megadetector 5.0.22__py3-none-any.whl → 5.0.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (38) hide show
  1. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +2 -3
  2. megadetector/classification/merge_classification_detection_output.py +2 -2
  3. megadetector/data_management/coco_to_labelme.py +2 -1
  4. megadetector/data_management/databases/integrity_check_json_db.py +15 -14
  5. megadetector/data_management/databases/subset_json_db.py +49 -21
  6. megadetector/data_management/mewc_to_md.py +340 -0
  7. megadetector/data_management/wi_to_md.py +41 -0
  8. megadetector/data_management/yolo_output_to_md_output.py +15 -8
  9. megadetector/detection/process_video.py +24 -7
  10. megadetector/detection/pytorch_detector.py +841 -160
  11. megadetector/detection/run_detector.py +340 -146
  12. megadetector/detection/run_detector_batch.py +306 -70
  13. megadetector/detection/run_inference_with_yolov5_val.py +61 -4
  14. megadetector/detection/tf_detector.py +6 -1
  15. megadetector/postprocessing/{combine_api_outputs.py → combine_batch_outputs.py} +10 -13
  16. megadetector/postprocessing/compare_batch_results.py +68 -6
  17. megadetector/postprocessing/md_to_labelme.py +7 -7
  18. megadetector/postprocessing/md_to_wi.py +40 -0
  19. megadetector/postprocessing/merge_detections.py +1 -1
  20. megadetector/postprocessing/postprocess_batch_results.py +10 -3
  21. megadetector/postprocessing/separate_detections_into_folders.py +32 -4
  22. megadetector/postprocessing/validate_batch_results.py +9 -4
  23. megadetector/utils/ct_utils.py +172 -57
  24. megadetector/utils/gpu_test.py +107 -0
  25. megadetector/utils/md_tests.py +363 -108
  26. megadetector/utils/path_utils.py +9 -2
  27. megadetector/utils/wi_utils.py +1794 -0
  28. megadetector/visualization/visualization_utils.py +82 -16
  29. megadetector/visualization/visualize_db.py +25 -7
  30. megadetector/visualization/visualize_detector_output.py +60 -13
  31. {megadetector-5.0.22.dist-info → megadetector-5.0.24.dist-info}/LICENSE +0 -0
  32. {megadetector-5.0.22.dist-info → megadetector-5.0.24.dist-info}/METADATA +129 -143
  33. {megadetector-5.0.22.dist-info → megadetector-5.0.24.dist-info}/RECORD +35 -33
  34. {megadetector-5.0.22.dist-info → megadetector-5.0.24.dist-info}/top_level.txt +0 -0
  35. megadetector/detection/detector_training/__init__.py +0 -0
  36. megadetector/detection/detector_training/model_main_tf2.py +0 -114
  37. megadetector/utils/torch_test.py +0 -32
  38. {megadetector-5.0.22.dist-info → megadetector-5.0.24.dist-info}/WHEEL +0 -0
@@ -14,9 +14,8 @@ import redis
14
14
  import argparse
15
15
  import PIL
16
16
 
17
- from io import BytesIO
18
-
19
- from detection.run_detector import load_detector, convert_to_tf_coords
17
+ from detection.run_detector import load_detector
18
+ from utils.ct_utils import convert_xywh_to_xyxy as convert_to_tf_coords
20
19
  import config
21
20
  import visualization.visualization_utils as vis_utils
22
21
 
@@ -70,7 +70,7 @@ from typing import Any
70
70
  import pandas as pd
71
71
  from tqdm import tqdm
72
72
 
73
- from megadetector.utils.ct_utils import truncate_float
73
+ from megadetector.utils.ct_utils import round_float
74
74
 
75
75
 
76
76
  #%% Example usage
@@ -124,7 +124,7 @@ def row_to_classification_list(row: Mapping[str, Any],
124
124
 
125
125
  # filter out confidences below the threshold, and set precision to 4
126
126
  result = [
127
- (k, truncate_float(conf, precision=4))
127
+ (k, round_float(conf, precision=4))
128
128
  for k, conf in result if conf >= threshold
129
129
  ]
130
130
 
@@ -18,6 +18,7 @@ from tqdm import tqdm
18
18
  from collections import defaultdict
19
19
 
20
20
  from megadetector.visualization.visualization_utils import open_image
21
+ from megadetector.detection.run_detector import FAILURE_IMAGE_OPEN
21
22
 
22
23
 
23
24
  #%% Functions
@@ -145,7 +146,7 @@ def coco_to_labelme(coco_data,image_base,overwrite=False,bypass_image_size_check
145
146
  except Exception:
146
147
  print('Warning: cannot open image {}'.format(im_full_path))
147
148
  if 'failure' not in im:
148
- im['failure'] = 'Failure image access'
149
+ im['failure'] = FAILURE_IMAGE_OPEN
149
150
 
150
151
  # ...if we need to read w/h information
151
152
 
@@ -86,7 +86,7 @@ def _check_image_existence_and_size(image,options=None):
86
86
  options (IntegrityCheckOptions): parameters impacting validation
87
87
 
88
88
  Returns:
89
- bool: whether this image passes validation
89
+ str: None if this image passes validation, otherwise an error string
90
90
  """
91
91
 
92
92
  if options is None:
@@ -96,23 +96,23 @@ def _check_image_existence_and_size(image,options=None):
96
96
 
97
97
  filePath = os.path.join(options.baseDir,image['file_name'])
98
98
  if not os.path.isfile(filePath):
99
- # print('Image path {} does not exist'.format(filePath))
100
- return False
99
+ s = 'Image path {} does not exist'.format(filePath)
100
+ return s
101
101
 
102
102
  if options.bCheckImageSizes:
103
103
  if not ('height' in image and 'width' in image):
104
- print('Missing image size in {}'.format(filePath))
105
- return False
104
+ s = 'Missing image size in {}'.format(filePath)
105
+ return s
106
106
 
107
107
  # width, height = Image.open(filePath).size
108
108
  pil_im = open_image(filePath)
109
109
  width,height = pil_im.size
110
110
  if (not (width == image['width'] and height == image['height'])):
111
- print('Size mismatch for image {}: {} (reported {},{}, actual {},{})'.format(
112
- image['id'], filePath, image['width'], image['height'], width, height))
113
- return False
111
+ s = 'Size mismatch for image {}: {} (reported {},{}, actual {},{})'.format(
112
+ image['id'], filePath, image['width'], image['height'], width, height)
113
+ return s
114
114
 
115
- return True
115
+ return None
116
116
 
117
117
 
118
118
  def integrity_check_json_db(jsonFile, options=None):
@@ -287,6 +287,7 @@ def integrity_check_json_db(jsonFile, options=None):
287
287
  if fn_relative not in image_paths_in_json:
288
288
  unused_files.append(fn_relative)
289
289
 
290
+ # List of (filename,error_string) tuples
290
291
  validation_errors = []
291
292
 
292
293
  # If we're checking image existence but not image size, we don't need to read the images
@@ -298,8 +299,8 @@ def integrity_check_json_db(jsonFile, options=None):
298
299
  image_paths_relative_set = set(image_paths_relative)
299
300
 
300
301
  for im in images:
301
- if im['file_name'] not in image_paths_relative_set:
302
- validation_errors.append(im['file_name'])
302
+ if im['file_name'] not in image_paths_relative_set:
303
+ validation_errors.append((im['file_name'],'not found in relative path list'))
303
304
 
304
305
  # If we're checking image size, we need to read the images
305
306
  if options.bCheckImageSizes:
@@ -321,12 +322,12 @@ def integrity_check_json_db(jsonFile, options=None):
321
322
  results = tqdm(pool.imap(_check_image_existence_and_size, images), total=len(images))
322
323
  else:
323
324
  results = []
324
- for im in tqdm(images):
325
+ for im in tqdm(images):
325
326
  results.append(_check_image_existence_and_size(im,options))
326
327
 
327
328
  for i_image,result in enumerate(results):
328
- if result is not None:
329
- validation_errors.append(images[i_image]['file_name'])
329
+ if result is not None:
330
+ validation_errors.append(images[i_image]['file_name'],result)
330
331
 
331
332
  # ...for each image
332
333
 
@@ -12,16 +12,18 @@ subset_json_detector_output.py.
12
12
 
13
13
  #%% Constants and imports
14
14
 
15
+ import os
15
16
  import sys
16
17
  import json
17
18
  import argparse
18
19
 
19
20
  from tqdm import tqdm
21
+ from copy import copy
20
22
 
21
23
 
22
24
  #%% Functions
23
25
 
24
- def subset_json_db(input_json, query, output_json=None, ignore_case=False):
26
+ def subset_json_db(input_json, query, output_json=None, ignore_case=False, verbose=False):
25
27
  """
26
28
  Given a json file (or dictionary already loaded from a json file), produce a new
27
29
  database containing only the images whose filenames contain the string 'query',
@@ -29,54 +31,80 @@ def subset_json_db(input_json, query, output_json=None, ignore_case=False):
29
31
 
30
32
  Args:
31
33
  input_json (str): COCO Camera Traps .json file to load, or an already-loaded dict
32
- query (str): string to query for, only include images in the output whose filenames
33
- contain this string.
34
+ query (str or list): string to query for, only include images in the output whose filenames
35
+ contain this string. If this is a list, test for exact matches.
34
36
  output_json (str, optional): file to write the resulting .json file to
35
37
  ignore_case (bool, optional): whether to perform a case-insensitive search for [query]
38
+ verbose (bool, optional): enable additional debug output
36
39
 
37
40
  Returns:
38
- dict: possibly-modified CCT dictionary
41
+ dict: CCT dictionary containing a subset of the images and annotations in the input dict
39
42
  """
40
-
41
- if ignore_case:
42
- query = query.lower()
43
43
 
44
44
  # Load the input file if necessary
45
45
  if isinstance(input_json,str):
46
46
  print('Loading input .json...')
47
47
  with open(input_json, 'r') as f:
48
- data = json.load(f)
48
+ input_data = json.load(f)
49
49
  else:
50
- data = input_json
50
+ input_data = input_json
51
51
 
52
52
  # Find images matching the query
53
53
  images = []
54
- image_ids = set()
55
54
 
56
- for im in tqdm(data['images']):
57
- fn = im['file_name']
55
+ if isinstance(query,str):
56
+
57
+ if ignore_case:
58
+ query = query.lower()
59
+
60
+ for im in tqdm(input_data['images']):
61
+ fn = im['file_name']
62
+ if ignore_case:
63
+ fn = fn.lower()
64
+ if query in fn:
65
+ images.append(im)
66
+
67
+ else:
68
+
69
+ query = set(query)
70
+
58
71
  if ignore_case:
59
- fn = fn.lower()
60
- if query in fn:
61
- images.append(im)
62
- image_ids.add(im['id'])
72
+ query = set([s.lower() for s in query])
73
+
74
+ for im in input_data['images']:
75
+ fn = im['file_name']
76
+ if ignore_case:
77
+ fn = fn.lower()
78
+ if fn in query:
79
+ images.append(im)
80
+
81
+ image_ids = set([im['id'] for im in images])
63
82
 
64
83
  # Find annotations referring to those images
65
84
  annotations = []
66
85
 
67
- for ann in tqdm(data['annotations']):
86
+ for ann in input_data['annotations']:
68
87
  if ann['image_id'] in image_ids:
69
88
  annotations.append(ann)
70
89
 
71
- output_data = data
90
+ output_data = copy(input_data)
72
91
  output_data['images'] = images
73
92
  output_data['annotations'] = annotations
74
93
 
75
94
  # Write the output file if requested
76
95
  if output_json is not None:
77
- print('Writing output .json...')
78
- json.dump(output_data,open(output_json,'w'),indent=1)
79
-
96
+ if verbose:
97
+ print('Writing output .json to {}'.format(output_json))
98
+ output_dir = os.path.dirname(output_json)
99
+ os.makedirs(output_dir,exist_ok=True)
100
+ with open(output_json,'w') as f:
101
+ json.dump(output_data,f,indent=1)
102
+
103
+ if verbose:
104
+ print('Keeping {} of {} images, {} of {} annotations'.format(
105
+ len(output_data['images']),len(input_data['images']),
106
+ len(output_data['annotations']),len(input_data['annotations'])))
107
+
80
108
  return output_data
81
109
 
82
110
 
@@ -0,0 +1,340 @@
1
+ """
2
+
3
+ mewc_to_md.py
4
+
5
+ Converts the output of the MEWC inference scripts to the MD output format.
6
+
7
+ """
8
+
9
+ #%% Imports and constants
10
+
11
+ import os
12
+ import json
13
+ import pandas as pd
14
+
15
+ from copy import deepcopy
16
+ from collections import defaultdict
17
+ from megadetector.utils.ct_utils import sort_list_of_dicts_by_key, invert_dictionary # noqa
18
+ from megadetector.utils.path_utils import recursive_file_list
19
+
20
+ from megadetector.postprocessing.validate_batch_results import \
21
+ ValidateBatchResultsOptions, validate_batch_results
22
+
23
+ default_mewc_mount_prefix = '/images/'
24
+ default_mewc_category_name_column = 'class_id'
25
+
26
+
27
+ #%% Functions
28
+
29
+ def mewc_to_md(mewc_input_folder,
30
+ output_file=None,
31
+ mount_prefix=default_mewc_mount_prefix,
32
+ category_name_column=default_mewc_category_name_column,
33
+ mewc_out_filename='mewc_out.csv',
34
+ md_out_filename='md_out.json'):
35
+ """
36
+
37
+ Args:
38
+ mewc_input_folder (str): the folder we'll search for MEWC output files
39
+ output_file (str, optional): .json file to write with class information
40
+ mount_prefix (str, optional): string to remove from all filenames in the MD
41
+ .json file, typically the prefix used to mount the image folder.
42
+ category_name_column (str, optional): column in the MEWC results .csv to use for
43
+ category naming.
44
+
45
+ Returns:
46
+ dict: an MD-formatted dict, the same as what's written to [output_file]
47
+ """
48
+
49
+ ##%% Read input files
50
+
51
+ assert os.path.isdir(mewc_input_folder), \
52
+ 'Could not find folder {}'.format(mewc_input_folder)
53
+
54
+
55
+ ##%% Find MEWC output files
56
+
57
+ relative_path_to_mewc_info = {}
58
+
59
+ print('Listing files in folder {}'.format(mewc_input_folder))
60
+ all_files_relative = set(recursive_file_list(mewc_input_folder,return_relative_paths=True))
61
+
62
+ for fn_relative in all_files_relative:
63
+ if fn_relative.endswith(mewc_out_filename):
64
+ folder_relative = '/'.join(fn_relative.split('/')[:-1])
65
+ assert folder_relative not in relative_path_to_mewc_info
66
+ md_output_file_relative = os.path.join(folder_relative,md_out_filename).replace('\\','/')
67
+ assert md_output_file_relative in all_files_relative, \
68
+ 'Could not find MD output file {} to match to {}'.format(
69
+ md_output_file_relative,fn_relative)
70
+ relative_path_to_mewc_info[folder_relative] = \
71
+ {'mewc_predict_file':fn_relative,'md_file':md_output_file_relative}
72
+
73
+ del folder_relative
74
+
75
+ print('Found {} MEWC results files'.format(len(relative_path_to_mewc_info)))
76
+
77
+
78
+ ##%% Prepare to loop over results files
79
+
80
+ md_results_all = {}
81
+ md_results_all['images'] = []
82
+ md_results_all['detection_categories'] = {}
83
+ md_results_all['classification_categories'] = {}
84
+ md_results_all['info'] = None
85
+
86
+ classification_category_name_to_id = {}
87
+
88
+
89
+ ##%% Loop over results files
90
+
91
+ # relative_folder = next(iter(relative_path_to_mewc_info.keys()))
92
+ for relative_folder in relative_path_to_mewc_info:
93
+
94
+ ##%%
95
+
96
+ mewc_info = relative_path_to_mewc_info[relative_folder]
97
+ mewc_csv_fn_abs = os.path.join(mewc_input_folder,mewc_info['mewc_predict_file'])
98
+ mewc_md_fn_abs = os.path.join(mewc_input_folder,mewc_info['md_file'])
99
+
100
+ mewc_classification_info = pd.read_csv(mewc_csv_fn_abs)
101
+ mewc_classification_info = mewc_classification_info.to_dict('records')
102
+
103
+ assert os.path.isfile(mewc_md_fn_abs), \
104
+ 'Could not find file {}'.format(mewc_md_fn_abs)
105
+ with open(mewc_md_fn_abs,'r') as f:
106
+ md_results = json.load(f)
107
+
108
+
109
+ ##%% Remove the mount prefix from MD files if necessary
110
+ if mount_prefix is not None and len(mount_prefix) > 0:
111
+
112
+ n_files_without_mount_prefix = 0
113
+
114
+ # im = md_results['images'][0]
115
+ for im in md_results['images']:
116
+ if not im['file'].startswith(mount_prefix):
117
+ n_files_without_mount_prefix += 1
118
+ else:
119
+ im['file'] = im['file'].replace(mount_prefix,'',1)
120
+
121
+ if n_files_without_mount_prefix > 0:
122
+ print('Warning {} of {} files in the MD results did not include the mount prefix {}'.format(
123
+ n_files_without_mount_prefix,len(md_results['images']),mount_prefix))
124
+
125
+
126
+ ##%% Convert MEWC snip IDs to image files
127
+
128
+ # r = mewc_classification_info[0]
129
+ for r in mewc_classification_info:
130
+
131
+ # E.g. "IMG0-0.jpg"
132
+ snip_file = r['filename']
133
+
134
+ # E.g. "IMG0-0"
135
+ snip_file_no_ext = os.path.splitext(snip_file)[0]
136
+ ext = os.path.splitext(snip_file)[1] # noqa
137
+
138
+ tokens = snip_file_no_ext.split('-')
139
+
140
+ if len(tokens) == 1:
141
+ print('Warning: in folder {}, detection ID not found in snip filename {}, skipping'.format(
142
+ relative_folder,snip_file_no_ext))
143
+ r['image_filename_without_extension'] = snip_file_no_ext
144
+ r['snip_id'] = None
145
+
146
+ continue
147
+
148
+ filename_without_snip_id = '-'.join(tokens[0:-1])
149
+ snip_id = int(tokens[-1])
150
+ image_filename_without_extension = filename_without_snip_id
151
+
152
+ r['image_filename_without_extension'] = image_filename_without_extension
153
+ r['snip_id'] = snip_id
154
+
155
+ # ...for each MEWC result record
156
+
157
+
158
+ ##%% Make sure MD results and MEWC results refer to the same files
159
+
160
+ images_in_md_results_no_extension = \
161
+ set([os.path.splitext(im['file'])[0] for im in md_results['images']])
162
+ images_in_mewc_results_no_extension = set(r['image_filename_without_extension'] \
163
+ for r in mewc_classification_info)
164
+
165
+ # All files with classification results should also have detection results
166
+ for fn in images_in_mewc_results_no_extension:
167
+ assert fn in images_in_md_results_no_extension, \
168
+ 'Error: file {} is present in mewc-predict results, but not in MD results'.format(fn)
169
+
170
+ # This is just a note to self: no classification results are present for empty images
171
+ if False:
172
+ for fn in images_in_md_results_no_extension:
173
+ if fn not in images_in_mewc_results_no_extension:
174
+ print('Warning: file {}/{} is present in MD results, but not in mewc-predict results'.format(
175
+ relative_folder,fn))
176
+
177
+
178
+ ##%% Validate images
179
+
180
+ for im in md_results['images']:
181
+ fn_relative = im['file']
182
+ fn_abs = os.path.join(mewc_input_folder,relative_folder,fn_relative)
183
+ if not os.path.isfile(fn_abs):
184
+ print('Warning: image file {} does not exist'.format(fn_abs))
185
+
186
+
187
+ ##%% Map filenames to MEWC results
188
+
189
+ image_id_to_mewc_records = defaultdict(list)
190
+ for r in mewc_classification_info:
191
+ image_id_to_mewc_records[r['image_filename_without_extension']].append(r)
192
+
193
+
194
+ ##%% Add classification info to MD results
195
+
196
+ # im = md_results['images'][0]
197
+ for im in md_results['images']:
198
+
199
+ if ('detections' not in im) or (im['detections'] is None) or (len(im['detections']) == 0):
200
+ continue
201
+
202
+ detections = im['detections']
203
+
204
+ # *Don't* sort by confidence, it looks like snip IDs use the original sort order
205
+ # detections = sort_list_of_dicts_by_key(detections,'conf',reverse=True)
206
+
207
+ # This is just a debug assist, so I can run this cell more than once
208
+ for det in detections:
209
+ det['classifications'] = []
210
+
211
+ image_id = os.path.splitext(im['file'])[0]
212
+ mewc_records_this_image = image_id_to_mewc_records[image_id]
213
+
214
+ # r = mewc_records_this_image[0]
215
+ for r in mewc_records_this_image:
216
+
217
+ if r['snip_id'] is None:
218
+ continue
219
+
220
+ category_name = r[category_name_column]
221
+
222
+ # This is a *global* list of category mappings, across all mewc .csv files
223
+ if category_name not in classification_category_name_to_id:
224
+ category_id = str(len(classification_category_name_to_id))
225
+ classification_category_name_to_id[category_name] = category_id
226
+ else:
227
+ category_id = classification_category_name_to_id[category_name]
228
+
229
+ snip_id = r['snip_id']
230
+ if snip_id >= len(detections):
231
+ print('Warning: image {} has a classified snip ID of {}, but only {} detections are present'.format(
232
+ image_id,snip_id,len(detections)))
233
+ continue
234
+
235
+ det = detections[snip_id]
236
+
237
+ if 'classifications' not in det:
238
+ det['classifications'] = []
239
+ det['classifications'].append([category_id,r['prob']])
240
+
241
+ # ...for each classification in this image
242
+
243
+ # ...for each image
244
+
245
+ ##%% Map MD reults to the global level
246
+
247
+ if md_results_all['info'] is None:
248
+ md_results_all['info'] = md_results['info']
249
+
250
+ for category_id in md_results['detection_categories']:
251
+ if category_id not in md_results_all['detection_categories']:
252
+ md_results_all['detection_categories'][category_id] = \
253
+ md_results['detection_categories'][category_id]
254
+ else:
255
+ assert md_results_all['detection_categories'][category_id] == \
256
+ md_results['detection_categories'][category_id], \
257
+ 'MD results present with incompatible detection categories'
258
+
259
+ # im = md_results['images'][0]
260
+ for im in md_results['images']:
261
+ im_copy = deepcopy(im)
262
+ im_copy['file'] = os.path.join(relative_folder,im['file']).replace('\\','/')
263
+ md_results_all['images'].append(im_copy)
264
+
265
+ # ...for each folder that contains MEWC results
266
+
267
+ del md_results
268
+
269
+ ##%% Write output
270
+
271
+ md_results_all['classification_categories'] = invert_dictionary(classification_category_name_to_id)
272
+
273
+ if output_file is not None:
274
+ output_dir = os.path.dirname(output_file)
275
+ os.makedirs(output_dir,exist_ok=True)
276
+ with open(output_file,'w') as f:
277
+ json.dump(md_results_all,f,indent=1)
278
+
279
+ validation_options = ValidateBatchResultsOptions()
280
+ validation_options.check_image_existence = True
281
+ validation_options.relative_path_base = mewc_input_folder
282
+ validation_options.raise_errors = True
283
+ validation_results = validate_batch_results(output_file,validation_options) # noqa
284
+
285
+ # ...def mewc_to_md(...)
286
+
287
+
288
+ #%% Interactive driver
289
+
290
+ if False:
291
+
292
+ pass
293
+
294
+ #%%
295
+
296
+ mewc_input_folder = r'G:\temp\mewc-test'
297
+ mount_prefix = '/images/'
298
+ output_file = os.path.join(mewc_input_folder,'results_with_classes.json')
299
+
300
+ _ = mewc_to_md(mewc_input_folder=mewc_input_folder,
301
+ output_file=output_file,
302
+ mount_prefix=mount_prefix,
303
+ category_name_column='class_id')
304
+
305
+
306
+ #%% Command-line driver
307
+
308
+ import sys
309
+ import argparse
310
+
311
+ def main():
312
+
313
+ parser = argparse.ArgumentParser()
314
+
315
+ parser.add_argument(
316
+ 'input_folder',type=str,
317
+ help='Folder containing images and MEWC .json/.csv files')
318
+ parser.add_argument(
319
+ 'output_file',type=str,
320
+ help='.json file where output will be written')
321
+ parser.add_argument(
322
+ '--mount_prefix',type=str,default=default_mewc_mount_prefix,
323
+ help='prefix to remove from each filename in MEWC results, typically the Docker mount point')
324
+ parser.add_argument(
325
+ '--category_name_column',type=str,default=default_mewc_category_name_column,
326
+ help='column in the MEWC .csv file to use for category names')
327
+
328
+ if len(sys.argv[1:]) == 0:
329
+ parser.print_help()
330
+ parser.exit()
331
+
332
+ args = parser.parse_args()
333
+
334
+ _ = mewc_to_md(mewc_input_folder=args.input_folder,
335
+ output_file=args.output_file,
336
+ mount_prefix=args.mount_prefix,
337
+ category_name_column=args.category_name_column)
338
+
339
+ if __name__ == '__main__':
340
+ main()
@@ -0,0 +1,41 @@
1
+ """
2
+
3
+ wi_to_md.py
4
+
5
+ Converts the WI predictions.json format to MD .json format. This is just a
6
+ command-line wrapper around utils.wi_utils.generate_md_results_from_predictions_json.
7
+
8
+ """
9
+
10
+ #%% Imports and constants
11
+
12
+ import sys
13
+ import argparse
14
+ from megadetector.utils.wi_utils import generate_md_results_from_predictions_json
15
+
16
+
17
+ #%% Command-line driver
18
+
19
+ def main():
20
+
21
+ parser = argparse.ArgumentParser()
22
+ parser.add_argument('predictions_json_file', action='store', type=str,
23
+ help='.json file to convert from predictions.json format to MD format')
24
+ parser.add_argument('md_results_file', action='store', type=str,
25
+ help='output file to write in MD format')
26
+ parser.add_argument('--base_folder', action='store', type=str, default=None,
27
+ help='leading string to remove from each path in the predictions.json ' + \
28
+ 'file (to convert from absolute to relative paths)')
29
+
30
+ if len(sys.argv[1:]) == 0:
31
+ parser.print_help()
32
+ parser.exit()
33
+
34
+ args = parser.parse_args()
35
+
36
+ generate_md_results_from_predictions_json(args.predictions_json_file,
37
+ args.md_results_file,
38
+ args.base_folder)
39
+
40
+ if __name__ == '__main__':
41
+ main()