megadetector 5.0.29__py3-none-any.whl → 10.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (95) hide show
  1. megadetector/classification/efficientnet/model.py +8 -8
  2. megadetector/classification/efficientnet/utils.py +6 -5
  3. megadetector/classification/prepare_classification_script_mc.py +3 -3
  4. megadetector/data_management/annotations/annotation_constants.py +0 -1
  5. megadetector/data_management/camtrap_dp_to_coco.py +34 -1
  6. megadetector/data_management/cct_json_utils.py +2 -2
  7. megadetector/data_management/coco_to_yolo.py +22 -5
  8. megadetector/data_management/databases/add_width_and_height_to_db.py +85 -12
  9. megadetector/data_management/databases/combine_coco_camera_traps_files.py +2 -2
  10. megadetector/data_management/databases/integrity_check_json_db.py +29 -15
  11. megadetector/data_management/generate_crops_from_cct.py +50 -1
  12. megadetector/data_management/labelme_to_coco.py +4 -2
  13. megadetector/data_management/labelme_to_yolo.py +82 -2
  14. megadetector/data_management/lila/generate_lila_per_image_labels.py +276 -18
  15. megadetector/data_management/lila/get_lila_annotation_counts.py +5 -3
  16. megadetector/data_management/lila/lila_common.py +3 -0
  17. megadetector/data_management/lila/test_lila_metadata_urls.py +15 -5
  18. megadetector/data_management/mewc_to_md.py +5 -0
  19. megadetector/data_management/ocr_tools.py +4 -3
  20. megadetector/data_management/read_exif.py +20 -5
  21. megadetector/data_management/remap_coco_categories.py +66 -4
  22. megadetector/data_management/remove_exif.py +50 -1
  23. megadetector/data_management/rename_images.py +3 -3
  24. megadetector/data_management/resize_coco_dataset.py +563 -95
  25. megadetector/data_management/yolo_output_to_md_output.py +131 -2
  26. megadetector/data_management/yolo_to_coco.py +140 -5
  27. megadetector/detection/change_detection.py +4 -3
  28. megadetector/detection/pytorch_detector.py +60 -22
  29. megadetector/detection/run_detector.py +225 -25
  30. megadetector/detection/run_detector_batch.py +42 -16
  31. megadetector/detection/run_inference_with_yolov5_val.py +12 -2
  32. megadetector/detection/run_tiled_inference.py +1 -0
  33. megadetector/detection/video_utils.py +53 -24
  34. megadetector/postprocessing/add_max_conf.py +4 -0
  35. megadetector/postprocessing/categorize_detections_by_size.py +1 -1
  36. megadetector/postprocessing/classification_postprocessing.py +55 -20
  37. megadetector/postprocessing/combine_batch_outputs.py +3 -2
  38. megadetector/postprocessing/compare_batch_results.py +64 -10
  39. megadetector/postprocessing/convert_output_format.py +12 -8
  40. megadetector/postprocessing/create_crop_folder.py +137 -10
  41. megadetector/postprocessing/load_api_results.py +26 -8
  42. megadetector/postprocessing/md_to_coco.py +4 -4
  43. megadetector/postprocessing/md_to_labelme.py +18 -7
  44. megadetector/postprocessing/merge_detections.py +5 -0
  45. megadetector/postprocessing/postprocess_batch_results.py +6 -3
  46. megadetector/postprocessing/remap_detection_categories.py +55 -2
  47. megadetector/postprocessing/render_detection_confusion_matrix.py +9 -6
  48. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +2 -2
  49. megadetector/taxonomy_mapping/map_new_lila_datasets.py +3 -4
  50. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +40 -19
  51. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +1 -1
  52. megadetector/taxonomy_mapping/species_lookup.py +123 -41
  53. megadetector/utils/ct_utils.py +133 -113
  54. megadetector/utils/md_tests.py +93 -13
  55. megadetector/utils/path_utils.py +137 -107
  56. megadetector/utils/split_locations_into_train_val.py +2 -2
  57. megadetector/utils/string_utils.py +7 -7
  58. megadetector/utils/url_utils.py +81 -58
  59. megadetector/utils/wi_utils.py +46 -17
  60. megadetector/visualization/plot_utils.py +13 -9
  61. megadetector/visualization/render_images_with_thumbnails.py +2 -1
  62. megadetector/visualization/visualization_utils.py +94 -46
  63. megadetector/visualization/visualize_db.py +36 -9
  64. megadetector/visualization/visualize_detector_output.py +4 -4
  65. {megadetector-5.0.29.dist-info → megadetector-10.0.0.dist-info}/METADATA +135 -135
  66. megadetector-10.0.0.dist-info/RECORD +139 -0
  67. {megadetector-5.0.29.dist-info → megadetector-10.0.0.dist-info}/licenses/LICENSE +0 -0
  68. {megadetector-5.0.29.dist-info → megadetector-10.0.0.dist-info}/top_level.txt +0 -0
  69. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  70. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  71. megadetector/api/batch_processing/api_core/batch_service/score.py +0 -438
  72. megadetector/api/batch_processing/api_core/server.py +0 -294
  73. megadetector/api/batch_processing/api_core/server_api_config.py +0 -97
  74. megadetector/api/batch_processing/api_core/server_app_config.py +0 -55
  75. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  76. megadetector/api/batch_processing/api_core/server_job_status_table.py +0 -149
  77. megadetector/api/batch_processing/api_core/server_orchestration.py +0 -360
  78. megadetector/api/batch_processing/api_core/server_utils.py +0 -88
  79. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  80. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  81. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  82. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  83. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  84. megadetector/api/synchronous/__init__.py +0 -0
  85. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  86. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +0 -151
  87. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -263
  88. megadetector/api/synchronous/api_core/animal_detection_api/config.py +0 -35
  89. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  90. megadetector/api/synchronous/api_core/tests/load_test.py +0 -109
  91. megadetector/utils/azure_utils.py +0 -178
  92. megadetector/utils/sas_blob_utils.py +0 -513
  93. megadetector-5.0.29.dist-info/RECORD +0 -163
  94. /megadetector/{api/batch_processing/__init__.py → __init__.py} +0 -0
  95. {megadetector-5.0.29.dist-info → megadetector-10.0.0.dist-info}/WHEEL +0 -0
@@ -1,152 +0,0 @@
1
- # Copyright (c) Microsoft Corporation. All rights reserved.
2
- # Licensed under the MIT License.
3
-
4
- """
5
- This script can be run in a separate process to monitor all instances of the batch API.
6
- It sends a digest of submissions within the past day to a Teams channel webhook.
7
-
8
- It requires the environment variables TEAMS_WEBHOOK, COSMOS_ENDPOINT and COSMOS_READ_KEY to be set.
9
- """
10
-
11
- import time
12
- import os
13
- import json
14
- from datetime import datetime, timezone, timedelta
15
- from collections import defaultdict
16
-
17
- import requests
18
- from azure.cosmos.cosmos_client import CosmosClient
19
-
20
-
21
- # Cosmos DB `batch-api-jobs` table for job status
22
- COSMOS_ENDPOINT = os.environ['COSMOS_ENDPOINT']
23
- COSMOS_READ_KEY = os.environ['COSMOS_READ_KEY']
24
-
25
- TEAMS_WEBHOOK = os.environ['TEAMS_WEBHOOK']
26
-
27
-
28
- def send_message():
29
- cosmos_client = CosmosClient(COSMOS_ENDPOINT, credential=COSMOS_READ_KEY)
30
- db_client = cosmos_client.get_database_client('camera-trap')
31
- db_jobs_client = db_client.get_container_client('batch_api_jobs')
32
-
33
- yesterday = datetime.now(timezone.utc).date() - timedelta(days=1)
34
-
35
- query = f'''
36
- SELECT *
37
- FROM job
38
- WHERE job.job_submission_time >= "{yesterday.isoformat()}T00:00:00Z"
39
- '''
40
-
41
- result_iterable = db_jobs_client.query_items(query=query,
42
- enable_cross_partition_query=True)
43
-
44
- # aggregate the number of images, country and organization names info from each job
45
- # submitted during yesterday (UTC time)
46
- instance_num_images = defaultdict(lambda: defaultdict(int))
47
- instance_countries = defaultdict(set)
48
- instance_orgs = defaultdict(set)
49
-
50
- total_images_received = 0
51
-
52
- for job in result_iterable:
53
- api_instance = job['api_instance']
54
- status = job['status']
55
- call_params = job['call_params']
56
-
57
- if status['request_status'] == 'completed':
58
- instance_num_images[api_instance]['num_images_completed'] += status.get('num_images', 0)
59
- instance_num_images[api_instance]['num_images_total'] += status.get('num_images', 0)
60
- total_images_received += status.get('num_images', 0)
61
-
62
- instance_countries[api_instance].add(call_params.get('country', 'unknown'))
63
- instance_orgs[api_instance].add(call_params.get('organization_name', 'unknown'))
64
-
65
- print(f'send_message, number of images received yesterday: {total_images_received}')
66
-
67
- if total_images_received < 1:
68
- print('send_message, no images submitted yesterday, not sending a summary')
69
- print('')
70
- return
71
-
72
- # create the card
73
- sections = []
74
-
75
- for instance_name, num_images in instance_num_images.items():
76
- entry = {
77
- 'activityTitle': f'API instance: {instance_name}',
78
- 'facts': [
79
- {
80
- 'name': 'Total images',
81
- 'value': '{:,}'.format(num_images['num_images_total'])
82
- },
83
- {
84
- 'name': 'Images completed',
85
- 'value': '{:,}'.format(num_images['num_images_completed'])
86
- },
87
- {
88
- 'name': 'Countries',
89
- 'value': ', '.join(sorted(list(instance_countries[instance_name])))
90
- },
91
- {
92
- 'name': 'Organizations',
93
- 'value': ', '.join(sorted(list(instance_orgs[instance_name])))
94
- }
95
- ]
96
- }
97
- sections.append(entry)
98
-
99
- card = {
100
- '@type': 'MessageCard',
101
- '@context': 'http://schema.org/extensions',
102
- 'themeColor': 'ffcdb2',
103
- 'summary': 'Digest of batch API activities over the past 24 hours',
104
- 'title': f'Camera traps batch API activities on {yesterday.strftime("%b %d, %Y")}',
105
- 'sections': sections,
106
- 'potentialAction': [
107
- {
108
- '@type': 'OpenUri',
109
- 'name': 'View Batch account in Azure Portal',
110
- 'targets': [
111
- {
112
- 'os': 'default',
113
- 'uri': 'https://ms.portal.azure.com/#@microsoft.onmicrosoft.com/resource/subscriptions/74d91980-e5b4-4fd9-adb6-263b8f90ec5b/resourcegroups/camera_trap_api_rg/providers/Microsoft.Batch/batchAccounts/cameratrapssc/accountOverview'
114
- }
115
- ]
116
- }
117
- ]
118
- }
119
-
120
- response = requests.post(TEAMS_WEBHOOK, data=json.dumps(card))
121
- print(f'send_message, card to send:')
122
- print(json.dumps(card, indent=4))
123
- print(f'send_message, sent summary to webhook, response code: {response.status_code}')
124
- print('')
125
-
126
-
127
- def main(): # noqa
128
- """
129
- Wake up at 5 minutes past midnight UTC to send a summary of yesterday's activities if there were any.
130
- Then goes in a loop to wake up and send a summary every 24 hours.
131
- """
132
- current = datetime.utcnow()
133
- future = current.replace(day=current.day, hour=0, minute=5, second=0, microsecond=0) + timedelta(
134
- days=1) # current has been modified
135
-
136
- current = datetime.utcnow()
137
- duration = future - current
138
-
139
- duration_hours = duration.seconds / (60 * 60)
140
- print(f'Current time: {current}')
141
- print(f'Will wake up at {future}, in {duration_hours} hours')
142
- print('')
143
-
144
- time.sleep(duration.seconds)
145
-
146
- while True:
147
- print(f'Woke up at {datetime.utcnow()}')
148
- send_message()
149
- time.sleep(24 * 60 * 60)
150
-
151
- if __name__ == '__main__':
152
- main()
File without changes
@@ -1,151 +0,0 @@
1
- #
2
- # api_backend.py
3
- #
4
- # Defines the model execution service, which pulls requests (one or more images)
5
- # from the shared Redis queue, and runs them through the TF model.
6
- #
7
-
8
- #%% Imports
9
-
10
- import os
11
- import json
12
- import time
13
- import redis
14
- import argparse
15
- import PIL
16
-
17
- from detection.run_detector import load_detector
18
- from utils.ct_utils import convert_xywh_to_xyxy as convert_to_tf_coords
19
- import config
20
- import visualization.visualization_utils as vis_utils
21
-
22
- #%% Initialization
23
-
24
- db = redis.StrictRedis(host=config.REDIS_HOST, port=config.REDIS_PORT)
25
- current_directory = os.path.dirname(os.path.realpath(__file__))
26
-
27
-
28
- #%% Main loop
29
-
30
- def detect_process():
31
-
32
- while True:
33
-
34
- # TODO: convert to a blocking read and eliminate the sleep() statement in this loop
35
- serialized_entry = db.lpop(config.REDIS_QUEUE_NAME)
36
- all_detection_results = []
37
- inference_time_detector = []
38
-
39
- if serialized_entry:
40
-
41
- entry = json.loads(serialized_entry)
42
- id = entry['id']
43
- print('Processing images from request id:', id)
44
- return_confidence_threshold = entry['return_confidence_threshold']
45
-
46
- try:
47
-
48
- temp_direc = os.path.join(config.TEMP_FOLDER,id)
49
- assert os.path.isdir(temp_direc), 'Could not find temporary folder {}'.format(temp_direc)
50
-
51
- for filename in os.listdir(temp_direc):
52
-
53
- image_path = f'{temp_direc}/{filename}'
54
- print('Reading image from {}'.format(image_path))
55
- image = open(image_path, 'rb')
56
- image = vis_utils.load_image(image)
57
-
58
- start_time = time.time()
59
- result = detector.generate_detections_one_image(image, filename, detection_threshold=config.DEFAULT_CONFIDENCE_THRESHOLD)
60
- all_detection_results.append(result)
61
-
62
- elapsed = time.time() - start_time
63
- inference_time_detector.append(elapsed)
64
-
65
- except Exception as e:
66
-
67
- print('Detection error: ' + str(e))
68
-
69
- db.set(entry['id'], json.dumps({
70
- 'status': 500,
71
- 'error': 'Detection error: ' + str(e)
72
- }))
73
-
74
- continue
75
-
76
- # Filter the detections by the confidence threshold
77
- #
78
- # Each result is [ymin, xmin, ymax, xmax, confidence, category]
79
- #
80
- # Coordinates are relative, with the origin in the upper-left
81
- detections = {}
82
-
83
- try:
84
-
85
- for result in all_detection_results:
86
-
87
- image_name = result['file']
88
- _detections = result.get('detections', None)
89
- detections[image_name] = []
90
-
91
- if _detections is None:
92
- continue
93
-
94
- for d in _detections:
95
- if d['conf'] > return_confidence_threshold:
96
- res = convert_to_tf_coords(d['bbox'])
97
- res.append(d['conf'])
98
- res.append(int(d['category']))
99
- detections[image_name].append(res)
100
-
101
- db.set(entry['id'], json.dumps({
102
- 'status': 200,
103
- 'detections': detections,
104
- 'inference_time_detector': inference_time_detector
105
- }))
106
-
107
- except Exception as e:
108
- print('Error consolidating the detection boxes: ' + str(e))
109
-
110
- db.set(entry['id'], json.dumps({
111
- 'status': 500,
112
- 'error': 'Error consolidating the detection boxes:' + str(e)
113
- }))
114
-
115
- # ...if serialized_entry
116
-
117
- else:
118
- time.sleep(0.005)
119
-
120
- # ...while(True)
121
-
122
- # ...def detect_process()
123
-
124
-
125
- #%% Command-line driver
126
-
127
- if __name__ == '__main__':
128
-
129
- parser = argparse.ArgumentParser(description='api backend')
130
-
131
- # use --non-docker if you are testing without Docker
132
- #
133
- # python api_frontend.py --non-docker
134
- parser.add_argument('--non-docker', action='store_true', default=False)
135
- args = parser.parse_args()
136
-
137
- if args.non_docker:
138
- model_path = config.DETECTOR_MODEL_PATH_DEBUG
139
- else:
140
- model_path = config.DETECTOR_MODEL_PATH
141
-
142
- detector = load_detector(model_path)
143
-
144
- # run detections on a test image to load the model
145
- print('Running initial detection to load model...')
146
- test_image = PIL.Image.new(mode="RGB", size=(200, 200))
147
- result = detector.generate_detections_one_image(test_image, "test_image", detection_threshold=config.DEFAULT_CONFIDENCE_THRESHOLD)
148
- print(result)
149
- print('\n')
150
-
151
- detect_process()
@@ -1,263 +0,0 @@
1
- #
2
- # api_frontend.py
3
- #
4
- # Defines the Flask app, which takes requests (one or more images) from
5
- # remote callers and pushes the images onto the shared Redis queue, to be processed
6
- # by the main service in api_backend.py .
7
- #
8
-
9
- #%% Imports
10
-
11
- import os
12
- import json
13
- import time
14
- import uuid
15
- import redis
16
- import shutil
17
- import argparse
18
- import traceback
19
-
20
- from io import BytesIO
21
- from flask import Flask, Response, jsonify, make_response, request
22
- from requests_toolbelt.multipart.encoder import MultipartEncoder
23
-
24
- import visualization.visualization_utils as vis_utils
25
- import config
26
-
27
-
28
- #%% Initialization
29
-
30
- app = Flask(__name__)
31
- db = redis.StrictRedis(host=config.REDIS_HOST, port=config.REDIS_PORT)
32
-
33
-
34
- #%% Support functions
35
-
36
- def _make_error_object(error_code, error_message):
37
-
38
- # Make a dict that the request_processing_function can return to the endpoint
39
- # function to notify it of an error
40
- return {
41
- 'error_message': error_message,
42
- 'error_code': error_code
43
- }
44
-
45
-
46
- def _make_error_response(error_code, error_message):
47
-
48
- return make_response(jsonify({'error': error_message}), error_code)
49
-
50
-
51
- def has_access(request):
52
-
53
- if not os.path.exists(config.API_KEYS_FILE):
54
- return True
55
- else:
56
- if not request.headers.get('key'):
57
- print('Key header not available')
58
- return False
59
- else:
60
- API_key = request.headers.get('key').strip().lower()
61
- with open(config.API_KEYS_FILE, "r") as f:
62
- for line in f:
63
- valid_key = line.strip().lower()
64
- if valid_key == API_key:
65
- return True
66
-
67
- return False
68
-
69
-
70
- def check_posted_data(request):
71
-
72
- files = request.files
73
- params = request.args
74
-
75
- # Verify that the content uploaded is not too big
76
- #
77
- # request.content_length is the length of the total payload
78
- content_length = request.content_length
79
- if not content_length:
80
- return _make_error_object(411, 'No image(s) were sent, or content length cannot be determined.')
81
- if content_length > config.MAX_CONTENT_LENGTH_IN_MB * 1024 * 1024:
82
- return _make_error_object(413, ('Payload size {:.2f} MB exceeds the maximum allowed of {} MB. '
83
- 'Please upload fewer or more compressed images.').format(
84
- content_length / (1024 * 1024), config.MAX_CONTENT_LENGTH_IN_MB))
85
-
86
- render_boxes = True if params.get('render', '').lower() == 'true' else False
87
-
88
- if 'min_confidence' in params:
89
- return_confidence_threshold = float(params['min_confidence'])
90
- print('runserver, post_detect_sync, user specified detection confidence: ', return_confidence_threshold)
91
- if return_confidence_threshold < 0.0 or return_confidence_threshold > 1.0:
92
- return _make_error_object(400, 'Detection confidence threshold {} is invalid, should be between 0.0 and 1.0.'.format(
93
- return_confidence_threshold))
94
- else:
95
- return_confidence_threshold = config.DEFAULT_CONFIDENCE_THRESHOLD
96
-
97
- if 'min_rendering_confidence' in params:
98
- rendering_confidence_threshold = float(params['min_rendering_confidence'])
99
- print('runserver, post_detect_sync, user specified rendering confidence: ', rendering_confidence_threshold)
100
- if rendering_confidence_threshold < 0.0 or rendering_confidence_threshold > 1.0:
101
- return _make_error_object(400, 'Rendering confidence threshold {} is invalid, should be between 0.0 and 1.0.'.format(
102
- rendering_confidence_threshold))
103
- else:
104
- rendering_confidence_threshold = config.DEFAULT_RENDERING_CONFIDENCE_THRESHOLD
105
-
106
- # Verify that the number of images is acceptable
107
- num_images = sum([1 if file.content_type in config.IMAGE_CONTENT_TYPES else 0 for file in files.values()])
108
- print('runserver, post_detect_sync, number of images received: ', num_images)
109
-
110
- if num_images > config.MAX_IMAGES_ACCEPTED:
111
- return _make_error_object(413, 'Too many images. Maximum number of images that can be processed in one call is {}.'.format(config.MAX_IMAGES_ACCEPTED))
112
- elif num_images == 0:
113
- return _make_error_object(400, 'No image(s) of accepted types (image/jpeg, image/png, application/octet-stream) received.')
114
-
115
- return {
116
- 'render_boxes': render_boxes,
117
- 'return_confidence_threshold': return_confidence_threshold,
118
- 'rendering_confidence_threshold': rendering_confidence_threshold
119
- }
120
-
121
- # ...def check_posted_data(request)
122
-
123
-
124
- #%% Main loop
125
-
126
- @app.route(config.API_PREFIX + '/detect', methods = ['POST'])
127
- def detect_sync():
128
-
129
- if not has_access(request):
130
- print('Access denied, please provide a valid API key')
131
- return _make_error_response(403, 'Access denied, please provide a valid API key')
132
-
133
- # Check whether the request_processing_function had an error
134
- post_data = check_posted_data(request)
135
- if post_data.get('error_code', None) is not None:
136
- return _make_error_response(post_data.get('error_code'), post_data.get('error_message'))
137
-
138
- render_boxes = post_data.get('render_boxes')
139
- return_confidence_threshold = post_data.get('return_confidence_threshold')
140
- rendering_confidence_threshold = post_data.get('rendering_confidence_threshold')
141
-
142
- redis_id = str(uuid.uuid4())
143
- d = {'id': redis_id, 'render_boxes': render_boxes, 'return_confidence_threshold': return_confidence_threshold}
144
- temp_direc = os.path.join(config.TEMP_FOLDER, redis_id)
145
-
146
- try:
147
-
148
- try:
149
- # Write images to temporary files
150
- os.makedirs(temp_direc,exist_ok=True)
151
- for name, file in request.files.items():
152
- if file.content_type in config.IMAGE_CONTENT_TYPES:
153
- filename = request.files[name].filename
154
- image_path = os.path.join(temp_direc, filename)
155
- print('Saving image {} to {}'.format(name,image_path))
156
- file.save(image_path)
157
- assert os.path.isfile(image_path),'Error creating file {}'.format(image_path)
158
-
159
- except Exception as e:
160
- return _make_error_object(500, 'Error saving images: ' + str(e))
161
-
162
- # Submit the image(s) for processing by api_backend.py, who is waiting on this queue
163
- db.rpush(config.REDIS_QUEUE_NAME, json.dumps(d))
164
-
165
- while True:
166
-
167
- result = db.get(redis_id)
168
-
169
- if result:
170
-
171
- result = json.loads(result.decode())
172
- print('Processing result {}'.format(str(result)))
173
-
174
- if result['status'] == 200:
175
- detections = result['detections']
176
- db.delete(redis_id)
177
-
178
- else:
179
- db.delete(redis_id)
180
- print('Detection error: ' + str(result))
181
- return _make_error_response(500, 'Detection error: ' + str(result))
182
-
183
- try:
184
- print('detect_sync: postprocessing and sending images back...')
185
- fields = {
186
- 'detection_result': ('detection_result', json.dumps(detections), 'application/json'),
187
- }
188
-
189
- if render_boxes and result['status'] == 200:
190
-
191
- print('Rendering images')
192
-
193
- for image_name, detections in detections.items():
194
-
195
- #image = Image.open(os.path.join(temp_direc, image_name))
196
- image = open(f'{temp_direc}/{image_name}', "rb")
197
- image = vis_utils.load_image(image)
198
- width, height = image.size
199
-
200
- _detections = []
201
- for d in detections:
202
- y1,x1,y2,x2 = d[0:4]
203
- width = x2 - x1
204
- height = y2 - y1
205
- bbox = [x1,y1,width,height]
206
- _detections.append({'bbox': bbox, 'conf': d[4], 'category': d[5]})
207
-
208
- vis_utils.render_detection_bounding_boxes(_detections, image,
209
- confidence_threshold=rendering_confidence_threshold)
210
-
211
- output_img_stream = BytesIO()
212
- image.save(output_img_stream, format='jpeg')
213
- output_img_stream.seek(0)
214
- fields[image_name] = (image_name, output_img_stream, 'image/jpeg')
215
- print('Done rendering images')
216
-
217
- m = MultipartEncoder(fields=fields)
218
- return Response(m.to_string(), mimetype=m.content_type)
219
-
220
- except Exception as e:
221
-
222
- print(traceback.format_exc())
223
- print('Error returning result or rendering the detection boxes: ' + str(e))
224
-
225
- finally:
226
-
227
- try:
228
- print('Removing temporary files')
229
- shutil.rmtree(temp_direc)
230
- except Exception as e:
231
- print('Error removing temporary folder {}: {}'.format(temp_direc,str(e)))
232
-
233
- else:
234
- time.sleep(0.005)
235
-
236
- # ...if we do/don't have a request available on the queue
237
-
238
- # ...while(True)
239
-
240
- except Exception as e:
241
-
242
- print(traceback.format_exc())
243
- return _make_error_object(500, 'Error processing images: ' + str(e))
244
-
245
- # ...def detect_sync()
246
-
247
-
248
- #%% Command-line driver
249
-
250
- if __name__ == '__main__':
251
-
252
- parser = argparse.ArgumentParser(description='api frontend')
253
-
254
- # use --non-docker if you are testing without Docker
255
- #
256
- # python api_frontend.py --non-docker
257
- parser.add_argument('--non-docker', action="store_true", default=False)
258
- args = parser.parse_args()
259
-
260
- if args.non_docker:
261
- app.run(host='0.0.0.0', port=5050)
262
- else:
263
- app.run()
@@ -1,35 +0,0 @@
1
- ## Camera trap real-time API configuration
2
-
3
- REDIS_HOST = 'localhost'
4
-
5
- REDIS_PORT = 6379
6
-
7
- # Full path to the temporary folder for image storage, only meaningful
8
- # within the Docker container
9
- TEMP_FOLDER = '/app/temp'
10
-
11
- REDIS_QUEUE_NAME = 'camera-trap-queue'
12
-
13
- # Upper limit on total content length (all images and parameters)
14
- MAX_CONTENT_LENGTH_IN_MB = 5 * 8 # 5MB per image * number of images allowed
15
-
16
- MAX_IMAGES_ACCEPTED = 8
17
-
18
- IMAGE_CONTENT_TYPES = ['image/png', 'application/octet-stream', 'image/jpeg']
19
-
20
- DETECTOR_MODEL_PATH = '/app/animal_detection_api/model/md_v5a.0.0.pt'
21
-
22
- DETECTOR_MODEL_VERSION = 'v5a.0.0'
23
-
24
- # Minimum confidence threshold for detections
25
- DEFAULT_CONFIDENCE_THRESHOLD = 0.01
26
-
27
- # Minimum confidence threshold for showing a bounding box on the output image
28
- DEFAULT_RENDERING_CONFIDENCE_THRESHOLD = 0.2
29
-
30
- API_PREFIX = '/v1/camera-trap/sync'
31
-
32
- API_KEYS_FILE = 'allowed_keys.txt'
33
-
34
- # Use this when testing without Docker
35
- DETECTOR_MODEL_PATH_DEBUG = 'model/md_v5a.0.0.pt'
File without changes