megadetector 5.0.7__py3-none-any.whl → 5.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- api/batch_processing/data_preparation/manage_local_batch.py +28 -14
- api/batch_processing/postprocessing/combine_api_outputs.py +2 -2
- api/batch_processing/postprocessing/compare_batch_results.py +1 -1
- api/batch_processing/postprocessing/convert_output_format.py +24 -6
- api/batch_processing/postprocessing/load_api_results.py +1 -3
- api/batch_processing/postprocessing/md_to_labelme.py +118 -51
- api/batch_processing/postprocessing/merge_detections.py +30 -5
- api/batch_processing/postprocessing/postprocess_batch_results.py +24 -12
- api/batch_processing/postprocessing/remap_detection_categories.py +163 -0
- api/batch_processing/postprocessing/render_detection_confusion_matrix.py +15 -12
- api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +2 -2
- data_management/cct_json_utils.py +7 -2
- data_management/coco_to_labelme.py +263 -0
- data_management/coco_to_yolo.py +7 -4
- data_management/databases/integrity_check_json_db.py +68 -59
- data_management/databases/subset_json_db.py +1 -1
- data_management/get_image_sizes.py +44 -26
- data_management/importers/animl_results_to_md_results.py +1 -3
- data_management/importers/noaa_seals_2019.py +1 -1
- data_management/labelme_to_coco.py +252 -143
- data_management/labelme_to_yolo.py +95 -52
- data_management/lila/create_lila_blank_set.py +106 -23
- data_management/lila/download_lila_subset.py +133 -65
- data_management/lila/generate_lila_per_image_labels.py +1 -1
- data_management/lila/lila_common.py +8 -38
- data_management/read_exif.py +65 -16
- data_management/remap_coco_categories.py +84 -0
- data_management/resize_coco_dataset.py +3 -22
- data_management/wi_download_csv_to_coco.py +239 -0
- data_management/yolo_to_coco.py +283 -83
- detection/run_detector_batch.py +12 -3
- detection/run_inference_with_yolov5_val.py +10 -3
- detection/run_tiled_inference.py +2 -2
- detection/tf_detector.py +2 -1
- detection/video_utils.py +1 -1
- md_utils/ct_utils.py +22 -3
- md_utils/md_tests.py +11 -2
- md_utils/path_utils.py +206 -32
- md_utils/url_utils.py +66 -1
- md_utils/write_html_image_list.py +12 -3
- md_visualization/visualization_utils.py +363 -72
- md_visualization/visualize_db.py +33 -10
- {megadetector-5.0.7.dist-info → megadetector-5.0.8.dist-info}/METADATA +10 -12
- {megadetector-5.0.7.dist-info → megadetector-5.0.8.dist-info}/RECORD +47 -44
- {megadetector-5.0.7.dist-info → megadetector-5.0.8.dist-info}/WHEEL +1 -1
- md_visualization/visualize_megadb.py +0 -183
- {megadetector-5.0.7.dist-info → megadetector-5.0.8.dist-info}/LICENSE +0 -0
- {megadetector-5.0.7.dist-info → megadetector-5.0.8.dist-info}/top_level.txt +0 -0
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
#
|
|
3
3
|
# labelme_to_coco.py
|
|
4
4
|
#
|
|
5
|
-
# Converts a folder of labelme-formatted .json files to COCO.
|
|
5
|
+
# Converts a folder of labelme-formatted .json files to COCO format.
|
|
6
6
|
#
|
|
7
7
|
########
|
|
8
8
|
|
|
@@ -15,10 +15,177 @@ import uuid
|
|
|
15
15
|
from md_utils import path_utils
|
|
16
16
|
from md_visualization.visualization_utils import open_image
|
|
17
17
|
|
|
18
|
+
from multiprocessing.pool import Pool, ThreadPool
|
|
19
|
+
from functools import partial
|
|
20
|
+
|
|
18
21
|
from tqdm import tqdm
|
|
19
22
|
|
|
20
23
|
|
|
21
|
-
#%%
|
|
24
|
+
#%% Support functions
|
|
25
|
+
|
|
26
|
+
def add_category(category_name,category_name_to_id,candidate_category_id=0):
|
|
27
|
+
"""
|
|
28
|
+
Add the category [category_name] to the dict [category_name_to_id], by default
|
|
29
|
+
using the next available integer index.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
if category_name in category_name_to_id:
|
|
33
|
+
return category_name_to_id[category_name]
|
|
34
|
+
while candidate_category_id in category_name_to_id.values():
|
|
35
|
+
candidate_category_id += 1
|
|
36
|
+
category_name_to_id[category_name] = candidate_category_id
|
|
37
|
+
return candidate_category_id
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def _process_labelme_file(image_fn_relative,input_folder,use_folders_as_labels,
|
|
41
|
+
no_json_handling,validate_image_sizes,
|
|
42
|
+
category_name_to_id,allow_new_categories=True):
|
|
43
|
+
"""
|
|
44
|
+
Internal function for processing each image; this support function facilitates parallelization.
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
result = {}
|
|
48
|
+
result['im'] = None
|
|
49
|
+
result['annotations_this_image'] = None
|
|
50
|
+
result['status'] = None
|
|
51
|
+
|
|
52
|
+
image_fn_abs = os.path.join(input_folder,image_fn_relative)
|
|
53
|
+
json_fn_abs = os.path.splitext(image_fn_abs)[0] + '.json'
|
|
54
|
+
|
|
55
|
+
im = {}
|
|
56
|
+
im['id'] = image_fn_relative
|
|
57
|
+
im['file_name'] = image_fn_relative
|
|
58
|
+
|
|
59
|
+
# If there's no .json file for this image...
|
|
60
|
+
if not os.path.isfile(json_fn_abs):
|
|
61
|
+
|
|
62
|
+
# Either skip it...
|
|
63
|
+
if no_json_handling == 'skip':
|
|
64
|
+
print('Skipping image {} (no .json file)'.format(image_fn_relative))
|
|
65
|
+
result['status'] = 'skipped (no .json file)'
|
|
66
|
+
return result
|
|
67
|
+
|
|
68
|
+
# ...or error
|
|
69
|
+
elif no_json_handling == 'error':
|
|
70
|
+
raise ValueError('Image file {} has no corresponding .json file'.format(
|
|
71
|
+
image_fn_relative))
|
|
72
|
+
|
|
73
|
+
# ...or treat it as empty.
|
|
74
|
+
elif no_json_handling == 'empty':
|
|
75
|
+
try:
|
|
76
|
+
pil_im = open_image(image_fn_abs)
|
|
77
|
+
except Exception:
|
|
78
|
+
print('Warning: error opening image {}, skipping'.format(image_fn_abs))
|
|
79
|
+
result['status'] = 'image load error'
|
|
80
|
+
return result
|
|
81
|
+
im['width'] = pil_im.width
|
|
82
|
+
im['height'] = pil_im.height
|
|
83
|
+
|
|
84
|
+
# Just in case we need to differentiate between "no .json file" and "a .json file with no annotations"
|
|
85
|
+
im['no_labelme_json'] = True
|
|
86
|
+
shapes = []
|
|
87
|
+
else:
|
|
88
|
+
raise ValueError('Unrecognized specifier {} for handling images with no .json files'.format(
|
|
89
|
+
no_json_handling))
|
|
90
|
+
|
|
91
|
+
# If we found a .json file for this image...
|
|
92
|
+
else:
|
|
93
|
+
|
|
94
|
+
# Read the .json file
|
|
95
|
+
with open(json_fn_abs,'r') as f:
|
|
96
|
+
labelme_data = json.load(f)
|
|
97
|
+
im['width'] = labelme_data['imageWidth']
|
|
98
|
+
im['height'] = labelme_data['imageHeight']
|
|
99
|
+
|
|
100
|
+
if validate_image_sizes:
|
|
101
|
+
try:
|
|
102
|
+
pil_im = open_image(image_fn_abs)
|
|
103
|
+
except Exception:
|
|
104
|
+
print('Warning: error opening image {} for size validation, skipping'.format(image_fn_abs))
|
|
105
|
+
result['status'] = 'skipped (size validation error)'
|
|
106
|
+
return result
|
|
107
|
+
if not (im['width'] == pil_im.width and im['height'] == pil_im.height):
|
|
108
|
+
print('Warning: image size validation error for file {}'.format(image_fn_relative))
|
|
109
|
+
im['width'] = pil_im.width
|
|
110
|
+
im['height'] = pil_im.height
|
|
111
|
+
im['labelme_width'] = labelme_data['imageWidth']
|
|
112
|
+
im['labelme_height'] = labelme_data['imageHeight']
|
|
113
|
+
|
|
114
|
+
shapes = labelme_data['shapes']
|
|
115
|
+
|
|
116
|
+
if ('flags' in labelme_data) and (len(labelme_data['flags']) > 0):
|
|
117
|
+
im['flags'] = labelme_data['flags']
|
|
118
|
+
|
|
119
|
+
annotations_this_image = []
|
|
120
|
+
|
|
121
|
+
if len(shapes) == 0:
|
|
122
|
+
|
|
123
|
+
if allow_new_categories:
|
|
124
|
+
category_id = add_category('empty',category_name_to_id)
|
|
125
|
+
else:
|
|
126
|
+
assert 'empty' in category_name_to_id
|
|
127
|
+
category_id = category_name_to_id['empty']
|
|
128
|
+
|
|
129
|
+
ann = {}
|
|
130
|
+
ann['id'] = str(uuid.uuid1())
|
|
131
|
+
ann['image_id'] = im['id']
|
|
132
|
+
ann['category_id'] = category_id
|
|
133
|
+
ann['sequence_level_annotation'] = False
|
|
134
|
+
annotations_this_image.append(ann)
|
|
135
|
+
|
|
136
|
+
else:
|
|
137
|
+
|
|
138
|
+
for shape in shapes:
|
|
139
|
+
|
|
140
|
+
if shape['shape_type'] != 'rectangle':
|
|
141
|
+
print('Only rectangles are supported, skipping an annotation of type {} in {}'.format(
|
|
142
|
+
shape['shape_type'],image_fn_relative))
|
|
143
|
+
continue
|
|
144
|
+
|
|
145
|
+
if use_folders_as_labels:
|
|
146
|
+
category_name = os.path.basename(os.path.dirname(image_fn_abs))
|
|
147
|
+
else:
|
|
148
|
+
category_name = shape['label']
|
|
149
|
+
|
|
150
|
+
if allow_new_categories:
|
|
151
|
+
category_id = add_category(category_name,category_name_to_id)
|
|
152
|
+
else:
|
|
153
|
+
assert category_name in category_name_to_id
|
|
154
|
+
category_id = category_name_to_id[category_name]
|
|
155
|
+
|
|
156
|
+
points = shape['points']
|
|
157
|
+
if len(points) != 2:
|
|
158
|
+
print('Warning: illegal rectangle with {} points for {}'.format(
|
|
159
|
+
len(points),image_fn_relative))
|
|
160
|
+
continue
|
|
161
|
+
|
|
162
|
+
p0 = points[0]
|
|
163
|
+
p1 = points[1]
|
|
164
|
+
x0 = min(p0[0],p1[0])
|
|
165
|
+
x1 = max(p0[0],p1[0])
|
|
166
|
+
y0 = min(p0[1],p1[1])
|
|
167
|
+
y1 = max(p0[1],p1[1])
|
|
168
|
+
|
|
169
|
+
bbox = [x0,y0,abs(x1-x0),abs(y1-y0)]
|
|
170
|
+
ann = {}
|
|
171
|
+
ann['id'] = str(uuid.uuid1())
|
|
172
|
+
ann['image_id'] = im['id']
|
|
173
|
+
ann['category_id'] = category_id
|
|
174
|
+
ann['sequence_level_annotation'] = False
|
|
175
|
+
ann['bbox'] = bbox
|
|
176
|
+
annotations_this_image.append(ann)
|
|
177
|
+
|
|
178
|
+
# ...for each shape
|
|
179
|
+
|
|
180
|
+
result['im'] = im
|
|
181
|
+
result['annotations_this_image'] = annotations_this_image
|
|
182
|
+
|
|
183
|
+
return result
|
|
184
|
+
|
|
185
|
+
# ...def _process_labelme_file(...)
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
#%% Main function
|
|
22
189
|
|
|
23
190
|
def labelme_to_coco(input_folder,
|
|
24
191
|
output_file=None,
|
|
@@ -32,12 +199,17 @@ def labelme_to_coco(input_folder,
|
|
|
32
199
|
recursive=True,
|
|
33
200
|
no_json_handling='skip',
|
|
34
201
|
validate_image_sizes=True,
|
|
35
|
-
|
|
202
|
+
max_workers=1,
|
|
203
|
+
use_threads=True):
|
|
36
204
|
"""
|
|
37
205
|
Find all images in [input_folder] that have corresponding .json files, and convert
|
|
38
206
|
to a COCO .json file.
|
|
39
207
|
|
|
40
|
-
Currently only supports bounding box annotations.
|
|
208
|
+
Currently only supports bounding box annotations and image-level flags (i.e., does not
|
|
209
|
+
support point or general polygon annotations).
|
|
210
|
+
|
|
211
|
+
Labelme's image-level flags don't quite fit the COCO annotations format, so they are attached
|
|
212
|
+
to image objects, rather than annotation objects.
|
|
41
213
|
|
|
42
214
|
If output_file is None, just returns the resulting dict, does not write to file.
|
|
43
215
|
|
|
@@ -56,38 +228,59 @@ def labelme_to_coco(input_folder,
|
|
|
56
228
|
|
|
57
229
|
* 'skip': ignore image files with no corresponding .json files
|
|
58
230
|
* 'empty': treat image files with no corresponding .json files as empty
|
|
59
|
-
* 'error': throw an error when an image file has no corresponding .json file
|
|
60
|
-
|
|
61
|
-
right_edge_quantization_threshold is an off-by-default hack to handle cases where
|
|
62
|
-
boxes that really should be running off the right side of the image only extend like 99%
|
|
63
|
-
of the way there, due to what appears to be a slight bias inherent to MD. If a box extends
|
|
64
|
-
within [right_edge_quantization_threshold] (a small number, from 0 to 1, but probably around
|
|
65
|
-
0.02) of the right edge of the image, it will be extended to the far right edge.
|
|
231
|
+
* 'error': throw an error when an image file has no corresponding .json file
|
|
66
232
|
"""
|
|
67
233
|
|
|
234
|
+
if max_workers > 1:
|
|
235
|
+
assert category_id_to_category_name is not None, \
|
|
236
|
+
'When parallelizing labelme --> COCO conversion, you must supply a category mapping'
|
|
237
|
+
|
|
68
238
|
if category_id_to_category_name is None:
|
|
69
239
|
category_name_to_id = {}
|
|
70
240
|
else:
|
|
71
241
|
category_name_to_id = {v: k for k, v in category_id_to_category_name.items()}
|
|
72
|
-
|
|
73
242
|
for category_name in category_name_to_id:
|
|
74
243
|
try:
|
|
75
244
|
category_name_to_id[category_name] = int(category_name_to_id[category_name])
|
|
76
245
|
except ValueError:
|
|
77
246
|
raise ValueError('Category IDs must be ints or string-formatted ints')
|
|
247
|
+
|
|
248
|
+
# If the user supplied an explicit empty category ID, and the empty category
|
|
249
|
+
# name is already in category_name_to_id, make sure they match.
|
|
250
|
+
if empty_category_id is not None:
|
|
251
|
+
if empty_category_name in category_name_to_id:
|
|
252
|
+
assert category_name_to_id[empty_category_name] == empty_category_id, \
|
|
253
|
+
'Ambiguous empty category specification'
|
|
254
|
+
if empty_category_id in category_id_to_category_name:
|
|
255
|
+
assert category_id_to_category_name[empty_category_id] == empty_category_name, \
|
|
256
|
+
'Ambiguous empty category specification'
|
|
257
|
+
else:
|
|
258
|
+
if empty_category_name in category_name_to_id:
|
|
259
|
+
empty_category_id = category_name_to_id[empty_category_name]
|
|
78
260
|
|
|
261
|
+
del category_id_to_category_name
|
|
262
|
+
|
|
79
263
|
# Enumerate images
|
|
264
|
+
print('Enumerating images in {}'.format(input_folder))
|
|
80
265
|
image_filenames_relative = path_utils.find_images(input_folder,recursive=recursive,
|
|
81
|
-
return_relative_paths=True
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
266
|
+
return_relative_paths=True,
|
|
267
|
+
convert_slashes=True)
|
|
268
|
+
|
|
269
|
+
# Remove any images we're supposed to skip
|
|
270
|
+
if (relative_paths_to_include is not None) or (relative_paths_to_exclude is not None):
|
|
271
|
+
image_filenames_relative_to_process = []
|
|
272
|
+
for image_fn_relative in image_filenames_relative:
|
|
273
|
+
if relative_paths_to_include is not None and image_fn_relative not in relative_paths_to_include:
|
|
274
|
+
continue
|
|
275
|
+
if relative_paths_to_exclude is not None and image_fn_relative in relative_paths_to_exclude:
|
|
276
|
+
continue
|
|
277
|
+
image_filenames_relative_to_process.append(image_fn_relative)
|
|
278
|
+
print('Processing {} of {} images'.format(
|
|
279
|
+
len(image_filenames_relative_to_process),
|
|
280
|
+
len(image_filenames_relative)))
|
|
281
|
+
image_filenames_relative = image_filenames_relative_to_process
|
|
90
282
|
|
|
283
|
+
# If the user supplied a category ID to use for empty images...
|
|
91
284
|
if empty_category_id is not None:
|
|
92
285
|
try:
|
|
93
286
|
empty_category_id = int(empty_category_id)
|
|
@@ -95,136 +288,52 @@ def labelme_to_coco(input_folder,
|
|
|
95
288
|
raise ValueError('Category IDs must be ints or string-formatted ints')
|
|
96
289
|
|
|
97
290
|
if empty_category_id is None:
|
|
98
|
-
empty_category_id = add_category(empty_category_name)
|
|
99
|
-
|
|
100
|
-
images = []
|
|
101
|
-
annotations = []
|
|
102
|
-
|
|
103
|
-
n_edges_quantized = 0
|
|
104
|
-
|
|
105
|
-
# image_fn_relative = image_filenames_relative[0]
|
|
106
|
-
for image_fn_relative in tqdm(image_filenames_relative):
|
|
107
|
-
|
|
108
|
-
if relative_paths_to_include is not None and image_fn_relative not in relative_paths_to_include:
|
|
109
|
-
continue
|
|
110
|
-
if relative_paths_to_exclude is not None and image_fn_relative in relative_paths_to_exclude:
|
|
111
|
-
continue
|
|
112
|
-
|
|
113
|
-
image_fn_abs = os.path.join(input_folder,image_fn_relative)
|
|
114
|
-
json_fn_abs = os.path.splitext(image_fn_abs)[0] + '.json'
|
|
115
|
-
|
|
116
|
-
im = {}
|
|
117
|
-
im['id'] = image_fn_relative
|
|
118
|
-
im['file_name'] = image_fn_relative
|
|
119
|
-
|
|
120
|
-
# If there's no .json file for this image...
|
|
121
|
-
if not os.path.isfile(json_fn_abs):
|
|
122
|
-
|
|
123
|
-
# Either skip it...
|
|
124
|
-
if no_json_handling == 'skip':
|
|
125
|
-
continue
|
|
126
|
-
|
|
127
|
-
# ...or error
|
|
128
|
-
elif no_json_handling == 'error':
|
|
129
|
-
raise ValueError('Image file {} has no corresponding .json file'.format(
|
|
130
|
-
image_fn_relative))
|
|
291
|
+
empty_category_id = add_category(empty_category_name,category_name_to_id)
|
|
131
292
|
|
|
132
|
-
|
|
133
|
-
elif no_json_handling == 'empty':
|
|
134
|
-
try:
|
|
135
|
-
pil_im = open_image(image_fn_abs)
|
|
136
|
-
except Exception:
|
|
137
|
-
print('Warning: error opening image {}, skipping'.format(image_fn_abs))
|
|
138
|
-
continue
|
|
139
|
-
im['width'] = pil_im.width
|
|
140
|
-
im['height'] = pil_im.height
|
|
141
|
-
shapes = []
|
|
142
|
-
else:
|
|
143
|
-
raise ValueError('Unrecognized specifier {} for handling images with no .json files'.format(
|
|
144
|
-
no_json_handling))
|
|
293
|
+
if max_workers <= 1:
|
|
145
294
|
|
|
146
|
-
|
|
147
|
-
|
|
295
|
+
image_results = []
|
|
296
|
+
for image_fn_relative in tqdm(image_filenames_relative):
|
|
148
297
|
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
im['height'] = labelme_data['imageHeight']
|
|
298
|
+
result = _process_labelme_file(image_fn_relative,input_folder,use_folders_as_labels,
|
|
299
|
+
no_json_handling,validate_image_sizes,
|
|
300
|
+
category_name_to_id,allow_new_categories=True)
|
|
301
|
+
image_results.append(result)
|
|
154
302
|
|
|
155
|
-
|
|
156
|
-
try:
|
|
157
|
-
pil_im = open_image(image_fn_abs)
|
|
158
|
-
except Exception:
|
|
159
|
-
print('Warning: error opening image {}, skipping'.format(image_fn_abs))
|
|
160
|
-
continue
|
|
161
|
-
assert im['width'] == pil_im.width and im['height'] == pil_im.height, \
|
|
162
|
-
'Image size validation error for file {}'.format(image_fn_relative)
|
|
163
|
-
|
|
164
|
-
shapes = labelme_data['shapes']
|
|
303
|
+
else:
|
|
165
304
|
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
ann['image_id'] = im['id']
|
|
172
|
-
ann['category_id'] = category_id
|
|
173
|
-
ann['sequence_level_annotation'] = False
|
|
174
|
-
annotations.append(ann)
|
|
175
|
-
|
|
305
|
+
n_workers = min(max_workers,len(image_filenames_relative))
|
|
306
|
+
assert category_name_to_id is not None
|
|
307
|
+
|
|
308
|
+
if use_threads:
|
|
309
|
+
pool = ThreadPool(n_workers)
|
|
176
310
|
else:
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
points = shape['points']
|
|
192
|
-
assert len(points) == 2, 'Illegal rectangle with {} points'.format(
|
|
193
|
-
len(points))
|
|
194
|
-
|
|
195
|
-
p0 = points[0]
|
|
196
|
-
p1 = points[1]
|
|
197
|
-
x0 = min(p0[0],p1[0])
|
|
198
|
-
x1 = max(p0[0],p1[0])
|
|
199
|
-
y0 = min(p0[1],p1[1])
|
|
200
|
-
y1 = max(p0[1],p1[1])
|
|
201
|
-
|
|
202
|
-
if right_edge_quantization_threshold is not None:
|
|
203
|
-
x1_rel = x1 / (im['width'] - 1)
|
|
204
|
-
right_edge_distance = 1.0 - x1_rel
|
|
205
|
-
if right_edge_distance < right_edge_quantization_threshold:
|
|
206
|
-
n_edges_quantized += 1
|
|
207
|
-
x1 = im['width'] - 1
|
|
208
|
-
|
|
209
|
-
bbox = [x0,y0,abs(x1-x0),abs(y1-y0)]
|
|
210
|
-
ann = {}
|
|
211
|
-
ann['id'] = str(uuid.uuid1())
|
|
212
|
-
ann['image_id'] = im['id']
|
|
213
|
-
ann['category_id'] = category_id
|
|
214
|
-
ann['sequence_level_annotation'] = False
|
|
215
|
-
ann['bbox'] = bbox
|
|
216
|
-
annotations.append(ann)
|
|
217
|
-
|
|
218
|
-
# ...for each shape
|
|
219
|
-
|
|
220
|
-
images.append(im)
|
|
221
|
-
|
|
222
|
-
# ..for each image
|
|
311
|
+
pool = Pool(n_workers)
|
|
312
|
+
|
|
313
|
+
image_results = list(tqdm(pool.imap(
|
|
314
|
+
partial(_process_labelme_file,
|
|
315
|
+
input_folder=input_folder,
|
|
316
|
+
use_folders_as_labels=use_folders_as_labels,
|
|
317
|
+
no_json_handling=no_json_handling,
|
|
318
|
+
validate_image_sizes=validate_image_sizes,
|
|
319
|
+
category_name_to_id=category_name_to_id,
|
|
320
|
+
allow_new_categories=False
|
|
321
|
+
),image_filenames_relative), total=len(image_filenames_relative)))
|
|
322
|
+
|
|
323
|
+
images = []
|
|
324
|
+
annotations = []
|
|
223
325
|
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
326
|
+
# Flatten the lists of images and annotations
|
|
327
|
+
for result in image_results:
|
|
328
|
+
im = result['im']
|
|
329
|
+
annotations_this_image = result['annotations_this_image']
|
|
227
330
|
|
|
331
|
+
if im is None:
|
|
332
|
+
assert annotations_this_image is None
|
|
333
|
+
else:
|
|
334
|
+
images.append(im)
|
|
335
|
+
annotations.extend(annotations_this_image)
|
|
336
|
+
|
|
228
337
|
output_dict = {}
|
|
229
338
|
output_dict['images'] = images
|
|
230
339
|
output_dict['annotations'] = annotations
|