "all-MiniLM-L6-v2"):
|
|
67
|
+
"""
|
|
68
|
+
Initialize ChromaDB vector store
|
|
69
|
+
|
|
70
|
+
Args:
|
|
71
|
+
collection_name: Name of the collection
|
|
72
|
+
persist_directory: Directory to persist data (None = in-memory)
|
|
73
|
+
embedding_model: Embedding model name (sentence-transformers compatible)
|
|
74
|
+
"""
|
|
75
|
+
if not CHROMA_AVAILABLE:
|
|
76
|
+
raise ImportError(
|
|
77
|
+
"ChromaDB is not installed. Install with: pip install chromadb"
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
self.collection_name = collection_name
|
|
81
|
+
self.persist_directory = persist_directory
|
|
82
|
+
self.embedding_model = embedding_model
|
|
83
|
+
|
|
84
|
+
# Initialize Chroma client
|
|
85
|
+
if persist_directory:
|
|
86
|
+
self.client = chromadb.PersistentClient(path=persist_directory)
|
|
87
|
+
else:
|
|
88
|
+
self.client = chromadb.Client()
|
|
89
|
+
|
|
90
|
+
# Lazy load embedding model
|
|
91
|
+
self._embedding_fn = None
|
|
92
|
+
|
|
93
|
+
# Get or create collection with embedding function
|
|
94
|
+
try:
|
|
95
|
+
# Create embedding function
|
|
96
|
+
embedding_fn = self._get_embedding_function()
|
|
97
|
+
|
|
98
|
+
self.collection = self.client.get_or_create_collection(
|
|
99
|
+
name=collection_name,
|
|
100
|
+
embedding_function=embedding_fn,
|
|
101
|
+
metadata={"hnsw:space": "cosine"}
|
|
102
|
+
)
|
|
103
|
+
except Exception as e:
|
|
104
|
+
logger.error(f"Failed to create Chroma collection: {e}")
|
|
105
|
+
raise
|
|
106
|
+
|
|
107
|
+
def _get_embedding_function(self):
|
|
108
|
+
"""Lazy load embedding function"""
|
|
109
|
+
if self._embedding_fn is None:
|
|
110
|
+
try:
|
|
111
|
+
# Try to use ChromaDB's native SentenceTransformerEmbeddingFunction
|
|
112
|
+
try:
|
|
113
|
+
# Try different import paths for ChromaDB embedding functions
|
|
114
|
+
try:
|
|
115
|
+
from chromadb.utils import embedding_functions
|
|
116
|
+
embedding_fn_class = embedding_functions.SentenceTransformerEmbeddingFunction
|
|
117
|
+
except (ImportError, AttributeError):
|
|
118
|
+
try:
|
|
119
|
+
from chromadb.utils.embedding_functions import SentenceTransformerEmbeddingFunction as embedding_fn_class
|
|
120
|
+
except ImportError:
|
|
121
|
+
embedding_fn_class = None
|
|
122
|
+
|
|
123
|
+
if embedding_fn_class:
|
|
124
|
+
self._embedding_fn = embedding_fn_class(model_name=self.embedding_model)
|
|
125
|
+
logger.info(f"Loaded embedding model using ChromaDB native function: {self.embedding_model}")
|
|
126
|
+
else:
|
|
127
|
+
raise AttributeError("SentenceTransformerEmbeddingFunction not found")
|
|
128
|
+
|
|
129
|
+
except (ImportError, AttributeError, Exception) as e:
|
|
130
|
+
# Fallback: Custom embedding function wrapper compatible with ChromaDB
|
|
131
|
+
from sentence_transformers import SentenceTransformer
|
|
132
|
+
model = SentenceTransformer(self.embedding_model)
|
|
133
|
+
|
|
134
|
+
class CustomEmbeddingFunction:
|
|
135
|
+
def __init__(self, model, model_name):
|
|
136
|
+
self.model = model
|
|
137
|
+
self.model_name = model_name
|
|
138
|
+
self.name = model_name # ChromaDB may check for 'name' attribute
|
|
139
|
+
|
|
140
|
+
def __call__(self, texts: List[str]) -> List[List[float]]:
|
|
141
|
+
embeddings = self.model.encode(texts, show_progress_bar=False)
|
|
142
|
+
return embeddings.tolist()
|
|
143
|
+
|
|
144
|
+
def encode_queries(self, queries: List[str]) -> List[List[float]]:
|
|
145
|
+
return self.__call__(queries)
|
|
146
|
+
|
|
147
|
+
self._embedding_fn = CustomEmbeddingFunction(model, self.embedding_model)
|
|
148
|
+
logger.info(f"Loaded embedding model using custom wrapper: {self.embedding_model} (fallback: {e})")
|
|
149
|
+
except ImportError:
|
|
150
|
+
raise ImportError(
|
|
151
|
+
"sentence-transformers not installed. "
|
|
152
|
+
"Install with: pip install sentence-transformers"
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
return self._embedding_fn
|
|
156
|
+
|
|
157
|
+
def add_documents(self, documents: List[Dict[str, Any]]) -> None:
|
|
158
|
+
"""Add documents to ChromaDB"""
|
|
159
|
+
if not documents:
|
|
160
|
+
return
|
|
161
|
+
|
|
162
|
+
# Prepare data
|
|
163
|
+
ids = []
|
|
164
|
+
texts = []
|
|
165
|
+
metadatas = []
|
|
166
|
+
|
|
167
|
+
for doc in documents:
|
|
168
|
+
doc_id = str(doc.get('id', doc.get('text', ''))[:100])
|
|
169
|
+
# Ensure unique IDs
|
|
170
|
+
if doc_id in ids:
|
|
171
|
+
doc_id = f"{doc_id}_{len(ids)}"
|
|
172
|
+
ids.append(doc_id)
|
|
173
|
+
texts.append(doc['text'])
|
|
174
|
+
# Ensure metadata values are JSON-serializable
|
|
175
|
+
metadata = doc.get('metadata', {})
|
|
176
|
+
clean_metadata = {}
|
|
177
|
+
for k, v in metadata.items():
|
|
178
|
+
if isinstance(v, (str, int, float, bool)) or v is None:
|
|
179
|
+
clean_metadata[k] = v
|
|
180
|
+
else:
|
|
181
|
+
clean_metadata[k] = str(v)
|
|
182
|
+
metadatas.append(clean_metadata)
|
|
183
|
+
|
|
184
|
+
# Add to collection (Chroma will use embedding function automatically)
|
|
185
|
+
try:
|
|
186
|
+
self.collection.add(
|
|
187
|
+
ids=ids,
|
|
188
|
+
documents=texts,
|
|
189
|
+
metadatas=metadatas
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
logger.debug(f"Added {len(documents)} documents to Chroma")
|
|
193
|
+
except Exception as e:
|
|
194
|
+
logger.error(f"Error adding documents to Chroma: {e}")
|
|
195
|
+
raise
|
|
196
|
+
|
|
197
|
+
def search(self, query: str, limit: int = 5,
|
|
198
|
+
filter_metadata: Optional[Dict] = None) -> List[Dict[str, Any]]:
|
|
199
|
+
"""Search in ChromaDB"""
|
|
200
|
+
try:
|
|
201
|
+
# Build where clause for metadata filtering
|
|
202
|
+
where = None
|
|
203
|
+
if filter_metadata:
|
|
204
|
+
where = filter_metadata
|
|
205
|
+
|
|
206
|
+
# Search (Chroma will use embedding function automatically)
|
|
207
|
+
results = self.collection.query(
|
|
208
|
+
query_texts=[query],
|
|
209
|
+
n_results=limit,
|
|
210
|
+
where=where
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
# Format results
|
|
214
|
+
formatted_results = []
|
|
215
|
+
if results.get('documents') and len(results['documents']) > 0 and len(results['documents'][0]) > 0:
|
|
216
|
+
num_results = len(results['documents'][0])
|
|
217
|
+
distances = results.get('distances', [[0.0] * num_results])
|
|
218
|
+
|
|
219
|
+
for i in range(num_results):
|
|
220
|
+
# ChromaDB uses cosine distance (0 = identical, 1 = opposite)
|
|
221
|
+
# Convert to similarity score (1 = identical, 0 = opposite)
|
|
222
|
+
distance = distances[0][i] if distances and len(distances[0]) > i else 0.0
|
|
223
|
+
similarity = 1.0 - distance if distance <= 1.0 else max(0.0, 1.0 / (1.0 + distance))
|
|
224
|
+
|
|
225
|
+
formatted_results.append({
|
|
226
|
+
'id': results['ids'][0][i] if results.get('ids') and len(results['ids'][0]) > i else f"doc_{i}",
|
|
227
|
+
'text': results['documents'][0][i],
|
|
228
|
+
'metadata': results['metadatas'][0][i] if results.get('metadatas') and len(results['metadatas'][0]) > i else {},
|
|
229
|
+
'score': similarity
|
|
230
|
+
})
|
|
231
|
+
|
|
232
|
+
return formatted_results
|
|
233
|
+
except Exception as e:
|
|
234
|
+
logger.error(f"Error searching Chroma: {e}")
|
|
235
|
+
return []
|
|
236
|
+
|
|
237
|
+
def delete_collection(self) -> None:
|
|
238
|
+
"""Delete collection"""
|
|
239
|
+
try:
|
|
240
|
+
self.client.delete_collection(self.collection_name)
|
|
241
|
+
logger.info(f"Deleted Chroma collection: {self.collection_name}")
|
|
242
|
+
except Exception as e:
|
|
243
|
+
logger.error(f"Error deleting collection: {e}")
|
|
244
|
+
|
|
245
|
+
def get_stats(self) -> Dict[str, Any]:
|
|
246
|
+
"""Get collection statistics"""
|
|
247
|
+
try:
|
|
248
|
+
count = self.collection.count()
|
|
249
|
+
return {
|
|
250
|
+
'total_documents': count,
|
|
251
|
+
'collection_name': self.collection_name,
|
|
252
|
+
'embedding_model': self.embedding_model
|
|
253
|
+
}
|
|
254
|
+
except Exception as e:
|
|
255
|
+
logger.error(f"Error getting stats: {e}")
|
|
256
|
+
return {'total_documents': 0}
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def create_vector_store(store_type: str = "chroma", **kwargs) -> Optional[VectorStore]:
|
|
260
|
+
"""
|
|
261
|
+
Factory function to create vector store
|
|
262
|
+
|
|
263
|
+
Args:
|
|
264
|
+
store_type: Type of vector store ('chroma', 'faiss', etc.)
|
|
265
|
+
**kwargs: Store-specific parameters
|
|
266
|
+
|
|
267
|
+
Returns:
|
|
268
|
+
VectorStore instance or None if not available
|
|
269
|
+
"""
|
|
270
|
+
if store_type == "chroma":
|
|
271
|
+
if not CHROMA_AVAILABLE:
|
|
272
|
+
logger.warning("ChromaDB not available. Install with: pip install chromadb")
|
|
273
|
+
return None
|
|
274
|
+
return ChromaVectorStore(**kwargs)
|
|
275
|
+
else:
|
|
276
|
+
logger.warning(f"Unknown vector store type: {store_type}")
|
|
277
|
+
return None
|
|
278
|
+
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: mem-llm
|
|
3
|
-
Version: 1.3.
|
|
3
|
+
Version: 1.3.2
|
|
4
4
|
Summary: Memory-enabled AI assistant with multi-backend LLM support (Ollama, LM Studio, Gemini) - Local and cloud ready
|
|
5
5
|
Author-email: "C. Emre Karataş" <karatasqemre@gmail.com>
|
|
6
6
|
License: MIT
|
|
@@ -70,7 +70,14 @@ Mem-LLM is a powerful Python library that brings persistent memory capabilities
|
|
|
70
70
|
- **Issues**: https://github.com/emredeveloper/Mem-LLM/issues
|
|
71
71
|
- **Documentation**: See examples/ directory
|
|
72
72
|
|
|
73
|
-
## 🆕 What's New in v1.3.
|
|
73
|
+
## 🆕 What's New in v1.3.2
|
|
74
|
+
|
|
75
|
+
- 📊 **Response Metrics** (v1.3.1+) – Track confidence, latency, KB usage, and quality analytics
|
|
76
|
+
- 🔍 **Vector Search** (v1.3.2+) – Semantic search with ChromaDB, cross-lingual support
|
|
77
|
+
- 🎯 **Quality Monitoring** – Production-ready metrics for response quality
|
|
78
|
+
- 🌐 **Semantic Understanding** – Understands meaning, not just keywords
|
|
79
|
+
|
|
80
|
+
## What's New in v1.3.0
|
|
74
81
|
|
|
75
82
|
- 🔌 **Multi-Backend Support**: Choose between Ollama (local), LM Studio (local), or Google Gemini (cloud)
|
|
76
83
|
- 🏗️ **Factory Pattern**: Clean, extensible architecture for easy backend switching
|
|
@@ -79,12 +86,14 @@ Mem-LLM is a powerful Python library that brings persistent memory capabilities
|
|
|
79
86
|
- 📚 **New Examples**: 4 additional examples showing multi-backend usage
|
|
80
87
|
- 🎯 **Backward Compatible**: All v1.2.0 code still works without changes
|
|
81
88
|
|
|
82
|
-
[See full changelog](CHANGELOG.md
|
|
89
|
+
[See full changelog](CHANGELOG.md)
|
|
83
90
|
|
|
84
91
|
## ✨ Key Features
|
|
85
92
|
|
|
86
93
|
- 🔌 **Multi-Backend Support** (v1.3.0+) - Choose Ollama, LM Studio, or Gemini with unified API
|
|
87
94
|
- 🔍 **Auto-Detection** (v1.3.0+) - Automatically find and use available LLM services
|
|
95
|
+
- 📊 **Response Metrics** (v1.3.1+) - Track confidence, latency, KB usage, and quality analytics
|
|
96
|
+
- 🔍 **Vector Search** (v1.3.2+) - Semantic search with ChromaDB, cross-lingual support
|
|
88
97
|
- 🧠 **Persistent Memory** - Remembers conversations across sessions
|
|
89
98
|
- 🤖 **Universal Model Support** - Works with 100+ Ollama models, LM Studio models, and Gemini
|
|
90
99
|
- 💾 **Dual Storage Modes** - JSON (simple) or SQLite (advanced) memory backends
|
|
@@ -1,9 +1,9 @@
|
|
|
1
|
-
mem_llm/__init__.py,sha256=
|
|
1
|
+
mem_llm/__init__.py,sha256=fKHDaLkOUE4uFqaTkqfKcop4Ckz9qfFOTKGcfz6BGlE,2918
|
|
2
2
|
mem_llm/base_llm_client.py,sha256=aCpr8ZnvOsu-a-zp9quTDP42XvjAC1uci6r11s0QdVA,5218
|
|
3
3
|
mem_llm/cli.py,sha256=DiqQyBZknN8pVagY5jXH85_LZ6odVGopfpa-7DILNNE,8666
|
|
4
4
|
mem_llm/config.yaml.example,sha256=lgmfaU5pxnIm4zYxwgCcgLSohNx1Jw6oh3Qk0Xoe2DE,917
|
|
5
5
|
mem_llm/config_from_docs.py,sha256=YFhq1SWyK63C-TNMS73ncNHg8sJ-XGOf2idWVCjxFco,4974
|
|
6
|
-
mem_llm/config_manager.py,sha256=
|
|
6
|
+
mem_llm/config_manager.py,sha256=QwkZz8qNBj5KI0h7t45PQmvJ7Orqnx3iOIUbU5yAVoo,7255
|
|
7
7
|
mem_llm/conversation_summarizer.py,sha256=yCG2pKrAJf7xjaG6DPXL0i9eesMZnnzjKTpuyLHMTPQ,12509
|
|
8
8
|
mem_llm/data_export_import.py,sha256=gQIdD0hBY23qcRvx139yE15RWHXPinL_EoRNY7iabj0,22592
|
|
9
9
|
mem_llm/dynamic_prompt.py,sha256=8H99QVDRJSVtGb_o4sdEPnG1cJWuer3KiD-nuL1srTA,10244
|
|
@@ -11,19 +11,21 @@ mem_llm/knowledge_loader.py,sha256=oSNhfYYcx7DlZLVogxnbSwaIydq_Q3__RDJFeZR2XVw,2
|
|
|
11
11
|
mem_llm/llm_client.py,sha256=3F04nlnRWRlhkQ3aZO-OfsxeajB2gwbIDfClu04cyb0,8709
|
|
12
12
|
mem_llm/llm_client_factory.py,sha256=jite-4CkgFBd9e0b2cIaZzP-zTqA7tjNqXnJ5CQgcbs,9325
|
|
13
13
|
mem_llm/logger.py,sha256=dZUmhGgFXtDsDBU_D4kZlJeMp6k-VNPaBcyTt7rZYKE,4507
|
|
14
|
-
mem_llm/mem_agent.py,sha256=
|
|
15
|
-
mem_llm/memory_db.py,sha256=
|
|
16
|
-
mem_llm/memory_manager.py,sha256=
|
|
14
|
+
mem_llm/mem_agent.py,sha256=8R0oAtXzD_X99QVVsfMjZl_wkiCCHdKNWrTrsrbpzdY,52771
|
|
15
|
+
mem_llm/memory_db.py,sha256=yY_afim1Rpk3mOz-qI5WvDDAwWoVd-NucBMBLVUNpwg,21711
|
|
16
|
+
mem_llm/memory_manager.py,sha256=BtzI1o-NYZXMkZHtc36xEZizgNn9fAu6cBkGzNXa-uI,10373
|
|
17
17
|
mem_llm/memory_tools.py,sha256=ARANFqu_bmL56SlV1RzTjfQsJj-Qe2QvqY0pF92hDxU,8678
|
|
18
18
|
mem_llm/prompt_security.py,sha256=ehAi6aLiXj0gFFhpyjwEr8LentSTJwOQDLbINV7SaVM,9960
|
|
19
|
+
mem_llm/response_metrics.py,sha256=nMegWV7brNOmptjxGJfYEqRKvAj_302MIw8Ky1PzEy8,7912
|
|
19
20
|
mem_llm/retry_handler.py,sha256=z5ZcSQKbvVeNK7plagTLorvOeoYgRpQcsX3PpNqUjKM,6389
|
|
20
21
|
mem_llm/thread_safe_db.py,sha256=Fq-wSn4ua1qiR6M4ZTIy7UT1IlFj5xODNExgub1blbU,10328
|
|
22
|
+
mem_llm/vector_store.py,sha256=7fzvxLjfJrspN1Tcety4JtcKksxnkM0E5es0UtBgI-c,10816
|
|
21
23
|
mem_llm/clients/__init__.py,sha256=Nvr4NuL9ZlDF_dUjr-ZMFxRRrBdHoUOjqncZs3n5Wow,475
|
|
22
24
|
mem_llm/clients/gemini_client.py,sha256=dmRZRd8f-x6J2W7luzcB1BOx_4UpXpCF4YiPGUccWCw,14432
|
|
23
25
|
mem_llm/clients/lmstudio_client.py,sha256=IxUX3sVRfXN46hfEUTCrspGTOeqsn4YAu9WzFuGh940,10156
|
|
24
26
|
mem_llm/clients/ollama_client.py,sha256=2BfYSBiOowhFg9UiCXkILlBG9_4Vri3-Iny_gH6-um0,9710
|
|
25
|
-
mem_llm-1.3.
|
|
26
|
-
mem_llm-1.3.
|
|
27
|
-
mem_llm-1.3.
|
|
28
|
-
mem_llm-1.3.
|
|
29
|
-
mem_llm-1.3.
|
|
27
|
+
mem_llm-1.3.2.dist-info/METADATA,sha256=6KYvn0Y00gcxzyU45tkckwW991IqSDpLoAvSfubeypY,18774
|
|
28
|
+
mem_llm-1.3.2.dist-info/WHEEL,sha256=beeZ86-EfXScwlR_HKu4SllMC9wUEj_8Z_4FJ3egI2w,91
|
|
29
|
+
mem_llm-1.3.2.dist-info/entry_points.txt,sha256=z9bg6xgNroIobvCMtnSXeFPc-vI1nMen8gejHCdnl0U,45
|
|
30
|
+
mem_llm-1.3.2.dist-info/top_level.txt,sha256=_fU1ML-0JwkaxWdhqpwtmTNaJEOvDMQeJdA8d5WqDn8,8
|
|
31
|
+
mem_llm-1.3.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|