meikiocr 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
meikiocr/__init__.py ADDED
@@ -0,0 +1,5 @@
1
+ # ./meikiocr/__init__.py
2
+
3
+ from .ocr import MeikiOCR
4
+
5
+ __version__ = "0.1.3"
meikiocr/ocr.py ADDED
@@ -0,0 +1,281 @@
1
+ # ./meikiocr/ocr.py
2
+
3
+ import os
4
+ import cv2
5
+ import numpy as np
6
+ from huggingface_hub import hf_hub_download
7
+ import onnxruntime as ort
8
+ import logging
9
+
10
+ logger = logging.getLogger(__name__)
11
+ logger.addHandler(logging.NullHandler())
12
+
13
+ # --- configuration ---
14
+ DET_MODEL_REPO = "rtr46/meiki.text.detect.v0"
15
+ DET_MODEL_NAME = "meiki.text.detect.v0.1.960x544.onnx"
16
+ REC_MODEL_REPO = "rtr46/meiki.txt.recognition.v0"
17
+ REC_MODEL_NAME = "meiki.text.rec.v0.960x32.onnx"
18
+
19
+ INPUT_DET_WIDTH = 960
20
+ INPUT_DET_HEIGHT = 544
21
+ INPUT_REC_HEIGHT = 32
22
+ INPUT_REC_WIDTH = 960
23
+
24
+ X_OVERLAP_THRESHOLD = 0.3
25
+ EPSILON = 1e-6
26
+
27
+ def _get_model_path(repo_id, filename):
28
+ """Downloads a model from the hugging face hub if not cached and returns the path."""
29
+ try:
30
+ return hf_hub_download(repo_id=repo_id, filename=filename)
31
+ except Exception as e:
32
+ print(f"Error downloading model {filename}: {e}")
33
+ raise
34
+
35
+ class MeikiOCR:
36
+ def __init__(self, provider=None, max_batch_size=8):
37
+ """
38
+ Initializes the meikiocr pipeline by loading detection and recognition models.
39
+
40
+ Args:
41
+ provider (str, optional): The ONNX Runtime execution provider to use.
42
+ Defaults to None, which lets ONNX Runtime choose.
43
+ Recommended: 'CUDAExecutionProvider' for NVIDIA GPUs,
44
+ 'CPUExecutionProvider' for CPU.
45
+ max_batch_size (int, optional): The maximum batch size for the recognition model
46
+ to control memory usage. Defaults to 8.
47
+ """
48
+ ort.set_default_logger_severity(3)
49
+
50
+ det_model_path = _get_model_path(DET_MODEL_REPO, DET_MODEL_NAME)
51
+ rec_model_path = _get_model_path(REC_MODEL_REPO, REC_MODEL_NAME)
52
+
53
+ available_providers = ort.get_available_providers()
54
+ if provider and provider in available_providers:
55
+ chosen_providers = [provider]
56
+ elif 'CUDAExecutionProvider' in available_providers:
57
+ chosen_providers = ['CUDAExecutionProvider']
58
+ elif 'CPUExecutionProvider' in available_providers:
59
+ chosen_providers = ['CPUExecutionProvider']
60
+ else:
61
+ chosen_providers = available_providers
62
+
63
+ self.det_session = ort.InferenceSession(det_model_path, providers=chosen_providers)
64
+ self.rec_session = ort.InferenceSession(rec_model_path, providers=chosen_providers)
65
+
66
+ self.active_provider = self.det_session.get_providers()[0]
67
+ self.max_batch_size = max_batch_size
68
+ logger.info(f"meikiocr running on: {self.active_provider}; max_batch_size = {self.max_batch_size}")
69
+
70
+ def run_ocr(self, image, det_threshold=0.5, rec_threshold=0.1):
71
+ """
72
+ Runs the full OCR pipeline on a given image.
73
+
74
+ Args:
75
+ image (np.ndarray): The input image in OpenCV format (BGR, HxWxC).
76
+ det_threshold (float): Confidence threshold for text detection.
77
+ rec_threshold (float): Confidence threshold for character recognition.
78
+
79
+ Returns:
80
+ list[dict]: A list of dictionaries, where each dictionary contains the
81
+ recognized 'text' and a list of 'chars' with their bounding
82
+ boxes and confidence scores for a detected text line.
83
+ """
84
+ text_boxes = self.run_detection(image, det_threshold)
85
+
86
+ if not text_boxes:
87
+ return []
88
+
89
+ rec_batch, valid_indices, crop_metadata = self._preprocess_for_recognition(image, text_boxes)
90
+
91
+ if rec_batch is None:
92
+ return [{'text': '', 'chars': []} for _ in range(len(text_boxes))]
93
+
94
+ # Process the recognition in smaller batches to control memory usage
95
+ all_labels_chunks, all_boxes_chunks, all_scores_chunks = [], [], []
96
+ for i in range(0, len(rec_batch), self.max_batch_size):
97
+ batch_chunk = rec_batch[i:i + self.max_batch_size]
98
+ labels_chunk, boxes_chunk, scores_chunk = self._run_recognition_inference(batch_chunk)
99
+ all_labels_chunks.append(labels_chunk)
100
+ all_boxes_chunks.append(boxes_chunk)
101
+ all_scores_chunks.append(scores_chunk)
102
+
103
+ all_rec_raw = (
104
+ np.concatenate(all_labels_chunks, axis=0),
105
+ np.concatenate(all_boxes_chunks, axis=0),
106
+ np.concatenate(all_scores_chunks, axis=0)
107
+ )
108
+ results = self._postprocess_recognition_results(all_rec_raw, valid_indices, crop_metadata, rec_threshold, len(text_boxes))
109
+ return results
110
+
111
+ def run_detection(self, image, conf_threshold=0.5):
112
+ """
113
+ Runs only the text detection part of the pipeline.
114
+
115
+ Args:
116
+ image (np.ndarray): The input image in OpenCV format (BGR, HxWxC).
117
+ conf_threshold (float): Confidence threshold for text detection.
118
+
119
+ Returns:
120
+ list[dict]: A list of detected text boxes, sorted from top to bottom.
121
+ Each box is a dictionary with 'bbox' and 'conf'.
122
+ """
123
+ det_input, scale = self._preprocess_for_detection(image)
124
+ det_raw = self._run_detection_inference(det_input, scale)
125
+ text_boxes = self._postprocess_detection_results(det_raw, image, conf_threshold)
126
+ return text_boxes
127
+
128
+ def run_recognition(self, text_line_images, conf_threshold=0.1):
129
+ """
130
+ Runs only the text recognition part of the pipeline on a batch of text line images.
131
+ Note: This is an advanced method. `run_ocr` is recommended for general use.
132
+
133
+ Args:
134
+ text_line_images (list[np.ndarray]): A list of cropped text line images (BGR, HxWxC).
135
+ conf_threshold (float): Confidence threshold for character recognition.
136
+
137
+ Returns:
138
+ list[dict]: A list of recognition results, one for each input image.
139
+ """
140
+ if not text_line_images:
141
+ return []
142
+
143
+ # Create dummy text_boxes to fit the existing pipeline.
144
+ text_boxes = [{'bbox': [0, 0, img.shape[1], img.shape[0]]} for img in text_line_images]
145
+
146
+ # We need to process each image as if it were a crop from a larger canvas.
147
+ # For simplicity, we process them one by one, though batching is possible with more complex metadata handling.
148
+ results = []
149
+ for i, image in enumerate(text_line_images):
150
+ rec_batch, valid_indices, crop_metadata = self._preprocess_for_recognition(image, [text_boxes[i]])
151
+ if rec_batch is None:
152
+ results.append({'text': '', 'chars': []})
153
+ continue
154
+ rec_raw = self._run_recognition_inference(rec_batch)
155
+ result = self._postprocess_recognition_results(rec_raw, valid_indices, crop_metadata, conf_threshold, 1)
156
+ results.extend(result)
157
+
158
+ return results
159
+
160
+ # --- Internal "private" methods (prefixed with _) ---
161
+
162
+ def _preprocess_for_detection(self, image):
163
+ h_orig, w_orig = image.shape[:2]
164
+ scale = min(INPUT_DET_WIDTH / w_orig, INPUT_DET_HEIGHT / h_orig)
165
+ w_resized, h_resized = int(w_orig * scale), int(h_orig * scale)
166
+ resized = cv2.resize(image, (w_resized, h_resized), interpolation=cv2.INTER_LINEAR)
167
+ normalized_resized = resized.astype(np.float32) / 255.0
168
+ tensor = np.zeros((INPUT_DET_HEIGHT, INPUT_DET_WIDTH, 3), dtype=np.float32)
169
+ tensor[:h_resized, :w_resized] = normalized_resized
170
+ tensor = np.transpose(tensor, (2, 0, 1)) # HWC -> CHW
171
+ tensor = np.expand_dims(tensor, axis=0) # Add batch dimension
172
+ return tensor, scale
173
+
174
+ def _run_detection_inference(self, tensor: np.ndarray, scale):
175
+ inputs = {
176
+ self.det_session.get_inputs()[0].name: tensor,
177
+ self.det_session.get_inputs()[1].name: np.array([[INPUT_DET_WIDTH / scale, INPUT_DET_HEIGHT / scale]], dtype=np.int64)
178
+ }
179
+ return self.det_session.run(None, inputs)
180
+
181
+ def _postprocess_detection_results(self, raw_outputs: list, image, conf_threshold: float):
182
+ h_orig, w_orig = image.shape[:2]
183
+ _, boxes, scores = raw_outputs
184
+ boxes, scores = boxes[0], scores[0]
185
+ confident_boxes = boxes[scores > conf_threshold]
186
+ if confident_boxes.shape[0] == 0:
187
+ return []
188
+ max_bounds = np.array([w_orig, h_orig, w_orig, h_orig])
189
+ clamped_boxes = np.clip(confident_boxes, 0, max_bounds).astype(np.int32)
190
+ text_boxes = [{'bbox': box.tolist()} for box in clamped_boxes]
191
+ text_boxes.sort(key=lambda tb: tb['bbox'][1])
192
+ return text_boxes
193
+
194
+ def _preprocess_for_recognition(self, image, text_boxes):
195
+ tensors, valid_indices, crop_metadata = [], [], []
196
+ for i, tb in enumerate(text_boxes):
197
+ x1, y1, x2, y2 = tb['bbox']
198
+ width, height = x2 - x1, y2 - y1
199
+ if width < height or width <= 0 or height <= 0:
200
+ continue
201
+
202
+ crop = image[y1:y2, x1:x2]
203
+ h, w = crop.shape[:2]
204
+ new_h, new_w = INPUT_REC_HEIGHT, int(round(w * (INPUT_REC_HEIGHT / h)))
205
+ if new_w > INPUT_REC_WIDTH:
206
+ scale = INPUT_REC_WIDTH / new_w
207
+ new_w, new_h = INPUT_REC_WIDTH, int(round(new_h * scale))
208
+
209
+ resized = cv2.resize(crop, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
210
+ pad_w, pad_h = INPUT_REC_WIDTH - new_w, INPUT_REC_HEIGHT - new_h
211
+ padded = np.pad(resized, ((0, pad_h), (0, pad_w), (0, 0)), constant_values=0)
212
+
213
+ tensor = (padded.astype(np.float32) / 255.0).transpose(2, 0, 1)
214
+ tensors.append(tensor)
215
+ valid_indices.append(i)
216
+ crop_metadata.append({'orig_bbox': [x1, y1, x2, y2], 'effective_w': new_w})
217
+
218
+ if not tensors: return None, [], []
219
+ return np.stack(tensors, axis=0), valid_indices, crop_metadata
220
+
221
+ def _run_recognition_inference(self, batch_tensor):
222
+ if batch_tensor is None: return []
223
+ orig_size = np.array([[INPUT_REC_WIDTH, INPUT_REC_HEIGHT]], dtype=np.int64)
224
+ return self.rec_session.run(None, {"images": batch_tensor, "orig_target_sizes": orig_size})
225
+
226
+ def _postprocess_recognition_results(self, raw_rec_outputs, valid_indices, crop_metadata, rec_conf_threshold, num_total_boxes):
227
+ labels_batch, boxes_batch, scores_batch = raw_rec_outputs
228
+ full_results = [{'text': '', 'chars': []} for _ in range(num_total_boxes)]
229
+
230
+ for i, (labels, boxes, scores) in enumerate(zip(labels_batch, boxes_batch, scores_batch)):
231
+ meta = crop_metadata[i]
232
+ gx1, gy1, gx2, gy2 = meta['orig_bbox']
233
+ crop_w, crop_h = gx2 - gx1, gy2 - gy1
234
+ effective_w = meta['effective_w']
235
+
236
+ candidates = []
237
+ for lbl, box, scr in zip(labels, boxes, scores):
238
+ if scr < rec_conf_threshold:
239
+ continue
240
+ char = chr(lbl)
241
+ rx1, ry1, rx2, ry2 = box
242
+ if rx1 >= effective_w:
243
+ continue
244
+ rx1, rx2 = min(rx1, effective_w), min(rx2, effective_w)
245
+
246
+ cx1, cx2 = (rx1 / effective_w) * crop_w, (rx2 / effective_w) * crop_w
247
+ cy1, cy2 = (ry1 / INPUT_REC_HEIGHT) * crop_h, (ry2 / INPUT_REC_HEIGHT) * crop_h
248
+
249
+ gx1_char, gy1_char = gx1 + int(cx1), gy1 + int(cy1)
250
+ gx2_char, gy2_char = gx1 + int(cx2), gy1 + int(cy2)
251
+
252
+ candidates.append({
253
+ 'char': char, 'bbox': [gx1_char, gy1_char, gx2_char, gy2_char],
254
+ 'conf': float(scr), 'x_interval': (gx1_char, gx2_char)
255
+ })
256
+
257
+ candidates.sort(key=lambda c: c['conf'], reverse=True)
258
+ accepted = []
259
+ accepted_intervals = []
260
+ for cand in candidates:
261
+ x1_c, x2_c = cand['x_interval']
262
+ width_c = x2_c - x1_c + EPSILON
263
+ is_overlap = False
264
+
265
+ for x1_a, x2_a in accepted_intervals:
266
+ if (x1_c >= x2_a) or (x1_a >= x2_c):
267
+ continue
268
+ if ((min(x2_c, x2_a) - max(x1_c, x1_a)) / width_c) > X_OVERLAP_THRESHOLD:
269
+ is_overlap = True
270
+ break
271
+
272
+ if not is_overlap:
273
+ accepted.append(cand)
274
+ accepted_intervals.append(cand['x_interval'])
275
+
276
+ accepted.sort(key=lambda c: c['x_interval'][0])
277
+ text = ''.join(c['char'] for c in accepted)
278
+ result_chars = [{'char': c['char'], 'bbox': c['bbox'], 'conf': c['conf']} for c in accepted]
279
+ full_results[valid_indices[i]] = {'text': text, 'chars': result_chars}
280
+
281
+ return full_results
@@ -0,0 +1,148 @@
1
+ Metadata-Version: 2.4
2
+ Name: meikiocr
3
+ Version: 0.1.3
4
+ Summary: High-speed, high-accuracy, local OCR for Japanese video games.
5
+ Author: rtr46
6
+ License-Expression: Apache-2.0
7
+ Project-URL: Homepage, https://github.com/rtr46/meikiocr
8
+ Project-URL: Bug Tracker, https://github.com/rtr46/meikiocr/issues
9
+ Project-URL: Hugging Face, https://huggingface.co/spaces/rtr46/meikiocr
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Operating System :: OS Independent
12
+ Classifier: Topic :: Scientific/Engineering :: Image Recognition
13
+ Requires-Python: >=3.8
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Requires-Dist: numpy
17
+ Requires-Dist: opencv-python-headless
18
+ Requires-Dist: huggingface-hub
19
+ Requires-Dist: onnxruntime
20
+ Dynamic: license-file
21
+
22
+ # meikiocr
23
+
24
+ [![license: apache 2.0](https://img.shields.io/badge/license-apache%202.0-blue.svg)](https://github.com/your-github-username/meikiocr/blob/main/license)
25
+ [![hugging face space](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-space-blue)](https://huggingface.co/spaces/rtr46/meikiocr)
26
+ [![detection model](https://img.shields.io/badge/hugging%20face-detection%20model-yellow)](https://huggingface.co/rtr46/meiki.text.detect.v0)
27
+ [![recognition model](https://img.shields.io/badge/hugging%20face-recognition%20model-yellow)](https://huggingface.co/rtr46/meiki.txt.recognition.v0)
28
+
29
+ high-speed, high-accuracy, local ocr for japanese video games.
30
+
31
+ `meikiocr` is a python-based ocr pipeline that combines state-of-the-art detection and recognition models to provide an unparalleled open-source solution for extracting japanese text from video games and similar rendered content.
32
+
33
+ | original image | ocr result |
34
+ | :---: | :---: |
35
+ | ![input](https://github.com/user-attachments/assets/646fb178-113c-4ad9-837a-d8b19e77261b) | ![input_ocrresult](https://github.com/user-attachments/assets/00d27896-5ebd-41fb-989a-7d259534fc92) |
36
+
37
+
38
+ ```
39
+ ナルホド
40
+ こ、こんなにドキドキするの、
41
+ 小学校の学級裁判のとき以来です。
42
+ ```
43
+
44
+ ---
45
+
46
+ ## live demo
47
+
48
+ the easiest way to see `meikiocr` in action is to try the live demo hosted on hugging face spaces. no installation required!
49
+
50
+ **[try the meikiocr live demo here](https://huggingface.co/spaces/rtr46/meikiocr)**
51
+
52
+ ---
53
+
54
+ ## core features
55
+
56
+ * **high accuracy:** purpose-built and trained on japanese video game text, `meikiocr` significantly outperforms general-purpose ocr tools like paddleocr or easyocr on this specific domain.
57
+ * **high speed:** the architecture is pareto-optimal, delivering exceptional performance on both cpu and gpu.
58
+ * **fully local & private:** unlike cloud-based services, `meikiocr` runs entirely on your machine, ensuring privacy and eliminating api costs or rate limits.
59
+ * **cross-platform:** it works wherever onnx runtime runs, providing a much-needed local ocr solution for linux users.
60
+ * **open & free:** both the code and the underlying models are freely available under permissive licenses.
61
+
62
+ ## performance & benchmarks
63
+
64
+ `meikiocr` is built from two highly efficient models that establish a new pareto front for japanese text recognition. this means they offer a better accuracy/latency tradeoff than any other known open-weight model.
65
+
66
+ | detection (cpu) | detection (gpu) |
67
+ |:---:|:---:|
68
+ | ![accuracy_vs_cpu_latency](https://cdn-uploads.huggingface.co/production/uploads/68f7a26cfcf6939fd30fb19f/91aWIOgNQ9N8G7iaspRKX.png) | ![accuracy_vs_gpu_latency](https://cdn-uploads.huggingface.co/production/uploads/68f7a26cfcf6939fd30fb19f/61-T8E9RNnGtaHDCWcU23.png) |
69
+
70
+ | recognition (cpu) | recognition (gpu) |
71
+ | :---: | :---: |
72
+ | ![accuracy_vs_cpu_latency](https://cdn-uploads.huggingface.co/production/uploads/68f7a26cfcf6939fd30fb19f/NoTZVOLPhHMFW-O3fmgif.png) | ![accuracy_vs_gpu_latency](https://cdn-uploads.huggingface.co/production/uploads/68f7a26cfcf6939fd30fb19f/UQdnt0dN4qSpvBKLrkRZE.png) |
73
+
74
+ ## installation
75
+
76
+ ```bash
77
+ pip install meikiocr
78
+ ```
79
+
80
+ ### for nvidia gpu users (recommended)
81
+
82
+ for a massive performance boost, you can install the gpu-enabled version of the onnx runtime. this will be detected automatically by the script.
83
+
84
+ ```bash
85
+ pip install meikiocr
86
+ pip uninstall onnxruntime
87
+ pip install onnxruntime-gpu
88
+ ```
89
+
90
+ ## usage
91
+
92
+ this is how meikiocr can be called. you can also run [demo.py](https://github.com/rtr46/meikiocr/blob/main/demo.py) for additional visual output.
93
+
94
+ ```python
95
+ import cv2
96
+ import numpy as np
97
+ from urllib.request import urlopen
98
+ from meikiocr import MeikiOCR
99
+
100
+ IMAGE_URL = "https://huggingface.co/spaces/rtr46/meikiocr/resolve/main/example.jpg"
101
+
102
+ with urlopen(IMAGE_URL) as resp:
103
+ image = cv2.imdecode(np.asarray(bytearray(resp.read()), dtype="uint8"), cv2.IMREAD_COLOR)
104
+
105
+ ocr = MeikiOCR() # Initialize the OCR pipeline
106
+ results = ocr.run_ocr(image) # Run the full OCR pipeline
107
+ print('\n'.join([line['text'] for line in results if line['text']]))
108
+
109
+ ```
110
+
111
+ ### adjusting thresholds
112
+
113
+ you can adjust the confidence thresholds for both the text line detection and the character recognition models. lowering the thresholds results in more detected text lines and characters, while higher values prevent false positives.
114
+
115
+ ```python
116
+ MeikiOCR().run_ocr(self, image, det_threshold=0.8, rec_threshold=0.2) # less, but more confident text boxes and characters returned
117
+ ```
118
+
119
+ ### running dedicated detection
120
+
121
+ if you only care about the position of the text and not the content you can run the detection by itself, which is faster than running the whole ocr pipeline:
122
+ ```python
123
+ MeikiOCR().run_detection(self, image, det_threshold=0.8, rec_threshold=0.2) # only returns text line coordinates (for horizontal and vertical text lines)
124
+ ```
125
+ in the same way you can also run_recognition by itself on images of precropped (horizontal) text lines.
126
+
127
+ ## how it works
128
+
129
+ `meikiocr` is a two-stage pipeline:
130
+ 1. **text detection:** the [meiki.text.detect.v0](https://huggingface.co/rtr46/meiki.text.detect.v0) model first identifies the bounding boxes of all horizontal text lines in the image.
131
+ 2. **text recognition:** each detected text line is then cropped and processed in a batch by the [meiki.text.recognition.v0](https://huggingface.co/rtr46/meiki.txt.recognition.v0) model, which recognizes the individual characters within it.
132
+
133
+ ## limitations
134
+
135
+ while `meikiocr` is state-of-the-art for its niche, it's important to understand its design constraints:
136
+ * **domain specific:** it is highly optimized for rendered text from video games and may not perform well on handwritten or complex real-world scene text.
137
+ * **horizontal text only:** it does not currently support vertical text.
138
+ * **architectural limits:** the detection model is capped at finding 64 text boxes, and the recognition model can process up to 48 characters per line. these limits are sufficient for over 99% of video game scenarios but may be a constraint for other use cases.
139
+
140
+ ## advanced usage & potential
141
+
142
+ the `meiki_ocr.py` script provides a straightforward implementation of a post-processing pipeline that selects the most confident prediction for each character. however, the raw output from the recognition model is richer and can be used for more advanced applications. for example, one could build a language-aware post-processing step using n-grams to correct ocr mistakes by considering alternative character predictions.
143
+
144
+ this opens the door for `meikiocr` to be integrated into a variety of projects.
145
+
146
+ ## license
147
+
148
+ this project is licensed under the apache 2.0 license. see the [license](LICENSE) file for details.
@@ -0,0 +1,7 @@
1
+ meikiocr/__init__.py,sha256=upivPToX7Mcfgxj9wPMv5PN4X7NZ-Fk9l7BmM2OikWU,78
2
+ meikiocr/ocr.py,sha256=mY9ZIITjm9wzqniU-YvWHKiZMqeRC4Zt-QURjhSyG0M,13081
3
+ meikiocr-0.1.3.dist-info/licenses/LICENSE,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
4
+ meikiocr-0.1.3.dist-info/METADATA,sha256=EFxFg01MXF9-k0i88cCH0D7ioCwsrcFQjY-ZkjDoY8c,7608
5
+ meikiocr-0.1.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
6
+ meikiocr-0.1.3.dist-info/top_level.txt,sha256=bZU6k61cDzh_VaYSiXtgSgn2ByX8_LuyT-nuyGb_HfE,9
7
+ meikiocr-0.1.3.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,202 @@
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
@@ -0,0 +1 @@
1
+ meikiocr