megadetector 5.0.22__py3-none-any.whl → 5.0.23__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

@@ -889,7 +889,7 @@ def write_results_to_file(results,
889
889
  if info is None:
890
890
 
891
891
  info = {
892
- 'detection_completion_time': datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'),
892
+ 'detection_completion_time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
893
893
  'format_version': '1.4'
894
894
  }
895
895
 
@@ -1346,7 +1346,7 @@ def main():
1346
1346
  else:
1347
1347
  checkpoint_path = os.path.join(output_dir,
1348
1348
  'md_checkpoint_{}.json'.format(
1349
- datetime.utcnow().strftime("%Y%m%d%H%M%S")))
1349
+ datetime.now().strftime("%Y%m%d%H%M%S")))
1350
1350
 
1351
1351
  # Don't overwrite existing checkpoint files, this is a sure-fire way to eventually
1352
1352
  # erase someone's checkpoint.
@@ -548,7 +548,7 @@ def image_file_to_camera_folder(image_fn):
548
548
  # 100EK113 is (for some reason) the overflow folder style for Bushnell cameras
549
549
  # 100_BTCF is the overflow folder style for Browning cameras
550
550
  # 100MEDIA is the overflow folder style used on a number of consumer-grade cameras
551
- patterns = ['\/\d+RECNX\/','\/\d+EK\d+\/','\/\d+_BTCF\/','\/\d+MEDIA\/']
551
+ patterns = [r'/\d+RECNX/',r'/\d+EK\d+/',r'/\d+_BTCF/',r'/\d+MEDIA/']
552
552
 
553
553
  image_fn = image_fn.replace('\\','/')
554
554
  for pat in patterns:
@@ -707,23 +707,19 @@ def is_function_name(s,calling_namespace):
707
707
  callable(calling_namespace.get(s)) or \
708
708
  callable(getattr(builtins, s, None))
709
709
 
710
-
711
- #%% Test drivers
712
710
 
713
- if False:
714
-
715
- pass
716
-
717
- #%% Test image_file_to_camera_folder()
711
+ def __module_test__():
712
+ """
713
+ Module test driver
714
+ """
718
715
 
719
- relative_path = 'a/b/c/d/100EK113/blah.jpg'
720
- print(image_file_to_camera_folder(relative_path))
716
+ ##%% Camera folder mapping
721
717
 
722
- relative_path = 'a/b/c/d/100RECNX/blah.jpg'
723
- print(image_file_to_camera_folder(relative_path))
718
+ assert image_file_to_camera_folder('a/b/c/d/100EK113/blah.jpg') == 'a/b/c/d'
719
+ assert image_file_to_camera_folder('a/b/c/d/100RECNX/blah.jpg') == 'a/b/c/d'
724
720
 
725
721
 
726
- #%% Test a few rectangle distances
722
+ ##%% Test a few rectangle distances
727
723
 
728
724
  r1 = [0,0,1,1]; r2 = [0,0,1,1]; assert rect_distance(r1,r2)==0
729
725
  r1 = [0,0,1,1]; r2 = [0,0,1,100]; assert rect_distance(r1,r2)==0
@@ -735,9 +731,8 @@ if False:
735
731
  r1 = [0.4,0.8,10,22]; r2 = [120, 120, 200, 210.4]; assert abs(rect_distance(r1,r2)-147.323) < 0.001
736
732
 
737
733
 
738
- #%% Test dictionary sorting
734
+ ##%% Test dictionary sorting
739
735
 
740
736
  L = [{'a':5},{'a':0},{'a':10}]
741
737
  k = 'a'
742
738
  sort_list_of_dicts_by_key(L, k, reverse=True)
743
-
@@ -654,6 +654,14 @@ def run_python_tests(options):
654
654
  download_test_data(options)
655
655
 
656
656
 
657
+ ## Miscellaneous utility tests
658
+
659
+ print('\n** Running ct_utils module test **\n')
660
+
661
+ from megadetector.utils.ct_utils import __module_test__ as ct_utils_test
662
+ ct_utils_test()
663
+
664
+
657
665
  ## Run inference on an image
658
666
 
659
667
  print('\n** Running MD on a single image (module) **\n')
@@ -1,143 +1,143 @@
1
- Metadata-Version: 2.2
2
- Name: megadetector
3
- Version: 5.0.22
4
- Summary: MegaDetector is an AI model that helps conservation folks spend less time doing boring things with camera trap images.
5
- Author-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
6
- Maintainer-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
7
- License: MIT License
8
-
9
- Permission is hereby granted, free of charge, to any person obtaining a copy
10
- of this software and associated documentation files (the "Software"), to deal
11
- in the Software without restriction, including without limitation the rights
12
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
- copies of the Software, and to permit persons to whom the Software is
14
- furnished to do so, subject to the following conditions:
15
-
16
- The above copyright notice and this permission notice shall be included in all
17
- copies or substantial portions of the Software.
18
-
19
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25
- SOFTWARE.
26
-
27
- Project-URL: Homepage, https://github.com/agentmorris/MegaDetector
28
- Project-URL: Documentation, https://megadetector.readthedocs.io
29
- Project-URL: Bug Reports, https://github.com/agentmorris/MegaDetector/issues
30
- Project-URL: Source, https://github.com/agentmorris/MegaDetector
31
- Keywords: camera traps,conservation,wildlife,ai,megadetector
32
- Classifier: Development Status :: 3 - Alpha
33
- Classifier: License :: OSI Approved :: MIT License
34
- Classifier: Programming Language :: Python :: 3
35
- Requires-Python: <3.12,>=3.9
36
- Description-Content-Type: text/markdown
37
- License-File: LICENSE
38
- Requires-Dist: Pillow>=9.5
39
- Requires-Dist: tqdm>=4.64.0
40
- Requires-Dist: jsonpickle>=3.0.2
41
- Requires-Dist: humanfriendly>=10.0
42
- Requires-Dist: numpy<1.24,>=1.22
43
- Requires-Dist: matplotlib>=3.8.0
44
- Requires-Dist: opencv-python>=4.8.0
45
- Requires-Dist: requests>=2.31.0
46
- Requires-Dist: pyqtree>=1.0.0
47
- Requires-Dist: seaborn>=0.12.2
48
- Requires-Dist: scikit-learn>=1.3.1
49
- Requires-Dist: pandas>=2.1.1
50
- Requires-Dist: PyYAML>=6.0.1
51
- Requires-Dist: ultralytics-yolov5==0.1.1
52
- Requires-Dist: python-dateutil
53
-
54
- # MegaDetector
55
-
56
- This package is a pip-installable version of the support/inference code for [MegaDetector](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector), an object detection model that helps conservation biologists spend less time doing boring things with camera trap images. Complete documentation for this Python package is available at [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
57
-
58
- If you aren't looking for the Python package specifically, and you just want to learn more about what MegaDetector is all about, head over to the [MegaDetector repo](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector).
59
-
60
-
61
- ## Reasons you might not be looking for this package
62
-
63
- ### If you are an ecologist...
64
-
65
- If you are an ecologist looking to use MegaDetector to help you get through your camera trap images, you probably don't want this package, or at least you probably don't want to start at this page. We recommend starting with our "[Getting started with MegaDetector](https://github.com/agentmorris/MegaDetector/blob/main/getting-started.md)" page, then digging in to the [MegaDetector User Guide](https://github.com/agentmorris/MegaDetector/blob/main/megadetector.md), which will walk you through the process of using MegaDetector.
66
-
67
- ### If you are a computer-vision-y type...
68
-
69
- If you are a computer-vision-y person looking to run or fine-tune MegaDetector programmatically, you probably don't want this package. MegaDetector is just a fine-tuned version of [YOLOv5](https://github.com/ultralytics/yolov5), and the [ultralytics](https://github.com/ultralytics/ultralytics/) package (from the developers of YOLOv5) has a zillion bells and whistles for both inference and fine-tuning that this package doesn't.
70
-
71
- ## Reasons you might want to use this package
72
-
73
- If you want to programmatically interact with the postprocessing tools from the MegaDetector repo, or programmatically run MegaDetector in a way that produces [Timelapse](https://saul.cpsc.ucalgary.ca/timelapse)-friendly output (i.e., output in the standard [MegaDetector output format](https://github.com/agentmorris/MegaDetector/tree/main/megadetector/api/batch_processing#megadetector-batch-output-format)), this package might be for you.
74
-
75
- ## If I haven't talked you out of using this package...
76
-
77
- To install:
78
-
79
- `pip install megadetector`
80
-
81
- MegaDetector model weights aren't downloaded at pip-install time, but they will be (optionally) automatically downloaded the first time you run the model.
82
-
83
- ## Package reference
84
-
85
- See [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
86
-
87
-
88
- ## Examples of things you can do with this package
89
-
90
- ### Run MegaDetector on one image and count the number of detections
91
-
92
- ```
93
- from megadetector.utils import url_utils
94
- from megadetector.visualization import visualization_utils as vis_utils
95
- from megadetector.detection import run_detector
96
-
97
- # This is the image at the bottom of this page, it has one animal in it
98
- image_url = 'https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web.jpg'
99
- temporary_filename = url_utils.download_url(image_url)
100
-
101
- image = vis_utils.load_image(temporary_filename)
102
-
103
- # This will automatically download MDv5a; you can also specify a filename.
104
- model = run_detector.load_detector('MDV5A')
105
-
106
- result = model.generate_detections_one_image(image)
107
-
108
- detections_above_threshold = [d for d in result['detections'] if d['conf'] > 0.2]
109
- print('Found {} detections above threshold'.format(len(detections_above_threshold)))
110
- ```
111
-
112
- ### Run MegaDetector on a folder of images
113
-
114
- ```
115
- from megadetector.detection.run_detector_batch import \
116
- load_and_run_detector_batch, write_results_to_file
117
- from megadetector.utils import path_utils
118
- import os
119
-
120
- # Pick a folder to run MD on recursively, and an output file
121
- image_folder = os.path.expanduser('~/megadetector_test_images')
122
- output_file = os.path.expanduser('~/megadetector_output_test.json')
123
-
124
- # Recursively find images
125
- image_file_names = path_utils.find_images(image_folder,recursive=True)
126
-
127
- # This will automatically download MDv5a; you can also specify a filename.
128
- results = load_and_run_detector_batch('MDV5A', image_file_names)
129
-
130
- # Write results to a format that Timelapse and other downstream tools like.
131
- write_results_to_file(results,
132
- output_file,
133
- relative_path_base=image_folder,
134
- detector_file=detector_filename)
135
- ```
136
-
137
- ## Contact
138
-
139
- Contact <a href="cameratraps@lila.science">cameratraps@lila.science</a> with questions.
140
-
141
- ## Gratuitous animal picture
142
-
143
- <img src="https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web_detections.jpg"><br/>Image credit University of Minnesota, from the [Orinoquía Camera Traps](http://lila.science/datasets/orinoquia-camera-traps/) data set.
1
+ Metadata-Version: 2.2
2
+ Name: megadetector
3
+ Version: 5.0.23
4
+ Summary: MegaDetector is an AI model that helps conservation folks spend less time doing boring things with camera trap images.
5
+ Author-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
6
+ Maintainer-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
7
+ License: MIT License
8
+
9
+ Permission is hereby granted, free of charge, to any person obtaining a copy
10
+ of this software and associated documentation files (the "Software"), to deal
11
+ in the Software without restriction, including without limitation the rights
12
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
+ copies of the Software, and to permit persons to whom the Software is
14
+ furnished to do so, subject to the following conditions:
15
+
16
+ The above copyright notice and this permission notice shall be included in all
17
+ copies or substantial portions of the Software.
18
+
19
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25
+ SOFTWARE.
26
+
27
+ Project-URL: Homepage, https://github.com/agentmorris/MegaDetector
28
+ Project-URL: Documentation, https://megadetector.readthedocs.io
29
+ Project-URL: Bug Reports, https://github.com/agentmorris/MegaDetector/issues
30
+ Project-URL: Source, https://github.com/agentmorris/MegaDetector
31
+ Keywords: camera traps,conservation,wildlife,ai,megadetector
32
+ Classifier: Development Status :: 3 - Alpha
33
+ Classifier: License :: OSI Approved :: MIT License
34
+ Classifier: Programming Language :: Python :: 3
35
+ Requires-Python: <=3.13,>=3.9
36
+ Description-Content-Type: text/markdown
37
+ License-File: LICENSE
38
+ Requires-Dist: Pillow>=9.5
39
+ Requires-Dist: tqdm>=4.64.0
40
+ Requires-Dist: jsonpickle>=3.0.2
41
+ Requires-Dist: humanfriendly>=10.0
42
+ Requires-Dist: numpy<2.0,>=1.26.4
43
+ Requires-Dist: matplotlib>=3.8.0
44
+ Requires-Dist: opencv-python>=4.8.0
45
+ Requires-Dist: requests>=2.31.0
46
+ Requires-Dist: pyqtree>=1.0.0
47
+ Requires-Dist: seaborn>=0.12.2
48
+ Requires-Dist: scikit-learn>=1.3.1
49
+ Requires-Dist: pandas>=2.1.1
50
+ Requires-Dist: PyYAML>=6.0.1
51
+ Requires-Dist: ultralytics-yolov5==0.1.1
52
+ Requires-Dist: python-dateutil
53
+
54
+ # MegaDetector
55
+
56
+ This package is a pip-installable version of the support/inference code for [MegaDetector](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector), an object detection model that helps conservation biologists spend less time doing boring things with camera trap images. Complete documentation for this Python package is available at [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
57
+
58
+ If you aren't looking for the Python package specifically, and you just want to learn more about what MegaDetector is all about, head over to the [MegaDetector repo](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector).
59
+
60
+
61
+ ## Reasons you might not be looking for this package
62
+
63
+ ### If you are an ecologist...
64
+
65
+ If you are an ecologist looking to use MegaDetector to help you get through your camera trap images, you probably don't want this package, or at least you probably don't want to start at this page. We recommend starting with our "[Getting started with MegaDetector](https://github.com/agentmorris/MegaDetector/blob/main/getting-started.md)" page, then digging in to the [MegaDetector User Guide](https://github.com/agentmorris/MegaDetector/blob/main/megadetector.md), which will walk you through the process of using MegaDetector.
66
+
67
+ ### If you are a computer-vision-y type...
68
+
69
+ If you are a computer-vision-y person looking to run or fine-tune MegaDetector programmatically, you probably don't want this package. MegaDetector is just a fine-tuned version of [YOLOv5](https://github.com/ultralytics/yolov5), and the [ultralytics](https://github.com/ultralytics/ultralytics/) package (from the developers of YOLOv5) has a zillion bells and whistles for both inference and fine-tuning that this package doesn't.
70
+
71
+ ## Reasons you might want to use this package
72
+
73
+ If you want to programmatically interact with the postprocessing tools from the MegaDetector repo, or programmatically run MegaDetector in a way that produces [Timelapse](https://saul.cpsc.ucalgary.ca/timelapse)-friendly output (i.e., output in the standard [MegaDetector output format](https://github.com/agentmorris/MegaDetector/tree/main/megadetector/api/batch_processing#megadetector-batch-output-format)), this package might be for you.
74
+
75
+ ## If I haven't talked you out of using this package...
76
+
77
+ To install:
78
+
79
+ `pip install megadetector`
80
+
81
+ MegaDetector model weights aren't downloaded at pip-install time, but they will be (optionally) automatically downloaded the first time you run the model.
82
+
83
+ ## Package reference
84
+
85
+ See [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
86
+
87
+
88
+ ## Examples of things you can do with this package
89
+
90
+ ### Run MegaDetector on one image and count the number of detections
91
+
92
+ ```
93
+ from megadetector.utils import url_utils
94
+ from megadetector.visualization import visualization_utils as vis_utils
95
+ from megadetector.detection import run_detector
96
+
97
+ # This is the image at the bottom of this page, it has one animal in it
98
+ image_url = 'https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web.jpg'
99
+ temporary_filename = url_utils.download_url(image_url)
100
+
101
+ image = vis_utils.load_image(temporary_filename)
102
+
103
+ # This will automatically download MDv5a; you can also specify a filename.
104
+ model = run_detector.load_detector('MDV5A')
105
+
106
+ result = model.generate_detections_one_image(image)
107
+
108
+ detections_above_threshold = [d for d in result['detections'] if d['conf'] > 0.2]
109
+ print('Found {} detections above threshold'.format(len(detections_above_threshold)))
110
+ ```
111
+
112
+ ### Run MegaDetector on a folder of images
113
+
114
+ ```
115
+ from megadetector.detection.run_detector_batch import \
116
+ load_and_run_detector_batch, write_results_to_file
117
+ from megadetector.utils import path_utils
118
+ import os
119
+
120
+ # Pick a folder to run MD on recursively, and an output file
121
+ image_folder = os.path.expanduser('~/megadetector_test_images')
122
+ output_file = os.path.expanduser('~/megadetector_output_test.json')
123
+
124
+ # Recursively find images
125
+ image_file_names = path_utils.find_images(image_folder,recursive=True)
126
+
127
+ # This will automatically download MDv5a; you can also specify a filename.
128
+ results = load_and_run_detector_batch('MDV5A', image_file_names)
129
+
130
+ # Write results to a format that Timelapse and other downstream tools like.
131
+ write_results_to_file(results,
132
+ output_file,
133
+ relative_path_base=image_folder,
134
+ detector_file=detector_filename)
135
+ ```
136
+
137
+ ## Contact
138
+
139
+ Contact <a href="cameratraps@lila.science">cameratraps@lila.science</a> with questions.
140
+
141
+ ## Gratuitous animal picture
142
+
143
+ <img src="https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web_detections.jpg"><br/>Image credit University of Minnesota, from the [Orinoquía Camera Traps](http://lila.science/datasets/orinoquia-camera-traps/) data set.
@@ -139,7 +139,7 @@ megadetector/detection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3
139
139
  megadetector/detection/process_video.py,sha256=EizrKUuLZdtJdr9DE5oeqwk6Kst1RdvFxlwBneOEnU8,53569
140
140
  megadetector/detection/pytorch_detector.py,sha256=Tm1o03PhI7oVBZ1_BINBKTWVHp2EdT42vF7h0gI_hJ0,14566
141
141
  megadetector/detection/run_detector.py,sha256=fq5WLOAGJ0mSGfVL4-uLj2VUH-Tp1h1-zo_MW27MW4g,32077
142
- megadetector/detection/run_detector_batch.py,sha256=a98fzorcGtQaOYa5AGW2XPoJpbHeJWO5prqwzxVoPaI,62055
142
+ megadetector/detection/run_detector_batch.py,sha256=ZbWqLvV0DuhuRTr2w5SD4vnvXwoSi7dDKPbt96QhRZ0,62049
143
143
  megadetector/detection/run_inference_with_yolov5_val.py,sha256=wMDkSm24L8-XIFb1Mi3jpr4mX5H0h39uYWJYsgPd8Q8,53436
144
144
  megadetector/detection/run_tiled_inference.py,sha256=vw0713eNuMiEOjHfweQl58zPHNxPOMdFWZ8bTDLhlMY,37883
145
145
  megadetector/detection/tf_detector.py,sha256=5V94a0gR6WmGPacKm59hl1eYEZI8cG04frF4EvHrmzU,8285
@@ -181,9 +181,9 @@ megadetector/taxonomy_mapping/taxonomy_graph.py,sha256=ayrTFseVaIMbtMXhnjWCkZdxI
181
181
  megadetector/taxonomy_mapping/validate_lila_category_mappings.py,sha256=1qyZr23bvZSVUYLQnO1XAtIZ4jdpARA5dxt8euKVyOA,2527
182
182
  megadetector/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
183
183
  megadetector/utils/azure_utils.py,sha256=0BdnkG2hW-X0yFpsJqmBhOd2wysz_LvhuyImPJMVPJs,6271
184
- megadetector/utils/ct_utils.py,sha256=Sv4vUwDou9-fr2hRZu2EmOhj4EBZwrGEbV0QEYQs53o,21526
184
+ megadetector/utils/ct_utils.py,sha256=cl1p2U32Qeq9bD5MEgfBt0zJMARj5ACX-fGJaj1681s,21477
185
185
  megadetector/utils/directory_listing.py,sha256=r4rg2xA4O9ZVxVtzPZzXIXa0DOEukAJMTTNcNSiQcuM,9668
186
- megadetector/utils/md_tests.py,sha256=gQXUlcXbCgtAafqeXAmSsueUneEEMqEVCoWUH4c_k4s,61190
186
+ megadetector/utils/md_tests.py,sha256=1OgJoHu0ErgAPZeQ43MdCJqMXk8oQx3w8OaoHbNGhqI,61394
187
187
  megadetector/utils/path_utils.py,sha256=W5Md6VM2v6UDGdmyR9fHMN6bTIVT-2FECfmUMZd1BAY,40877
188
188
  megadetector/utils/process_utils.py,sha256=K7-ZW_bJbMgeDBLDhYHMV84urM8H7L6IddQS5z3UgBw,5824
189
189
  megadetector/utils/sas_blob_utils.py,sha256=k76EcMmJc_otrEHcfV2fxAC6fNhxU88FxM3ddSYrsKU,16917
@@ -198,8 +198,8 @@ megadetector/visualization/render_images_with_thumbnails.py,sha256=kgJYW8BsqRO4C
198
198
  megadetector/visualization/visualization_utils.py,sha256=KsQKxANzCqLoLrI5b-5U5LEGhJIKH0YNNJQOym9DE3M,72779
199
199
  megadetector/visualization/visualize_db.py,sha256=tswoWqyAo_S5RW76yvPEEWkUVEzn2NJrX1lfDl2jqY4,24392
200
200
  megadetector/visualization/visualize_detector_output.py,sha256=LY8QgDWpWlXVLZJUskvT29CdkNvIlEsFTk4DC_lS6pk,17052
201
- megadetector-5.0.22.dist-info/LICENSE,sha256=RMa3qq-7Cyk7DdtqRj_bP1oInGFgjyHn9-PZ3PcrqIs,1100
202
- megadetector-5.0.22.dist-info/METADATA,sha256=f8OKhVhNxpXvY_i9sshe9Og8Z7pPA4m5e_MOmIzp-Rs,7632
203
- megadetector-5.0.22.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
204
- megadetector-5.0.22.dist-info/top_level.txt,sha256=wf9DXa8EwiOSZ4G5IPjakSxBPxTDjhYYnqWRfR-zS4M,13
205
- megadetector-5.0.22.dist-info/RECORD,,
201
+ megadetector-5.0.23.dist-info/LICENSE,sha256=RMa3qq-7Cyk7DdtqRj_bP1oInGFgjyHn9-PZ3PcrqIs,1100
202
+ megadetector-5.0.23.dist-info/METADATA,sha256=a1_K-XVWt311oT3LHgl5JfofpgYY0P92zoF9pn5Agto,7491
203
+ megadetector-5.0.23.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
204
+ megadetector-5.0.23.dist-info/top_level.txt,sha256=wf9DXa8EwiOSZ4G5IPjakSxBPxTDjhYYnqWRfR-zS4M,13
205
+ megadetector-5.0.23.dist-info/RECORD,,