megadetector 10.0.4__py3-none-any.whl → 10.0.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- megadetector/data_management/cct_json_utils.py +1 -0
- megadetector/data_management/speciesnet_to_md.py +2 -2
- megadetector/detection/process_video.py +15 -6
- megadetector/detection/video_utils.py +132 -21
- megadetector/postprocessing/classification_postprocessing.py +26 -10
- megadetector/postprocessing/generate_csv_report.py +1 -1
- megadetector/postprocessing/load_api_results.py +1 -1
- megadetector/postprocessing/md_to_wi.py +1 -1
- megadetector/postprocessing/postprocess_batch_results.py +1 -1
- megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1 -1
- megadetector/utils/ct_utils.py +18 -0
- megadetector/utils/wi_platform_utils.py +824 -0
- megadetector/utils/wi_taxonomy_utils.py +1711 -0
- megadetector/visualization/visualize_detector_output.py +1 -1
- megadetector/visualization/visualize_video_output.py +1 -1
- {megadetector-10.0.4.dist-info → megadetector-10.0.6.dist-info}/METADATA +2 -2
- {megadetector-10.0.4.dist-info → megadetector-10.0.6.dist-info}/RECORD +20 -19
- megadetector/utils/wi_utils.py +0 -2674
- {megadetector-10.0.4.dist-info → megadetector-10.0.6.dist-info}/WHEEL +0 -0
- {megadetector-10.0.4.dist-info → megadetector-10.0.6.dist-info}/licenses/LICENSE +0 -0
- {megadetector-10.0.4.dist-info → megadetector-10.0.6.dist-info}/top_level.txt +0 -0
megadetector/utils/wi_utils.py
DELETED
|
@@ -1,2674 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
|
|
3
|
-
wi_utils.py
|
|
4
|
-
|
|
5
|
-
Functions related to working with the WI insights platform, specifically for:
|
|
6
|
-
|
|
7
|
-
* Retrieving images based on .csv downloads
|
|
8
|
-
* Pushing results to the ProcessCVResponse() API (requires an API key)
|
|
9
|
-
* Working with WI taxonomy records and geofencing data
|
|
10
|
-
|
|
11
|
-
"""
|
|
12
|
-
|
|
13
|
-
#%% Imports and constants
|
|
14
|
-
|
|
15
|
-
import os
|
|
16
|
-
import requests
|
|
17
|
-
import json
|
|
18
|
-
import tempfile
|
|
19
|
-
import uuid
|
|
20
|
-
|
|
21
|
-
import numpy as np
|
|
22
|
-
import pandas as pd
|
|
23
|
-
|
|
24
|
-
from copy import deepcopy
|
|
25
|
-
from collections import defaultdict
|
|
26
|
-
from multiprocessing.pool import Pool, ThreadPool
|
|
27
|
-
from functools import partial
|
|
28
|
-
from tqdm import tqdm
|
|
29
|
-
|
|
30
|
-
from megadetector.utils.path_utils import insert_before_extension
|
|
31
|
-
from megadetector.utils.path_utils import find_images
|
|
32
|
-
|
|
33
|
-
from megadetector.utils.ct_utils import split_list_into_n_chunks
|
|
34
|
-
from megadetector.utils.ct_utils import round_floats_in_nested_dict
|
|
35
|
-
from megadetector.utils.ct_utils import is_list_sorted
|
|
36
|
-
from megadetector.utils.ct_utils import invert_dictionary
|
|
37
|
-
from megadetector.utils.ct_utils import sort_list_of_dicts_by_key
|
|
38
|
-
from megadetector.utils.ct_utils import sort_dictionary_by_value
|
|
39
|
-
|
|
40
|
-
from megadetector.postprocessing.validate_batch_results import \
|
|
41
|
-
validate_batch_results, ValidateBatchResultsOptions
|
|
42
|
-
|
|
43
|
-
md_category_id_to_name = {'1':'animal','2':'person','3':'vehicle'}
|
|
44
|
-
md_category_name_to_id = invert_dictionary(md_category_id_to_name)
|
|
45
|
-
|
|
46
|
-
# Only used when pushing results directly to the platform via the API; any detections we want
|
|
47
|
-
# to show in the UI should have at least this confidence value.
|
|
48
|
-
min_md_output_confidence = 0.25
|
|
49
|
-
|
|
50
|
-
# Fields expected to be present in a valid WI result
|
|
51
|
-
wi_result_fields = ['wi_taxon_id','class','order','family','genus','species','common_name']
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
#%% Miscellaneous WI support functions
|
|
55
|
-
|
|
56
|
-
def is_valid_prediction_string(s):
|
|
57
|
-
"""
|
|
58
|
-
Determine whether [s] is a valid WI prediction string. Prediction strings look like:
|
|
59
|
-
|
|
60
|
-
'90d950db-2106-4bd9-a4c1-777604c3eada;mammalia;rodentia;;;;rodent'
|
|
61
|
-
|
|
62
|
-
Args:
|
|
63
|
-
s (str): the string to be tested for validity
|
|
64
|
-
|
|
65
|
-
Returns:
|
|
66
|
-
bool: True if this looks more or less like a WI prediction string
|
|
67
|
-
"""
|
|
68
|
-
|
|
69
|
-
# Note to self... don't get tempted to remove spaces here; spaces are used
|
|
70
|
-
# to indicate subspecies.
|
|
71
|
-
return isinstance(s,str) and (len(s.split(';')) == 7) and (s == s.lower())
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
def is_valid_taxonomy_string(s):
|
|
75
|
-
"""
|
|
76
|
-
Determine whether [s] is a valid 5-token WI taxonomy string. Taxonomy strings
|
|
77
|
-
look like:
|
|
78
|
-
|
|
79
|
-
'mammalia;rodentia;;;;rodent'
|
|
80
|
-
'mammalia;chordata;canidae;canis;lupus dingo'
|
|
81
|
-
|
|
82
|
-
Args:
|
|
83
|
-
s (str): the string to be tested for validity
|
|
84
|
-
|
|
85
|
-
Returns:
|
|
86
|
-
bool: True if this looks more or less like a WI taxonomy string
|
|
87
|
-
"""
|
|
88
|
-
return isinstance(s,str) and (len(s.split(';')) == 5) and (s == s.lower())
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
def clean_taxonomy_string(s):
|
|
92
|
-
"""
|
|
93
|
-
If [s] is a seven-token prediction string, trim the GUID and common name to produce
|
|
94
|
-
a "clean" taxonomy string. Else if [s] is a five-token string, return it. Else error.
|
|
95
|
-
|
|
96
|
-
Args:
|
|
97
|
-
s (str): the seven- or five-token taxonomy/prediction string to clean
|
|
98
|
-
|
|
99
|
-
Returns:
|
|
100
|
-
str: the five-token taxonomy string
|
|
101
|
-
"""
|
|
102
|
-
|
|
103
|
-
if is_valid_taxonomy_string(s):
|
|
104
|
-
return s
|
|
105
|
-
elif is_valid_prediction_string(s):
|
|
106
|
-
tokens = s.split(';')
|
|
107
|
-
assert len(tokens) == 7
|
|
108
|
-
return ';'.join(tokens[1:-1])
|
|
109
|
-
else:
|
|
110
|
-
raise ValueError('Invalid taxonomy string')
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
taxonomy_level_names = \
|
|
114
|
-
['non-taxonomic','kingdom','phylum','class','order','family','genus','species','subspecies']
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
def taxonomy_level_to_string(k):
|
|
118
|
-
"""
|
|
119
|
-
Maps taxonomy level indices (0 for kindgom, 1 for phylum, etc.) to strings.
|
|
120
|
-
|
|
121
|
-
Args:
|
|
122
|
-
k (int): taxonomy level index
|
|
123
|
-
|
|
124
|
-
Returns:
|
|
125
|
-
str: taxonomy level string
|
|
126
|
-
"""
|
|
127
|
-
|
|
128
|
-
assert k >= 0 and k < len(taxonomy_level_names), \
|
|
129
|
-
'Illegal taxonomy level index {}'.format(k)
|
|
130
|
-
|
|
131
|
-
return taxonomy_level_names[k]
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
def taxonomy_level_string_to_index(s):
|
|
135
|
-
"""
|
|
136
|
-
Maps strings ('kingdom', 'species', etc.) to level indices.
|
|
137
|
-
|
|
138
|
-
Args:
|
|
139
|
-
s (str): taxonomy level string
|
|
140
|
-
|
|
141
|
-
Returns:
|
|
142
|
-
int: taxonomy level index
|
|
143
|
-
"""
|
|
144
|
-
|
|
145
|
-
assert s in taxonomy_level_names, 'Unrecognized taxonomy level string {}'.format(s)
|
|
146
|
-
return taxonomy_level_names.index(s)
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
def taxonomy_level_index(s):
|
|
150
|
-
"""
|
|
151
|
-
Returns the taxonomy level up to which [s] is defined (0 for non-taxnomic, 1 for kingdom,
|
|
152
|
-
2 for phylum, etc. Empty strings and non-taxonomic strings are treated as level 0. 1 and 2
|
|
153
|
-
will never be returned; "animal" doesn't look like other taxonomic strings, so here we treat
|
|
154
|
-
it as non-taxonomic.
|
|
155
|
-
|
|
156
|
-
Args:
|
|
157
|
-
s (str): 5-token or 7-token taxonomy string
|
|
158
|
-
|
|
159
|
-
Returns:
|
|
160
|
-
int: taxonomy level
|
|
161
|
-
"""
|
|
162
|
-
|
|
163
|
-
if s in non_taxonomic_prediction_strings or s in non_taxonomic_prediction_short_strings:
|
|
164
|
-
return 0
|
|
165
|
-
|
|
166
|
-
tokens = s.split(';')
|
|
167
|
-
assert len(tokens) in (5,7)
|
|
168
|
-
|
|
169
|
-
if len(tokens) == 7:
|
|
170
|
-
tokens = tokens[1:-1]
|
|
171
|
-
|
|
172
|
-
if len(tokens[0]) == 0:
|
|
173
|
-
return 0
|
|
174
|
-
# WI taxonomy strings start at class, so we'll never return 1 (kingdom) or 2 (phylum)
|
|
175
|
-
elif len(tokens[1]) == 0:
|
|
176
|
-
return 3
|
|
177
|
-
elif len(tokens[2]) == 0:
|
|
178
|
-
return 4
|
|
179
|
-
elif len(tokens[3]) == 0:
|
|
180
|
-
return 5
|
|
181
|
-
elif len(tokens[4]) == 0:
|
|
182
|
-
return 6
|
|
183
|
-
# Subspecies are delimited with a space
|
|
184
|
-
elif ' ' not in tokens[4]:
|
|
185
|
-
return 7
|
|
186
|
-
else:
|
|
187
|
-
return 8
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
def wi_result_to_prediction_string(r):
|
|
191
|
-
"""
|
|
192
|
-
Convert the dict [r] - typically loaded from a row in a downloaded .csv file - to
|
|
193
|
-
a valid prediction string, e.g.:
|
|
194
|
-
|
|
195
|
-
1f689929-883d-4dae-958c-3d57ab5b6c16;;;;;;animal
|
|
196
|
-
90d950db-2106-4bd9-a4c1-777604c3eada;mammalia;rodentia;;;;rodent
|
|
197
|
-
|
|
198
|
-
Args:
|
|
199
|
-
r (dict): dict containing WI prediction information, with at least the fields
|
|
200
|
-
specified in wi_result_fields.
|
|
201
|
-
|
|
202
|
-
Returns:
|
|
203
|
-
str: the result in [r], as a semicolon-delimited prediction string
|
|
204
|
-
"""
|
|
205
|
-
|
|
206
|
-
values = []
|
|
207
|
-
for field in wi_result_fields:
|
|
208
|
-
if isinstance(r[field],str):
|
|
209
|
-
values.append(r[field].lower())
|
|
210
|
-
else:
|
|
211
|
-
assert isinstance(r[field],float) and np.isnan(r[field])
|
|
212
|
-
values.append('')
|
|
213
|
-
s = ';'.join(values)
|
|
214
|
-
assert is_valid_prediction_string(s)
|
|
215
|
-
return s
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
def compare_values(v0,v1):
|
|
219
|
-
"""
|
|
220
|
-
Utility function for comparing two values when we want to return True if both
|
|
221
|
-
values are NaN.
|
|
222
|
-
|
|
223
|
-
Args:
|
|
224
|
-
v0 (object): the first value to compare
|
|
225
|
-
v1 (object): the second value to compare
|
|
226
|
-
|
|
227
|
-
Returns:
|
|
228
|
-
bool: True if v0 == v1, or if both v0 and v1 are NaN
|
|
229
|
-
"""
|
|
230
|
-
|
|
231
|
-
if isinstance(v0,float) and isinstance(v1,float) and np.isnan(v0) and np.isnan(v1):
|
|
232
|
-
return True
|
|
233
|
-
return v0 == v1
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
def record_is_unidentified(record):
|
|
237
|
-
"""
|
|
238
|
-
A record is considered "unidentified" if the "identified by" field is either NaN or "computer vision"
|
|
239
|
-
|
|
240
|
-
Args:
|
|
241
|
-
record (dict): dict representing a WI result loaded from a .csv file, with at least the
|
|
242
|
-
field "identified_by"
|
|
243
|
-
|
|
244
|
-
Returns:
|
|
245
|
-
bool: True if the "identified_by" field is either NaN or a string indicating that this
|
|
246
|
-
record has not yet been human-reviewed.
|
|
247
|
-
"""
|
|
248
|
-
|
|
249
|
-
identified_by = record['identified_by']
|
|
250
|
-
assert isinstance(identified_by,float) or isinstance(identified_by,str)
|
|
251
|
-
if isinstance(identified_by,float):
|
|
252
|
-
assert np.isnan(identified_by)
|
|
253
|
-
return True
|
|
254
|
-
else:
|
|
255
|
-
return identified_by == 'Computer vision'
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
def record_lists_are_identical(records_0,records_1,verbose=False):
|
|
259
|
-
"""
|
|
260
|
-
Takes two lists of records in the form returned by read_images_from_download_bundle and
|
|
261
|
-
determines whether they are the same.
|
|
262
|
-
|
|
263
|
-
Args:
|
|
264
|
-
records_0 (list of dict): the first list of records to compare
|
|
265
|
-
records_1 (list of dict): the second list of records to compare
|
|
266
|
-
verbose (bool, optional): enable additional debug output
|
|
267
|
-
|
|
268
|
-
Returns:
|
|
269
|
-
bool: True if the two lists are identical
|
|
270
|
-
"""
|
|
271
|
-
|
|
272
|
-
if len(records_0) != len(records_1):
|
|
273
|
-
return False
|
|
274
|
-
|
|
275
|
-
# i_record = 0; record_0 = records_0[i_record]
|
|
276
|
-
for i_record,record_0 in enumerate(records_0):
|
|
277
|
-
record_1 = records_1[i_record]
|
|
278
|
-
assert set(record_0.keys()) == set(record_1.keys())
|
|
279
|
-
for k in record_0.keys():
|
|
280
|
-
if not compare_values(record_0[k],record_1[k]):
|
|
281
|
-
if verbose:
|
|
282
|
-
print('Image ID: {} ({})\nRecord 0/{}: {}\nRecord 1/{}: {}'.format(
|
|
283
|
-
record_0['image_id'],record_1['image_id'],
|
|
284
|
-
k,record_0[k],k,record_1[k]))
|
|
285
|
-
return False
|
|
286
|
-
|
|
287
|
-
return True
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
#%% Functions for managing WI downloads
|
|
291
|
-
|
|
292
|
-
def read_sequences_from_download_bundle(download_folder):
|
|
293
|
-
"""
|
|
294
|
-
Reads sequences.csv from [download_folder], returning a list of dicts. This is a
|
|
295
|
-
thin wrapper around pd.read_csv, it's just here for future-proofing.
|
|
296
|
-
|
|
297
|
-
Args:
|
|
298
|
-
download_folder (str): a folder containing exactly one file called sequences.csv, typically
|
|
299
|
-
representing a Wildlife Insights download bundle.
|
|
300
|
-
|
|
301
|
-
Returns:
|
|
302
|
-
list of dict: a direct conversion of the .csv file to a list of dicts
|
|
303
|
-
"""
|
|
304
|
-
|
|
305
|
-
print('Reading sequences from {}'.format(download_folder))
|
|
306
|
-
|
|
307
|
-
sequence_list_files = os.listdir(download_folder)
|
|
308
|
-
sequence_list_files = \
|
|
309
|
-
[fn for fn in sequence_list_files if fn == 'sequences.csv']
|
|
310
|
-
assert len(sequence_list_files) == 1, \
|
|
311
|
-
'Could not find sequences.csv in {}'.format(download_folder)
|
|
312
|
-
|
|
313
|
-
sequence_list_file = os.path.join(download_folder,sequence_list_files[0])
|
|
314
|
-
|
|
315
|
-
df = pd.read_csv(sequence_list_file)
|
|
316
|
-
sequence_records = df.to_dict('records')
|
|
317
|
-
return sequence_records
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
def read_images_from_download_bundle(download_folder):
|
|
321
|
-
"""
|
|
322
|
-
Reads all images.csv files from [download_folder], returns a dict mapping image IDs
|
|
323
|
-
to a list of dicts that describe each image. It's a list of dicts rather than a single dict
|
|
324
|
-
because images may appear more than once.
|
|
325
|
-
|
|
326
|
-
Args:
|
|
327
|
-
download_folder (str): a folder containing one or more images.csv files, typically
|
|
328
|
-
representing a Wildlife Insights download bundle.
|
|
329
|
-
|
|
330
|
-
Returns:
|
|
331
|
-
dict: Maps image GUIDs to dicts with at least the following fields:
|
|
332
|
-
* project_id (int)
|
|
333
|
-
* deployment_id (str)
|
|
334
|
-
* image_id (str, should match the key)
|
|
335
|
-
* filename (str, the filename without path at the time of upload)
|
|
336
|
-
* location (str, starting with gs://)
|
|
337
|
-
|
|
338
|
-
May also contain classification fields: wi_taxon_id (str), species, etc.
|
|
339
|
-
"""
|
|
340
|
-
|
|
341
|
-
print('Reading images from {}'.format(download_folder))
|
|
342
|
-
|
|
343
|
-
##%% Find lists of images
|
|
344
|
-
|
|
345
|
-
image_list_files = os.listdir(download_folder)
|
|
346
|
-
image_list_files = \
|
|
347
|
-
[fn for fn in image_list_files if fn.startswith('images_') and fn.endswith('.csv')]
|
|
348
|
-
image_list_files = \
|
|
349
|
-
[os.path.join(download_folder,fn) for fn in image_list_files]
|
|
350
|
-
print('Found {} image list files'.format(len(image_list_files)))
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
##%% Read lists of images by deployment
|
|
354
|
-
|
|
355
|
-
image_id_to_image_records = defaultdict(list)
|
|
356
|
-
|
|
357
|
-
# image_list_file = image_list_files[0]
|
|
358
|
-
for image_list_file in image_list_files:
|
|
359
|
-
|
|
360
|
-
print('Reading images from list file {}'.format(
|
|
361
|
-
os.path.basename(image_list_file)))
|
|
362
|
-
|
|
363
|
-
df = pd.read_csv(image_list_file)
|
|
364
|
-
|
|
365
|
-
# i_row = 0; row = df.iloc[i_row]
|
|
366
|
-
for i_row,row in tqdm(df.iterrows(),total=len(df)):
|
|
367
|
-
|
|
368
|
-
row_dict = row.to_dict()
|
|
369
|
-
image_id = row_dict['image_id']
|
|
370
|
-
image_id_to_image_records[image_id].append(row_dict)
|
|
371
|
-
|
|
372
|
-
# ...for each image
|
|
373
|
-
|
|
374
|
-
# ...for each list file
|
|
375
|
-
|
|
376
|
-
deployment_ids = set()
|
|
377
|
-
for image_id in image_id_to_image_records:
|
|
378
|
-
image_records = image_id_to_image_records[image_id]
|
|
379
|
-
for image_record in image_records:
|
|
380
|
-
deployment_ids.add(image_record['deployment_id'])
|
|
381
|
-
|
|
382
|
-
print('Found {} rows in {} deployments'.format(
|
|
383
|
-
len(image_id_to_image_records),
|
|
384
|
-
len(deployment_ids)))
|
|
385
|
-
|
|
386
|
-
return image_id_to_image_records
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
def find_images_in_identify_tab(download_folder_with_identify,download_folder_excluding_identify):
|
|
390
|
-
"""
|
|
391
|
-
Based on extracted download packages with and without the "exclude images in 'identify' tab
|
|
392
|
-
checkbox" checked, figure out which images are in the identify tab. Returns a list of dicts (one
|
|
393
|
-
per image).
|
|
394
|
-
|
|
395
|
-
Args:
|
|
396
|
-
download_folder_with_identify (str): the folder containing the download bundle that
|
|
397
|
-
includes images from the "identify" tab
|
|
398
|
-
download_folder_excluding_identify (str): the folder containing the download bundle that
|
|
399
|
-
excludes images from the "identify" tab
|
|
400
|
-
|
|
401
|
-
Returns:
|
|
402
|
-
list of dict: list of image records that are present in the identify tab
|
|
403
|
-
"""
|
|
404
|
-
|
|
405
|
-
##%% Read data (~30 seconds)
|
|
406
|
-
|
|
407
|
-
image_id_to_image_records_with_identify = \
|
|
408
|
-
read_images_from_download_bundle(download_folder_with_identify)
|
|
409
|
-
image_id_to_image_records_excluding_identify = \
|
|
410
|
-
read_images_from_download_bundle(download_folder_excluding_identify)
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
##%% Find images that have not been identified
|
|
414
|
-
|
|
415
|
-
all_image_ids_with_identify = set(image_id_to_image_records_with_identify.keys())
|
|
416
|
-
all_image_ids_excluding_identify = set(image_id_to_image_records_excluding_identify.keys())
|
|
417
|
-
|
|
418
|
-
image_ids_in_identify_tab = all_image_ids_with_identify.difference(all_image_ids_excluding_identify)
|
|
419
|
-
|
|
420
|
-
assert len(image_ids_in_identify_tab) == \
|
|
421
|
-
len(all_image_ids_with_identify) - len(all_image_ids_excluding_identify)
|
|
422
|
-
|
|
423
|
-
print('Found {} images with identify, {} in identify tab, {} excluding'.format(
|
|
424
|
-
len(all_image_ids_with_identify),
|
|
425
|
-
len(image_ids_in_identify_tab),
|
|
426
|
-
len(all_image_ids_excluding_identify)))
|
|
427
|
-
|
|
428
|
-
image_records_in_identify_tab = []
|
|
429
|
-
deployment_ids_for_downloaded_images = set()
|
|
430
|
-
|
|
431
|
-
for image_id in image_ids_in_identify_tab:
|
|
432
|
-
image_records_this_image = image_id_to_image_records_with_identify[image_id]
|
|
433
|
-
assert len(image_records_this_image) > 0
|
|
434
|
-
image_records_in_identify_tab.extend(image_records_this_image)
|
|
435
|
-
for image_record in image_records_this_image:
|
|
436
|
-
deployment_ids_for_downloaded_images.add(image_record['deployment_id'])
|
|
437
|
-
|
|
438
|
-
print('Found {} records for {} unique images in {} deployments'.format(
|
|
439
|
-
len(image_records_in_identify_tab),
|
|
440
|
-
len(image_ids_in_identify_tab),
|
|
441
|
-
len(deployment_ids_for_downloaded_images)))
|
|
442
|
-
|
|
443
|
-
return image_records_in_identify_tab
|
|
444
|
-
|
|
445
|
-
# ...def find_images_in_identify_tab(...)
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
def write_download_commands(image_records_to_download,
|
|
449
|
-
download_dir_base,
|
|
450
|
-
force_download=False,
|
|
451
|
-
n_download_workers=25,
|
|
452
|
-
download_command_file_base=None):
|
|
453
|
-
"""
|
|
454
|
-
Given a list of dicts with at least the field 'location' (a gs:// URL), prepare a set of "gcloud
|
|
455
|
-
storage" commands to download images, and write those to a series of .sh scripts, along with one
|
|
456
|
-
.sh script that runs all the others and blocks.
|
|
457
|
-
|
|
458
|
-
gcloud commands will use relative paths.
|
|
459
|
-
|
|
460
|
-
image_records_to_download can also be a dict mapping IDs to lists of records.
|
|
461
|
-
|
|
462
|
-
Args:
|
|
463
|
-
image_records_to_download (list of dict): list of dicts with at least the field 'location'
|
|
464
|
-
download_dir_base (str): local destination folder
|
|
465
|
-
force_download (bool, optional): include gs commands even if the target file exists
|
|
466
|
-
n_download_workers (int, optional): number of scripts to write (that's our hacky way
|
|
467
|
-
of controlling parallelization)
|
|
468
|
-
download_command_file_base (str, optional): path of the .sh script we should write, defaults
|
|
469
|
-
to "download_wi_images.sh" in the destination folder. Individual worker scripts will
|
|
470
|
-
have a number added, e.g. download_wi_images_00.sh.
|
|
471
|
-
"""
|
|
472
|
-
|
|
473
|
-
if isinstance(image_records_to_download,dict):
|
|
474
|
-
|
|
475
|
-
all_image_records = []
|
|
476
|
-
for k in image_records_to_download:
|
|
477
|
-
records_this_image = image_records_to_download[k]
|
|
478
|
-
all_image_records.extend(records_this_image)
|
|
479
|
-
return write_download_commands(all_image_records,
|
|
480
|
-
download_dir_base=download_dir_base,
|
|
481
|
-
force_download=force_download,
|
|
482
|
-
n_download_workers=n_download_workers,
|
|
483
|
-
download_command_file_base=download_command_file_base)
|
|
484
|
-
|
|
485
|
-
##%% Make list of gcloud storage commands
|
|
486
|
-
|
|
487
|
-
if download_command_file_base is None:
|
|
488
|
-
download_command_file_base = os.path.join(download_dir_base,'download_wi_images.sh')
|
|
489
|
-
|
|
490
|
-
commands = []
|
|
491
|
-
skipped_urls = []
|
|
492
|
-
downloaded_urls = set()
|
|
493
|
-
|
|
494
|
-
# image_record = image_records_to_download[0]
|
|
495
|
-
for image_record in tqdm(image_records_to_download):
|
|
496
|
-
|
|
497
|
-
url = image_record['location']
|
|
498
|
-
if url in downloaded_urls:
|
|
499
|
-
continue
|
|
500
|
-
|
|
501
|
-
assert url.startswith('gs://')
|
|
502
|
-
|
|
503
|
-
relative_path = url.replace('gs://','')
|
|
504
|
-
abs_path = os.path.join(download_dir_base,relative_path)
|
|
505
|
-
|
|
506
|
-
# Skip files that already exist
|
|
507
|
-
if (not force_download) and (os.path.isfile(abs_path)):
|
|
508
|
-
skipped_urls.append(url)
|
|
509
|
-
continue
|
|
510
|
-
|
|
511
|
-
# command = 'gsutil cp "{}" "./{}"'.format(url,relative_path)
|
|
512
|
-
command = 'gcloud storage cp --no-clobber "{}" "./{}"'.format(url,relative_path)
|
|
513
|
-
commands.append(command)
|
|
514
|
-
|
|
515
|
-
print('Generated {} commands for {} image records'.format(
|
|
516
|
-
len(commands),len(image_records_to_download)))
|
|
517
|
-
|
|
518
|
-
print('Skipped {} URLs'.format(len(skipped_urls)))
|
|
519
|
-
|
|
520
|
-
|
|
521
|
-
##%% Write those commands out to n .sh files
|
|
522
|
-
|
|
523
|
-
commands_by_script = split_list_into_n_chunks(commands,n_download_workers)
|
|
524
|
-
|
|
525
|
-
local_download_commands = []
|
|
526
|
-
|
|
527
|
-
output_dir = os.path.dirname(download_command_file_base)
|
|
528
|
-
os.makedirs(output_dir,exist_ok=True)
|
|
529
|
-
|
|
530
|
-
# Write out the download script for each chunk
|
|
531
|
-
# i_script = 0
|
|
532
|
-
for i_script in range(0,n_download_workers):
|
|
533
|
-
download_command_file = insert_before_extension(download_command_file_base,str(i_script).zfill(2))
|
|
534
|
-
local_download_commands.append(os.path.basename(download_command_file))
|
|
535
|
-
with open(download_command_file,'w',newline='\n') as f:
|
|
536
|
-
for command in commands_by_script[i_script]:
|
|
537
|
-
f.write(command + '\n')
|
|
538
|
-
|
|
539
|
-
# Write out the main download script
|
|
540
|
-
with open(download_command_file_base,'w',newline='\n') as f:
|
|
541
|
-
for local_download_command in local_download_commands:
|
|
542
|
-
f.write('./' + local_download_command + ' &\n')
|
|
543
|
-
f.write('wait\n')
|
|
544
|
-
f.write('echo done\n')
|
|
545
|
-
|
|
546
|
-
# ...def write_download_commands(...)
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
#%% Functions and constants related to pushing results to the DB
|
|
550
|
-
|
|
551
|
-
# Sample payload for validation
|
|
552
|
-
sample_update_payload = {
|
|
553
|
-
|
|
554
|
-
"predictions": [
|
|
555
|
-
{
|
|
556
|
-
"project_id": "1234",
|
|
557
|
-
"ignore_data_file_checks": True,
|
|
558
|
-
"prediction": "f1856211-cfb7-4a5b-9158-c0f72fd09ee6;;;;;;blank",
|
|
559
|
-
"prediction_score": 0.81218224763870239,
|
|
560
|
-
"classifications": {
|
|
561
|
-
"classes": [
|
|
562
|
-
"f1856211-cfb7-4a5b-9158-c0f72fd09ee6;;;;;;blank",
|
|
563
|
-
"b1352069-a39c-4a84-a949-60044271c0c1;aves;;;;;bird",
|
|
564
|
-
"90d950db-2106-4bd9-a4c1-777604c3eada;mammalia;rodentia;;;;rodent",
|
|
565
|
-
"f2d233e3-80e3-433d-9687-e29ecc7a467a;mammalia;;;;;mammal",
|
|
566
|
-
"ac068717-6079-4aec-a5ab-99e8d14da40b;mammalia;rodentia;sciuridae;dremomys;rufigenis;red-cheeked squirrel"
|
|
567
|
-
],
|
|
568
|
-
"scores": [
|
|
569
|
-
0.81218224763870239,
|
|
570
|
-
0.1096673980355263,
|
|
571
|
-
0.02707692421972752,
|
|
572
|
-
0.00771023565903306,
|
|
573
|
-
0.0049269795417785636
|
|
574
|
-
]
|
|
575
|
-
},
|
|
576
|
-
"detections": [
|
|
577
|
-
{
|
|
578
|
-
"category": "1",
|
|
579
|
-
"label": "animal",
|
|
580
|
-
"conf": 0.181,
|
|
581
|
-
"bbox": [
|
|
582
|
-
0.02421,
|
|
583
|
-
0.35823999999999989,
|
|
584
|
-
0.051560000000000009,
|
|
585
|
-
0.070826666666666746
|
|
586
|
-
]
|
|
587
|
-
}
|
|
588
|
-
],
|
|
589
|
-
"model_version": "3.1.2",
|
|
590
|
-
"prediction_source": "manual_update",
|
|
591
|
-
"data_file_id": "2ea1d2b2-7f84-43f9-af1f-8be0e69c7015"
|
|
592
|
-
}
|
|
593
|
-
]
|
|
594
|
-
}
|
|
595
|
-
|
|
596
|
-
blank_prediction_string = 'f1856211-cfb7-4a5b-9158-c0f72fd09ee6;;;;;;blank'
|
|
597
|
-
no_cv_result_prediction_string = 'f2efdae9-efb8-48fb-8a91-eccf79ab4ffb;no cv result;no cv result;no cv result;no cv result;no cv result;no cv result'
|
|
598
|
-
animal_prediction_string = '1f689929-883d-4dae-958c-3d57ab5b6c16;;;;;;animal'
|
|
599
|
-
human_prediction_string = '990ae9dd-7a59-4344-afcb-1b7b21368000;mammalia;primates;hominidae;homo;sapiens;human'
|
|
600
|
-
vehicle_prediction_string = 'e2895ed5-780b-48f6-8a11-9e27cb594511;;;;;;vehicle'
|
|
601
|
-
|
|
602
|
-
non_taxonomic_prediction_strings = [blank_prediction_string,
|
|
603
|
-
no_cv_result_prediction_string,
|
|
604
|
-
animal_prediction_string,
|
|
605
|
-
vehicle_prediction_string]
|
|
606
|
-
|
|
607
|
-
non_taxonomic_prediction_short_strings = [';'.join(s.split(';')[1:-1]) for s in \
|
|
608
|
-
non_taxonomic_prediction_strings]
|
|
609
|
-
|
|
610
|
-
|
|
611
|
-
process_cv_response_url = 'https://placeholder'
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
def prepare_data_update_auth_headers(auth_token_file):
|
|
615
|
-
"""
|
|
616
|
-
Read the authorization token from a text file and prepare http headers.
|
|
617
|
-
|
|
618
|
-
Args:
|
|
619
|
-
auth_token_file (str): a single-line text file containing a write-enabled
|
|
620
|
-
API token.
|
|
621
|
-
|
|
622
|
-
Returns:
|
|
623
|
-
dict: http headers, with fields 'Authorization' and 'Content-Type'
|
|
624
|
-
"""
|
|
625
|
-
|
|
626
|
-
with open(auth_token_file,'r') as f:
|
|
627
|
-
auth_token = f.read()
|
|
628
|
-
|
|
629
|
-
headers = {
|
|
630
|
-
'Authorization': 'Bearer ' + auth_token,
|
|
631
|
-
'Content-Type': 'application/json'
|
|
632
|
-
}
|
|
633
|
-
|
|
634
|
-
return headers
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
def push_results_for_images(payload,
|
|
638
|
-
headers,
|
|
639
|
-
url=process_cv_response_url,
|
|
640
|
-
verbose=False):
|
|
641
|
-
"""
|
|
642
|
-
Push results for one or more images represented in [payload] to the
|
|
643
|
-
process_cv_response API, to write to the WI DB.
|
|
644
|
-
|
|
645
|
-
Args:
|
|
646
|
-
payload (dict): payload to upload to the API
|
|
647
|
-
headers (dict): authorization headers, see prepare_data_update_auth_headers
|
|
648
|
-
url (str, optional): API URL
|
|
649
|
-
verbose (bool, optional): enable additional debug output
|
|
650
|
-
|
|
651
|
-
Return:
|
|
652
|
-
int: response status code
|
|
653
|
-
"""
|
|
654
|
-
|
|
655
|
-
if verbose:
|
|
656
|
-
print('Sending header {} to URL {}'.format(
|
|
657
|
-
headers,url))
|
|
658
|
-
|
|
659
|
-
response = requests.post(url, headers=headers, json=payload)
|
|
660
|
-
|
|
661
|
-
# Check the response status code
|
|
662
|
-
if response.status_code in (200,201):
|
|
663
|
-
if verbose:
|
|
664
|
-
print('Successfully pushed results for {} images'.format(len(payload['predictions'])))
|
|
665
|
-
print(response.headers)
|
|
666
|
-
print(str(response))
|
|
667
|
-
else:
|
|
668
|
-
print(f'Error: {response.status_code} {response.text}')
|
|
669
|
-
|
|
670
|
-
return response.status_code
|
|
671
|
-
|
|
672
|
-
|
|
673
|
-
def parallel_push_results_for_images(payloads,
|
|
674
|
-
headers,
|
|
675
|
-
url=process_cv_response_url,
|
|
676
|
-
verbose=False,
|
|
677
|
-
pool_type='thread',
|
|
678
|
-
n_workers=10):
|
|
679
|
-
"""
|
|
680
|
-
Push results for the list of payloads in [payloads] to the process_cv_response API,
|
|
681
|
-
parallelized over multiple workers.
|
|
682
|
-
|
|
683
|
-
Args:
|
|
684
|
-
payloads (list of dict): payloads to upload to the API
|
|
685
|
-
headers (dict): authorization headers, see prepare_data_update_auth_headers
|
|
686
|
-
url (str, optional): API URL
|
|
687
|
-
verbose (bool, optional): enable additional debug output
|
|
688
|
-
pool_type (str, optional): 'thread' or 'process'
|
|
689
|
-
n_workers (int, optional): number of parallel workers
|
|
690
|
-
|
|
691
|
-
Returns:
|
|
692
|
-
list of int: list of http response codes, one per payload
|
|
693
|
-
"""
|
|
694
|
-
|
|
695
|
-
if n_workers == 1:
|
|
696
|
-
|
|
697
|
-
results = []
|
|
698
|
-
for payload in payloads:
|
|
699
|
-
results.append(push_results_for_images(payload,
|
|
700
|
-
headers=headers,
|
|
701
|
-
url=url,
|
|
702
|
-
verbose=verbose))
|
|
703
|
-
return results
|
|
704
|
-
|
|
705
|
-
else:
|
|
706
|
-
|
|
707
|
-
assert pool_type in ('thread','process')
|
|
708
|
-
|
|
709
|
-
try:
|
|
710
|
-
if pool_type == 'thread':
|
|
711
|
-
pool_string = 'thread'
|
|
712
|
-
pool = ThreadPool(n_workers)
|
|
713
|
-
else:
|
|
714
|
-
pool_string = 'process'
|
|
715
|
-
pool = Pool(n_workers)
|
|
716
|
-
|
|
717
|
-
print('Created a {} pool of {} workers'.format(
|
|
718
|
-
pool_string,n_workers))
|
|
719
|
-
|
|
720
|
-
results = list(tqdm(pool.imap(
|
|
721
|
-
partial(push_results_for_images,headers=headers,url=url,verbose=verbose),payloads),
|
|
722
|
-
total=len(payloads)))
|
|
723
|
-
finally:
|
|
724
|
-
pool.close()
|
|
725
|
-
pool.join()
|
|
726
|
-
print("Pool closed and joined for WI result uploads")
|
|
727
|
-
|
|
728
|
-
assert len(results) == len(payloads)
|
|
729
|
-
return results
|
|
730
|
-
|
|
731
|
-
|
|
732
|
-
def generate_payload_with_replacement_detections(wi_result,
|
|
733
|
-
detections,
|
|
734
|
-
prediction_score=0.9,
|
|
735
|
-
model_version='3.1.2',
|
|
736
|
-
prediction_source='manual_update'):
|
|
737
|
-
"""
|
|
738
|
-
Generate a payload for a single image that keeps the classifications from
|
|
739
|
-
[wi_result], but replaces the detections with the MD-formatted list [detections].
|
|
740
|
-
|
|
741
|
-
Args:
|
|
742
|
-
wi_result (dict): dict representing a WI prediction result, with at least the
|
|
743
|
-
fields in the constant wi_result_fields
|
|
744
|
-
detections (list): list of WI-formatted detection dicts (with fields ['conf'] and ['category'])
|
|
745
|
-
prediction_score (float, optional): confidence value to use for the combined prediction
|
|
746
|
-
model_version (str, optional): model version string to include in the payload
|
|
747
|
-
prediction_source (str, optional): prediction source string to include in the payload
|
|
748
|
-
|
|
749
|
-
Returns:
|
|
750
|
-
dict: dictionary suitable for uploading via push_results_for_images
|
|
751
|
-
"""
|
|
752
|
-
|
|
753
|
-
payload_detections = []
|
|
754
|
-
|
|
755
|
-
# detection = detections[0]
|
|
756
|
-
for detection in detections:
|
|
757
|
-
detection_out = detection.copy()
|
|
758
|
-
detection_out['label'] = md_category_id_to_name[detection['category']]
|
|
759
|
-
if detection_out['conf'] < min_md_output_confidence:
|
|
760
|
-
detection_out['conf'] = min_md_output_confidence
|
|
761
|
-
payload_detections.append(detection_out)
|
|
762
|
-
|
|
763
|
-
prediction_string = wi_result_to_prediction_string(wi_result)
|
|
764
|
-
|
|
765
|
-
prediction = {}
|
|
766
|
-
prediction['ignore_data_file_checks'] = True
|
|
767
|
-
prediction['prediction'] = prediction_string
|
|
768
|
-
prediction['prediction_score'] = prediction_score
|
|
769
|
-
|
|
770
|
-
classifications = {}
|
|
771
|
-
classifications['classes'] = [prediction_string]
|
|
772
|
-
classifications['scores'] = [prediction_score]
|
|
773
|
-
|
|
774
|
-
prediction['classifications'] = classifications
|
|
775
|
-
prediction['detections'] = payload_detections
|
|
776
|
-
prediction['model_version'] = model_version
|
|
777
|
-
prediction['prediction_source'] = prediction_source
|
|
778
|
-
prediction['data_file_id'] = wi_result['image_id']
|
|
779
|
-
prediction['project_id'] = str(wi_result['project_id'])
|
|
780
|
-
payload = {}
|
|
781
|
-
payload['predictions'] = [prediction]
|
|
782
|
-
|
|
783
|
-
return payload
|
|
784
|
-
|
|
785
|
-
|
|
786
|
-
def generate_blank_prediction_payload(data_file_id,
|
|
787
|
-
project_id,
|
|
788
|
-
blank_confidence=0.9,
|
|
789
|
-
model_version='3.1.2',
|
|
790
|
-
prediction_source='manual_update'):
|
|
791
|
-
"""
|
|
792
|
-
Generate a payload that will set a single image to the blank classification, with
|
|
793
|
-
no detections. Suitable for upload via push_results_for_images.
|
|
794
|
-
|
|
795
|
-
Args:
|
|
796
|
-
data_file_id (str): unique identifier for this image used in the WI DB
|
|
797
|
-
project_id (int): WI project ID
|
|
798
|
-
blank_confidence (float, optional): confidence value to associate with this
|
|
799
|
-
prediction
|
|
800
|
-
model_version (str, optional): model version string to include in the payload
|
|
801
|
-
prediction_source (str, optional): prediction source string to include in the payload
|
|
802
|
-
|
|
803
|
-
Returns:
|
|
804
|
-
dict: dictionary suitable for uploading via push_results_for_images
|
|
805
|
-
"""
|
|
806
|
-
|
|
807
|
-
prediction = {}
|
|
808
|
-
prediction['ignore_data_file_checks'] = True
|
|
809
|
-
prediction['prediction'] = blank_prediction_string
|
|
810
|
-
prediction['prediction_score'] = blank_confidence
|
|
811
|
-
prediction['classifications'] = {}
|
|
812
|
-
prediction['classifications']['classes'] = [blank_prediction_string]
|
|
813
|
-
prediction['classifications']['scores'] = [blank_confidence]
|
|
814
|
-
prediction['detections'] = []
|
|
815
|
-
prediction['model_version'] = model_version
|
|
816
|
-
prediction['prediction_source'] = prediction_source
|
|
817
|
-
prediction['data_file_id'] = data_file_id
|
|
818
|
-
prediction['project_id'] = project_id
|
|
819
|
-
payload = {}
|
|
820
|
-
payload['predictions'] = [prediction]
|
|
821
|
-
|
|
822
|
-
return payload
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
def generate_no_cv_result_payload(data_file_id,
|
|
826
|
-
project_id,
|
|
827
|
-
no_cv_confidence=0.9,
|
|
828
|
-
model_version='3.1.2',
|
|
829
|
-
prediction_source='manual_update'):
|
|
830
|
-
"""
|
|
831
|
-
Generate a payload that will set a single image to the blank classification, with
|
|
832
|
-
no detections. Suitable for uploading via push_results_for_images.
|
|
833
|
-
|
|
834
|
-
Args:
|
|
835
|
-
data_file_id (str): unique identifier for this image used in the WI DB
|
|
836
|
-
project_id (int): WI project ID
|
|
837
|
-
no_cv_confidence (float, optional): confidence value to associate with this
|
|
838
|
-
prediction
|
|
839
|
-
model_version (str, optional): model version string to include in the payload
|
|
840
|
-
prediction_source (str, optional): prediction source string to include in the payload
|
|
841
|
-
|
|
842
|
-
Returns:
|
|
843
|
-
dict: dictionary suitable for uploading via push_results_for_images
|
|
844
|
-
"""
|
|
845
|
-
|
|
846
|
-
prediction = {}
|
|
847
|
-
prediction['ignore_data_file_checks'] = True
|
|
848
|
-
prediction['prediction'] = no_cv_result_prediction_string
|
|
849
|
-
prediction['prediction_score'] = no_cv_confidence
|
|
850
|
-
prediction['classifications'] = {}
|
|
851
|
-
prediction['classifications']['classes'] = [no_cv_result_prediction_string]
|
|
852
|
-
prediction['classifications']['scores'] = [no_cv_confidence]
|
|
853
|
-
prediction['detections'] = []
|
|
854
|
-
prediction['model_version'] = model_version
|
|
855
|
-
prediction['prediction_source'] = prediction_source
|
|
856
|
-
prediction['data_file_id'] = data_file_id
|
|
857
|
-
prediction['project_id'] = project_id
|
|
858
|
-
payload = {}
|
|
859
|
-
payload['predictions'] = [prediction]
|
|
860
|
-
|
|
861
|
-
return payload
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
def generate_payload_for_prediction_string(data_file_id,
|
|
865
|
-
project_id,
|
|
866
|
-
prediction_string,
|
|
867
|
-
prediction_confidence=0.8,
|
|
868
|
-
detections=None,
|
|
869
|
-
model_version='3.1.2',
|
|
870
|
-
prediction_source='manual_update'):
|
|
871
|
-
"""
|
|
872
|
-
Generate a payload that will set a single image to a particular prediction, optionally
|
|
873
|
-
including detections. Suitable for uploading via push_results_for_images.
|
|
874
|
-
|
|
875
|
-
Args:
|
|
876
|
-
data_file_id (str): unique identifier for this image used in the WI DB
|
|
877
|
-
project_id (int): WI project ID
|
|
878
|
-
prediction_string (str): WI-formatted prediction string to include in the payload
|
|
879
|
-
prediction_confidence (float, optional): confidence value to associate with this
|
|
880
|
-
prediction
|
|
881
|
-
detections (list, optional): list of MD-formatted detection dicts, with fields
|
|
882
|
-
['category'] and 'conf'
|
|
883
|
-
model_version (str, optional): model version string to include in the payload
|
|
884
|
-
prediction_source (str, optional): prediction source string to include in the payload
|
|
885
|
-
|
|
886
|
-
|
|
887
|
-
Returns:
|
|
888
|
-
dict: dictionary suitable for uploading via push_results_for_images
|
|
889
|
-
"""
|
|
890
|
-
|
|
891
|
-
assert is_valid_prediction_string(prediction_string), \
|
|
892
|
-
'Invalid prediction string: {}'.format(prediction_string)
|
|
893
|
-
|
|
894
|
-
payload_detections = []
|
|
895
|
-
|
|
896
|
-
if detections is not None:
|
|
897
|
-
# detection = detections[0]
|
|
898
|
-
for detection in detections:
|
|
899
|
-
detection_out = detection.copy()
|
|
900
|
-
detection_out['label'] = md_category_id_to_name[detection['category']]
|
|
901
|
-
if detection_out['conf'] < min_md_output_confidence:
|
|
902
|
-
detection_out['conf'] = min_md_output_confidence
|
|
903
|
-
payload_detections.append(detection_out)
|
|
904
|
-
|
|
905
|
-
prediction = {}
|
|
906
|
-
prediction['ignore_data_file_checks'] = True
|
|
907
|
-
prediction['prediction'] = prediction_string
|
|
908
|
-
prediction['prediction_score'] = prediction_confidence
|
|
909
|
-
prediction['classifications'] = {}
|
|
910
|
-
prediction['classifications']['classes'] = [prediction_string]
|
|
911
|
-
prediction['classifications']['scores'] = [prediction_confidence]
|
|
912
|
-
prediction['detections'] = payload_detections
|
|
913
|
-
prediction['model_version'] = model_version
|
|
914
|
-
prediction['prediction_source'] = prediction_source
|
|
915
|
-
prediction['data_file_id'] = data_file_id
|
|
916
|
-
prediction['project_id'] = project_id
|
|
917
|
-
|
|
918
|
-
payload = {}
|
|
919
|
-
payload['predictions'] = [prediction]
|
|
920
|
-
|
|
921
|
-
return payload
|
|
922
|
-
|
|
923
|
-
|
|
924
|
-
def validate_payload(payload):
|
|
925
|
-
"""
|
|
926
|
-
Verifies that the dict [payload] is compatible with the ProcessCVResponse() API. Throws an
|
|
927
|
-
error if [payload] is invalid.
|
|
928
|
-
|
|
929
|
-
Args:
|
|
930
|
-
payload (dict): payload in the format expected by push_results_for_images.
|
|
931
|
-
|
|
932
|
-
Returns:
|
|
933
|
-
bool: successful validation; this is just future-proofing, currently never returns False
|
|
934
|
-
"""
|
|
935
|
-
|
|
936
|
-
assert isinstance(payload,dict)
|
|
937
|
-
assert len(payload.keys()) == 1 and 'predictions' in payload
|
|
938
|
-
|
|
939
|
-
# prediction = payload['predictions'][0]
|
|
940
|
-
for prediction in payload['predictions']:
|
|
941
|
-
|
|
942
|
-
assert 'project_id' in prediction
|
|
943
|
-
if not isinstance(prediction['project_id'],int):
|
|
944
|
-
_ = int(prediction['project_id'])
|
|
945
|
-
assert 'ignore_data_file_checks' in prediction and \
|
|
946
|
-
isinstance(prediction['ignore_data_file_checks'],bool)
|
|
947
|
-
assert 'prediction' in prediction and \
|
|
948
|
-
isinstance(prediction['prediction'],str) and \
|
|
949
|
-
len(prediction['prediction'].split(';')) == 7
|
|
950
|
-
assert 'prediction_score' in prediction and \
|
|
951
|
-
isinstance(prediction['prediction_score'],float)
|
|
952
|
-
assert 'model_version' in prediction and \
|
|
953
|
-
isinstance(prediction['model_version'],str)
|
|
954
|
-
assert 'data_file_id' in prediction and \
|
|
955
|
-
isinstance(prediction['data_file_id'],str) and \
|
|
956
|
-
len(prediction['data_file_id']) == 36
|
|
957
|
-
assert 'classifications' in prediction and \
|
|
958
|
-
isinstance(prediction['classifications'],dict)
|
|
959
|
-
classifications = prediction['classifications']
|
|
960
|
-
assert 'classes' in classifications and isinstance(classifications['classes'],list)
|
|
961
|
-
assert 'scores' in classifications and isinstance(classifications['scores'],list)
|
|
962
|
-
assert len(classifications['classes']) == len(classifications['scores'])
|
|
963
|
-
for c in classifications['classes']:
|
|
964
|
-
assert is_valid_prediction_string(c)
|
|
965
|
-
for score in classifications['scores']:
|
|
966
|
-
assert isinstance(score,float) and score >= 0 and score <= 1.0
|
|
967
|
-
assert 'detections' in prediction and isinstance(prediction['detections'],list)
|
|
968
|
-
|
|
969
|
-
for detection in prediction['detections']:
|
|
970
|
-
|
|
971
|
-
assert isinstance(detection,dict)
|
|
972
|
-
assert 'category' in detection and detection['category'] in ('1','2','3')
|
|
973
|
-
assert 'label' in detection and detection['label'] in ('animal','person','vehicle')
|
|
974
|
-
assert 'conf' in detection and \
|
|
975
|
-
isinstance(detection['conf'],float) and \
|
|
976
|
-
detection['conf'] >= 0 and detection['conf'] <= 1.0
|
|
977
|
-
assert 'bbox' in detection and \
|
|
978
|
-
isinstance(detection['bbox'],list) and \
|
|
979
|
-
len(detection['bbox']) == 4
|
|
980
|
-
|
|
981
|
-
# ...for each detection
|
|
982
|
-
|
|
983
|
-
# ...for each prediction
|
|
984
|
-
|
|
985
|
-
return True
|
|
986
|
-
|
|
987
|
-
# ...def validate_payload(...)
|
|
988
|
-
|
|
989
|
-
|
|
990
|
-
#%% Validate constants
|
|
991
|
-
|
|
992
|
-
# This is executed at the time this module gets imported.
|
|
993
|
-
|
|
994
|
-
blank_payload = generate_blank_prediction_payload('70ede9c6-d056-4dd1-9a0b-3098d8113e0e','1234')
|
|
995
|
-
validate_payload(sample_update_payload)
|
|
996
|
-
validate_payload(blank_payload)
|
|
997
|
-
|
|
998
|
-
|
|
999
|
-
#%% Functions and constants related to working with batch predictions
|
|
1000
|
-
|
|
1001
|
-
def get_kingdom(prediction_string):
|
|
1002
|
-
"""
|
|
1003
|
-
Return the kingdom field from a WI prediction string
|
|
1004
|
-
|
|
1005
|
-
Args:
|
|
1006
|
-
prediction_string (str): a string in the semicolon-delimited prediction string format
|
|
1007
|
-
|
|
1008
|
-
Returns:
|
|
1009
|
-
str: the kingdom field from the input string
|
|
1010
|
-
"""
|
|
1011
|
-
tokens = prediction_string.split(';')
|
|
1012
|
-
assert is_valid_prediction_string(prediction_string)
|
|
1013
|
-
return tokens[1]
|
|
1014
|
-
|
|
1015
|
-
|
|
1016
|
-
def is_human_classification(prediction_string):
|
|
1017
|
-
"""
|
|
1018
|
-
Determines whether the input string represents a human classification, which includes a variety
|
|
1019
|
-
of common names (hiker, person, etc.)
|
|
1020
|
-
|
|
1021
|
-
Args:
|
|
1022
|
-
prediction_string (str): a string in the semicolon-delimited prediction string format
|
|
1023
|
-
|
|
1024
|
-
Returns:
|
|
1025
|
-
bool: whether this string corresponds to a human category
|
|
1026
|
-
"""
|
|
1027
|
-
return prediction_string == human_prediction_string or 'homo;sapiens' in prediction_string
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
|
-
def is_vehicle_classification(prediction_string):
|
|
1031
|
-
"""
|
|
1032
|
-
Determines whether the input string represents a vehicle classification.
|
|
1033
|
-
|
|
1034
|
-
Args:
|
|
1035
|
-
prediction_string (str): a string in the semicolon-delimited prediction string format
|
|
1036
|
-
|
|
1037
|
-
Returns:
|
|
1038
|
-
bool: whether this string corresponds to the vehicle category
|
|
1039
|
-
"""
|
|
1040
|
-
return prediction_string == vehicle_prediction_string
|
|
1041
|
-
|
|
1042
|
-
|
|
1043
|
-
def is_animal_classification(prediction_string):
|
|
1044
|
-
"""
|
|
1045
|
-
Determines whether the input string represents an animal classification, which excludes, e.g.,
|
|
1046
|
-
humans, blanks, vehicles, unknowns
|
|
1047
|
-
|
|
1048
|
-
Args:
|
|
1049
|
-
prediction_string (str): a string in the semicolon-delimited prediction string format
|
|
1050
|
-
|
|
1051
|
-
Returns:
|
|
1052
|
-
bool: whether this string corresponds to an animal category
|
|
1053
|
-
"""
|
|
1054
|
-
|
|
1055
|
-
if prediction_string == animal_prediction_string:
|
|
1056
|
-
return True
|
|
1057
|
-
if prediction_string == human_prediction_string or 'homo;sapiens' in prediction_string:
|
|
1058
|
-
return False
|
|
1059
|
-
if prediction_string == blank_prediction_string:
|
|
1060
|
-
return False
|
|
1061
|
-
if prediction_string == no_cv_result_prediction_string:
|
|
1062
|
-
return False
|
|
1063
|
-
if len(get_kingdom(prediction_string)) == 0:
|
|
1064
|
-
return False
|
|
1065
|
-
return True
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
def generate_whole_image_detections_for_classifications(classifications_json_file,
|
|
1069
|
-
detections_json_file,
|
|
1070
|
-
ensemble_json_file=None,
|
|
1071
|
-
ignore_blank_classifications=True):
|
|
1072
|
-
"""
|
|
1073
|
-
Given a set of classification results in SpeciesNet format that were likely run on
|
|
1074
|
-
already-cropped images, generate a file of [fake] detections in SpeciesNet format in which each
|
|
1075
|
-
image is covered in a single whole-image detection.
|
|
1076
|
-
|
|
1077
|
-
Args:
|
|
1078
|
-
classifications_json_file (str): SpeciesNet-formatted file containing classifications
|
|
1079
|
-
detections_json_file (str): SpeciesNet-formatted file to write with detections
|
|
1080
|
-
ensemble_json_file (str, optional): SpeciesNet-formatted file to write with detections
|
|
1081
|
-
and classfications
|
|
1082
|
-
ignore_blank_classifications (bool, optional): use non-top classifications when
|
|
1083
|
-
the top classification is "blank" or "no CV result"
|
|
1084
|
-
|
|
1085
|
-
Returns:
|
|
1086
|
-
dict: the contents of [detections_json_file]
|
|
1087
|
-
"""
|
|
1088
|
-
|
|
1089
|
-
with open(classifications_json_file,'r') as f:
|
|
1090
|
-
classification_results = json.load(f)
|
|
1091
|
-
predictions = classification_results['predictions']
|
|
1092
|
-
|
|
1093
|
-
output_predictions = []
|
|
1094
|
-
ensemble_predictions = []
|
|
1095
|
-
|
|
1096
|
-
# prediction = predictions[0]
|
|
1097
|
-
for prediction in predictions:
|
|
1098
|
-
|
|
1099
|
-
output_prediction = {}
|
|
1100
|
-
output_prediction['filepath'] = prediction['filepath']
|
|
1101
|
-
i_score = 0
|
|
1102
|
-
if ignore_blank_classifications:
|
|
1103
|
-
while (prediction['classifications']['classes'][i_score] in \
|
|
1104
|
-
(blank_prediction_string,no_cv_result_prediction_string)):
|
|
1105
|
-
i_score += 1
|
|
1106
|
-
top_classification = prediction['classifications']['classes'][i_score]
|
|
1107
|
-
top_classification_score = prediction['classifications']['scores'][i_score]
|
|
1108
|
-
if is_animal_classification(top_classification):
|
|
1109
|
-
category_name = 'animal'
|
|
1110
|
-
elif is_human_classification(top_classification):
|
|
1111
|
-
category_name = 'human'
|
|
1112
|
-
else:
|
|
1113
|
-
category_name = 'vehicle'
|
|
1114
|
-
|
|
1115
|
-
if category_name == 'human':
|
|
1116
|
-
md_category_name = 'person'
|
|
1117
|
-
else:
|
|
1118
|
-
md_category_name = category_name
|
|
1119
|
-
|
|
1120
|
-
output_detection = {}
|
|
1121
|
-
output_detection['label'] = category_name
|
|
1122
|
-
output_detection['category'] = md_category_name_to_id[md_category_name]
|
|
1123
|
-
output_detection['conf'] = 1.0
|
|
1124
|
-
output_detection['bbox'] = [0.0, 0.0, 1.0, 1.0]
|
|
1125
|
-
output_prediction['detections'] = [output_detection]
|
|
1126
|
-
output_predictions.append(output_prediction)
|
|
1127
|
-
|
|
1128
|
-
ensemble_prediction = {}
|
|
1129
|
-
ensemble_prediction['filepath'] = prediction['filepath']
|
|
1130
|
-
ensemble_prediction['detections'] = [output_detection]
|
|
1131
|
-
ensemble_prediction['prediction'] = top_classification
|
|
1132
|
-
ensemble_prediction['prediction_score'] = top_classification_score
|
|
1133
|
-
ensemble_prediction['prediction_source'] = 'fake_ensemble_file_utility'
|
|
1134
|
-
ensemble_prediction['classifications'] = prediction['classifications']
|
|
1135
|
-
ensemble_predictions.append(ensemble_prediction)
|
|
1136
|
-
|
|
1137
|
-
# ...for each image
|
|
1138
|
-
|
|
1139
|
-
## Write output
|
|
1140
|
-
|
|
1141
|
-
if ensemble_json_file is not None:
|
|
1142
|
-
|
|
1143
|
-
ensemble_output_data = {'predictions':ensemble_predictions}
|
|
1144
|
-
with open(ensemble_json_file,'w') as f:
|
|
1145
|
-
json.dump(ensemble_output_data,f,indent=1)
|
|
1146
|
-
_ = validate_predictions_file(ensemble_json_file)
|
|
1147
|
-
|
|
1148
|
-
output_data = {'predictions':output_predictions}
|
|
1149
|
-
with open(detections_json_file,'w') as f:
|
|
1150
|
-
json.dump(output_data,f,indent=1)
|
|
1151
|
-
return validate_predictions_file(detections_json_file)
|
|
1152
|
-
|
|
1153
|
-
# ...def generate_whole_image_detections_for_classifications(...)
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
def generate_md_results_from_predictions_json(predictions_json_file,
|
|
1157
|
-
md_results_file,
|
|
1158
|
-
base_folder=None,
|
|
1159
|
-
max_decimals=5,
|
|
1160
|
-
convert_human_to_person=True,
|
|
1161
|
-
convert_homo_species_to_human=True):
|
|
1162
|
-
"""
|
|
1163
|
-
Generate an MD-formatted .json file from a predictions.json file, generated by the
|
|
1164
|
-
SpeciesNet ensemble. Typically, MD results files use relative paths, and predictions.json
|
|
1165
|
-
files use absolute paths, so this function optionally removes the leading string
|
|
1166
|
-
[base_folder] from all file names.
|
|
1167
|
-
|
|
1168
|
-
Currently just applies the top classification category to every detection. If the top
|
|
1169
|
-
classification is "blank", writes an empty detection list.
|
|
1170
|
-
|
|
1171
|
-
Uses the classification from the "prediction" field if it's available, otherwise
|
|
1172
|
-
uses the "classifications" field.
|
|
1173
|
-
|
|
1174
|
-
When using the "prediction" field, records the top class in the "classifications" field to
|
|
1175
|
-
a field in each image called "top_classification_common_name". This is often different
|
|
1176
|
-
from the value of the "prediction" field.
|
|
1177
|
-
|
|
1178
|
-
speciesnet_to_md.py is a command-line driver for this function.
|
|
1179
|
-
|
|
1180
|
-
Args:
|
|
1181
|
-
predictions_json_file (str): path to a predictions.json file, or a dict
|
|
1182
|
-
md_results_file (str): path to which we should write an MD-formatted .json file
|
|
1183
|
-
base_folder (str, optional): leading string to remove from each path in the
|
|
1184
|
-
predictions.json file
|
|
1185
|
-
max_decimals (int, optional): number of decimal places to which we should round
|
|
1186
|
-
all values
|
|
1187
|
-
convert_human_to_person (bool, optional): WI predictions.json files sometimes use the
|
|
1188
|
-
detection category "human"; MD files usually use "person". If True, switches "human"
|
|
1189
|
-
to "person".
|
|
1190
|
-
convert_homo_species_to_human (bool, optional): the ensemble often rolls human predictions
|
|
1191
|
-
up to "homo species", which isn't wrong, but looks odd. This forces these back to
|
|
1192
|
-
"homo sapiens".
|
|
1193
|
-
"""
|
|
1194
|
-
|
|
1195
|
-
# Read predictions file
|
|
1196
|
-
if isinstance(predictions_json_file,str):
|
|
1197
|
-
with open(predictions_json_file,'r') as f:
|
|
1198
|
-
predictions = json.load(f)
|
|
1199
|
-
else:
|
|
1200
|
-
assert isinstance(predictions_json_file,dict)
|
|
1201
|
-
predictions = predictions_json_file
|
|
1202
|
-
|
|
1203
|
-
# Round floating-point values (confidence scores, coordinates) to a
|
|
1204
|
-
# reasonable number of decimal places
|
|
1205
|
-
if max_decimals is not None and max_decimals > 0:
|
|
1206
|
-
round_floats_in_nested_dict(predictions)
|
|
1207
|
-
|
|
1208
|
-
predictions = predictions['predictions']
|
|
1209
|
-
assert isinstance(predictions,list)
|
|
1210
|
-
|
|
1211
|
-
# Convert backslashes to forward slashes in both filenames and the base folder string
|
|
1212
|
-
for im in predictions:
|
|
1213
|
-
im['filepath'] = im['filepath'].replace('\\','/')
|
|
1214
|
-
if base_folder is not None:
|
|
1215
|
-
base_folder = base_folder.replace('\\','/')
|
|
1216
|
-
|
|
1217
|
-
detection_category_id_to_name = {}
|
|
1218
|
-
classification_category_name_to_id = {}
|
|
1219
|
-
|
|
1220
|
-
# Keep track of detections that don't have an assigned detection category; these
|
|
1221
|
-
# are fake detections we create for non-blank images with non-empty detection lists.
|
|
1222
|
-
# We need to go back later and give them a legitimate detection category ID.
|
|
1223
|
-
all_unknown_detections = []
|
|
1224
|
-
|
|
1225
|
-
# Create the output images list
|
|
1226
|
-
images_out = []
|
|
1227
|
-
|
|
1228
|
-
base_folder_replacements = 0
|
|
1229
|
-
|
|
1230
|
-
# im_in = predictions[0]
|
|
1231
|
-
for im_in in predictions:
|
|
1232
|
-
|
|
1233
|
-
im_out = {}
|
|
1234
|
-
|
|
1235
|
-
fn = im_in['filepath']
|
|
1236
|
-
if base_folder is not None:
|
|
1237
|
-
if fn.startswith(base_folder):
|
|
1238
|
-
base_folder_replacements += 1
|
|
1239
|
-
fn = fn.replace(base_folder,'',1)
|
|
1240
|
-
|
|
1241
|
-
im_out['file'] = fn
|
|
1242
|
-
|
|
1243
|
-
if 'failures' in im_in:
|
|
1244
|
-
|
|
1245
|
-
im_out['failure'] = str(im_in['failures'])
|
|
1246
|
-
im_out['detections'] = None
|
|
1247
|
-
|
|
1248
|
-
else:
|
|
1249
|
-
|
|
1250
|
-
im_out['detections'] = []
|
|
1251
|
-
|
|
1252
|
-
if 'detections' in im_in:
|
|
1253
|
-
|
|
1254
|
-
if len(im_in['detections']) == 0:
|
|
1255
|
-
im_out['detections'] = []
|
|
1256
|
-
else:
|
|
1257
|
-
# det_in = im_in['detections'][0]
|
|
1258
|
-
for det_in in im_in['detections']:
|
|
1259
|
-
det_out = {}
|
|
1260
|
-
if det_in['category'] in detection_category_id_to_name:
|
|
1261
|
-
assert detection_category_id_to_name[det_in['category']] == det_in['label']
|
|
1262
|
-
else:
|
|
1263
|
-
detection_category_id_to_name[det_in['category']] = det_in['label']
|
|
1264
|
-
det_out = {}
|
|
1265
|
-
for s in ['category','conf','bbox']:
|
|
1266
|
-
det_out[s] = det_in[s]
|
|
1267
|
-
im_out['detections'].append(det_out)
|
|
1268
|
-
|
|
1269
|
-
# ...if detections are present
|
|
1270
|
-
|
|
1271
|
-
class_to_assign = None
|
|
1272
|
-
class_confidence = None
|
|
1273
|
-
top_classification_common_name = None
|
|
1274
|
-
|
|
1275
|
-
if 'classifications' in im_in:
|
|
1276
|
-
|
|
1277
|
-
classifications = im_in['classifications']
|
|
1278
|
-
assert len(classifications['scores']) == len(classifications['classes'])
|
|
1279
|
-
assert is_list_sorted(classifications['scores'],reverse=True)
|
|
1280
|
-
class_to_assign = classifications['classes'][0]
|
|
1281
|
-
class_confidence = classifications['scores'][0]
|
|
1282
|
-
|
|
1283
|
-
tokens = class_to_assign.split(';')
|
|
1284
|
-
assert len(tokens) == 7
|
|
1285
|
-
top_classification_common_name = tokens[-1]
|
|
1286
|
-
if len(top_classification_common_name) == 0:
|
|
1287
|
-
top_classification_common_name = 'undefined'
|
|
1288
|
-
|
|
1289
|
-
if 'prediction' in im_in:
|
|
1290
|
-
|
|
1291
|
-
class_to_assign = None
|
|
1292
|
-
im_out['top_classification_common_name'] = top_classification_common_name
|
|
1293
|
-
class_to_assign = im_in['prediction']
|
|
1294
|
-
if convert_homo_species_to_human and class_to_assign.endswith('homo species'):
|
|
1295
|
-
class_to_assign = human_prediction_string
|
|
1296
|
-
class_confidence = im_in['prediction_score']
|
|
1297
|
-
|
|
1298
|
-
if class_to_assign is not None:
|
|
1299
|
-
|
|
1300
|
-
if class_to_assign == blank_prediction_string:
|
|
1301
|
-
|
|
1302
|
-
# This is a scenario that's not captured well by the MD format: a blank prediction
|
|
1303
|
-
# with detections present. But, for now, don't do anything special here, just making
|
|
1304
|
-
# a note of this.
|
|
1305
|
-
if len(im_out['detections']) > 0:
|
|
1306
|
-
pass
|
|
1307
|
-
|
|
1308
|
-
else:
|
|
1309
|
-
|
|
1310
|
-
assert not class_to_assign.endswith('blank')
|
|
1311
|
-
|
|
1312
|
-
# This is a scenario that's not captured well by the MD format: no detections present,
|
|
1313
|
-
# but a non-blank prediction. For now, create a fake detection to handle this prediction.
|
|
1314
|
-
if len(im_out['detections']) == 0:
|
|
1315
|
-
|
|
1316
|
-
print('Warning: creating fake detection for non-blank whole-image classification')
|
|
1317
|
-
det_out = {}
|
|
1318
|
-
all_unknown_detections.append(det_out)
|
|
1319
|
-
|
|
1320
|
-
# We will change this to a string-int later
|
|
1321
|
-
det_out['category'] = 'unknown'
|
|
1322
|
-
det_out['conf'] = class_confidence
|
|
1323
|
-
det_out['bbox'] = [0,0,1,1]
|
|
1324
|
-
im_out['detections'].append(det_out)
|
|
1325
|
-
|
|
1326
|
-
# ...if this is/isn't a blank classification
|
|
1327
|
-
|
|
1328
|
-
# Attach that classification to each detection
|
|
1329
|
-
|
|
1330
|
-
# Create a new category ID if necessary
|
|
1331
|
-
if class_to_assign in classification_category_name_to_id:
|
|
1332
|
-
classification_category_id = classification_category_name_to_id[class_to_assign]
|
|
1333
|
-
else:
|
|
1334
|
-
classification_category_id = str(len(classification_category_name_to_id))
|
|
1335
|
-
classification_category_name_to_id[class_to_assign] = classification_category_id
|
|
1336
|
-
|
|
1337
|
-
for det in im_out['detections']:
|
|
1338
|
-
det['classifications'] = []
|
|
1339
|
-
det['classifications'].append([classification_category_id,class_confidence])
|
|
1340
|
-
|
|
1341
|
-
# ...if we have some type of classification for this image
|
|
1342
|
-
|
|
1343
|
-
# ...if this is/isn't a failure
|
|
1344
|
-
|
|
1345
|
-
images_out.append(im_out)
|
|
1346
|
-
|
|
1347
|
-
# ...for each image
|
|
1348
|
-
|
|
1349
|
-
if base_folder is not None:
|
|
1350
|
-
if base_folder_replacements == 0:
|
|
1351
|
-
print('Warning: you supplied {} as the base folder, but I made zero replacements'.format(
|
|
1352
|
-
base_folder))
|
|
1353
|
-
|
|
1354
|
-
# Fix the 'unknown' category
|
|
1355
|
-
if len(all_unknown_detections) > 0:
|
|
1356
|
-
|
|
1357
|
-
max_detection_category_id = max([int(x) for x in detection_category_id_to_name.keys()])
|
|
1358
|
-
unknown_category_id = str(max_detection_category_id + 1)
|
|
1359
|
-
detection_category_id_to_name[unknown_category_id] = 'unknown'
|
|
1360
|
-
|
|
1361
|
-
for det in all_unknown_detections:
|
|
1362
|
-
assert det['category'] == 'unknown'
|
|
1363
|
-
det['category'] = unknown_category_id
|
|
1364
|
-
|
|
1365
|
-
|
|
1366
|
-
# Sort by filename
|
|
1367
|
-
|
|
1368
|
-
images_out = sort_list_of_dicts_by_key(images_out,'file')
|
|
1369
|
-
|
|
1370
|
-
# Prepare friendly classification names
|
|
1371
|
-
|
|
1372
|
-
classification_category_descriptions = \
|
|
1373
|
-
invert_dictionary(classification_category_name_to_id)
|
|
1374
|
-
classification_categories_out = {}
|
|
1375
|
-
for category_id in classification_category_descriptions.keys():
|
|
1376
|
-
category_name = classification_category_descriptions[category_id].split(';')[-1]
|
|
1377
|
-
classification_categories_out[category_id] = category_name
|
|
1378
|
-
|
|
1379
|
-
# Prepare the output dict
|
|
1380
|
-
|
|
1381
|
-
detection_categories_out = detection_category_id_to_name
|
|
1382
|
-
info = {}
|
|
1383
|
-
info['format_version'] = 1.4
|
|
1384
|
-
info['detector'] = 'converted_from_predictions_json'
|
|
1385
|
-
|
|
1386
|
-
if convert_human_to_person:
|
|
1387
|
-
for k in detection_categories_out.keys():
|
|
1388
|
-
if detection_categories_out[k] == 'human':
|
|
1389
|
-
detection_categories_out[k] = 'person'
|
|
1390
|
-
|
|
1391
|
-
output_dict = {}
|
|
1392
|
-
output_dict['info'] = info
|
|
1393
|
-
output_dict['detection_categories'] = detection_categories_out
|
|
1394
|
-
output_dict['classification_categories'] = classification_categories_out
|
|
1395
|
-
output_dict['classification_category_descriptions'] = classification_category_descriptions
|
|
1396
|
-
output_dict['images'] = images_out
|
|
1397
|
-
|
|
1398
|
-
with open(md_results_file,'w') as f:
|
|
1399
|
-
json.dump(output_dict,f,indent=1)
|
|
1400
|
-
|
|
1401
|
-
validation_options = ValidateBatchResultsOptions()
|
|
1402
|
-
validation_options.raise_errors = True
|
|
1403
|
-
_ = validate_batch_results(md_results_file, options=validation_options)
|
|
1404
|
-
|
|
1405
|
-
# ...def generate_md_results_from_predictions_json(...)
|
|
1406
|
-
|
|
1407
|
-
|
|
1408
|
-
def generate_predictions_json_from_md_results(md_results_file,
|
|
1409
|
-
predictions_json_file,
|
|
1410
|
-
base_folder=None):
|
|
1411
|
-
"""
|
|
1412
|
-
Generate a predictions.json file from the MD-formatted .json file [md_results_file]. Typically,
|
|
1413
|
-
MD results files use relative paths, and predictions.json files use absolute paths, so
|
|
1414
|
-
this function optionally prepends [base_folder]. Does not handle classification results in
|
|
1415
|
-
MD format, since this is intended to prepare data for passing through the WI classifier.
|
|
1416
|
-
|
|
1417
|
-
md_to_wi.py is a command-line driver for this function.
|
|
1418
|
-
|
|
1419
|
-
Args:
|
|
1420
|
-
md_results_file (str): path to an MD-formatted .json file
|
|
1421
|
-
predictions_json_file (str): path to which we should write a predictions.json file
|
|
1422
|
-
base_folder (str, optional): folder name to prepend to each path in md_results_file,
|
|
1423
|
-
to convert relative paths to absolute paths.
|
|
1424
|
-
"""
|
|
1425
|
-
|
|
1426
|
-
# Validate the input file
|
|
1427
|
-
validation_options = ValidateBatchResultsOptions()
|
|
1428
|
-
validation_options.raise_errors = True
|
|
1429
|
-
validation_options.return_data = True
|
|
1430
|
-
md_results = validate_batch_results(md_results_file, options=validation_options)
|
|
1431
|
-
category_id_to_name = md_results['detection_categories']
|
|
1432
|
-
|
|
1433
|
-
output_dict = {}
|
|
1434
|
-
output_dict['predictions'] = []
|
|
1435
|
-
|
|
1436
|
-
# im = md_results['images'][0]
|
|
1437
|
-
for im in md_results['images']:
|
|
1438
|
-
|
|
1439
|
-
prediction = {}
|
|
1440
|
-
fn = im['file']
|
|
1441
|
-
if base_folder is not None:
|
|
1442
|
-
fn = os.path.join(base_folder,fn)
|
|
1443
|
-
fn = fn.replace('\\','/')
|
|
1444
|
-
prediction['filepath'] = fn
|
|
1445
|
-
if 'failure' in im and im['failure'] is not None:
|
|
1446
|
-
prediction['failures'] = ['DETECTOR']
|
|
1447
|
-
else:
|
|
1448
|
-
assert 'detections' in im and im['detections'] is not None
|
|
1449
|
-
detections = []
|
|
1450
|
-
for det in im['detections']:
|
|
1451
|
-
output_det = deepcopy(det)
|
|
1452
|
-
output_det['label'] = category_id_to_name[det['category']]
|
|
1453
|
-
detections.append(output_det)
|
|
1454
|
-
|
|
1455
|
-
# detections *must* be sorted in descending order by confidence
|
|
1456
|
-
detections = sort_list_of_dicts_by_key(detections,'conf', reverse=True)
|
|
1457
|
-
prediction['detections'] = detections
|
|
1458
|
-
|
|
1459
|
-
assert len(prediction.keys()) >= 2
|
|
1460
|
-
output_dict['predictions'].append(prediction)
|
|
1461
|
-
|
|
1462
|
-
# ...for each image
|
|
1463
|
-
|
|
1464
|
-
os.makedirs(os.path.dirname(predictions_json_file),exist_ok=True)
|
|
1465
|
-
with open(predictions_json_file,'w') as f:
|
|
1466
|
-
json.dump(output_dict,f,indent=1)
|
|
1467
|
-
|
|
1468
|
-
# ...def generate_predictions_json_from_md_results(...)
|
|
1469
|
-
|
|
1470
|
-
|
|
1471
|
-
default_tokens_to_ignore = ['$RECYCLE.BIN']
|
|
1472
|
-
|
|
1473
|
-
def generate_instances_json_from_folder(folder,
|
|
1474
|
-
country=None,
|
|
1475
|
-
admin1_region=None,
|
|
1476
|
-
lat=None,
|
|
1477
|
-
lon=None,
|
|
1478
|
-
output_file=None,
|
|
1479
|
-
filename_replacements=None,
|
|
1480
|
-
tokens_to_ignore=default_tokens_to_ignore):
|
|
1481
|
-
"""
|
|
1482
|
-
Generate an instances.json record that contains all images in [folder], optionally
|
|
1483
|
-
including location information, in a format suitable for run_model.py. Optionally writes
|
|
1484
|
-
the results to [output_file].
|
|
1485
|
-
|
|
1486
|
-
Args:
|
|
1487
|
-
folder (str): the folder to recursively search for images
|
|
1488
|
-
country (str, optional): a three-letter country code
|
|
1489
|
-
admin1_region (str, optional): an administrative region code, typically a two-letter
|
|
1490
|
-
US state code
|
|
1491
|
-
lat (float, optional): latitude to associate with all images
|
|
1492
|
-
lon (float, optional): longitude to associate with all images
|
|
1493
|
-
output_file (str, optional): .json file to which we should write instance records
|
|
1494
|
-
filename_replacements (dict, optional): str --> str dict indicating filename substrings
|
|
1495
|
-
that should be replaced with other strings. Replacement occurs *after* converting
|
|
1496
|
-
backslashes to forward slashes.
|
|
1497
|
-
tokens_to_ignore (list, optional): ignore any images with these tokens in their
|
|
1498
|
-
names, typically used to avoid $RECYCLE.BIN. Can be None.
|
|
1499
|
-
|
|
1500
|
-
Returns:
|
|
1501
|
-
dict: dict with at least the field "instances"
|
|
1502
|
-
"""
|
|
1503
|
-
|
|
1504
|
-
assert os.path.isdir(folder)
|
|
1505
|
-
|
|
1506
|
-
image_files_abs = find_images(folder,recursive=True,return_relative_paths=False)
|
|
1507
|
-
|
|
1508
|
-
if tokens_to_ignore is not None:
|
|
1509
|
-
n_images_before_ignore_tokens = len(image_files_abs)
|
|
1510
|
-
for token in tokens_to_ignore:
|
|
1511
|
-
image_files_abs = [fn for fn in image_files_abs if token not in fn]
|
|
1512
|
-
print('After ignoring {} tokens, kept {} of {} images'.format(
|
|
1513
|
-
len(tokens_to_ignore),len(image_files_abs),n_images_before_ignore_tokens))
|
|
1514
|
-
|
|
1515
|
-
instances = []
|
|
1516
|
-
|
|
1517
|
-
# image_fn_abs = image_files_abs[0]
|
|
1518
|
-
for image_fn_abs in image_files_abs:
|
|
1519
|
-
instance = {}
|
|
1520
|
-
instance['filepath'] = image_fn_abs.replace('\\','/')
|
|
1521
|
-
if filename_replacements is not None:
|
|
1522
|
-
for s in filename_replacements:
|
|
1523
|
-
instance['filepath'] = instance['filepath'].replace(s,filename_replacements[s])
|
|
1524
|
-
if country is not None:
|
|
1525
|
-
instance['country'] = country
|
|
1526
|
-
if admin1_region is not None:
|
|
1527
|
-
instance['admin1_region'] = admin1_region
|
|
1528
|
-
if lat is not None:
|
|
1529
|
-
assert lon is not None, 'Latitude provided without longitude'
|
|
1530
|
-
instance['latitude'] = lat
|
|
1531
|
-
if lon is not None:
|
|
1532
|
-
assert lat is not None, 'Longitude provided without latitude'
|
|
1533
|
-
instance['longitude'] = lon
|
|
1534
|
-
instances.append(instance)
|
|
1535
|
-
|
|
1536
|
-
to_return = {'instances':instances}
|
|
1537
|
-
|
|
1538
|
-
if output_file is not None:
|
|
1539
|
-
os.makedirs(os.path.dirname(output_file),exist_ok=True)
|
|
1540
|
-
with open(output_file,'w') as f:
|
|
1541
|
-
json.dump(to_return,f,indent=1)
|
|
1542
|
-
|
|
1543
|
-
return to_return
|
|
1544
|
-
|
|
1545
|
-
# ...def generate_instances_json_from_folder(...)
|
|
1546
|
-
|
|
1547
|
-
|
|
1548
|
-
def split_instances_into_n_batches(instances_json,n_batches,output_files=None):
|
|
1549
|
-
"""
|
|
1550
|
-
Given an instances.json file, split it into batches of equal size.
|
|
1551
|
-
|
|
1552
|
-
Args:
|
|
1553
|
-
instances_json (str): input .json file in
|
|
1554
|
-
n_batches (int): number of new files to generate
|
|
1555
|
-
output_files (list, optional): output .json files for each
|
|
1556
|
-
batch. If supplied, should have length [n_batches]. If not
|
|
1557
|
-
supplied, filenames will be generated based on [instances_json].
|
|
1558
|
-
|
|
1559
|
-
Returns:
|
|
1560
|
-
list: list of output files that were written; identical to [output_files]
|
|
1561
|
-
if it was supplied as input.
|
|
1562
|
-
"""
|
|
1563
|
-
|
|
1564
|
-
with open(instances_json,'r') as f:
|
|
1565
|
-
instances = json.load(f)
|
|
1566
|
-
assert isinstance(instances,dict) and 'instances' in instances
|
|
1567
|
-
instances = instances['instances']
|
|
1568
|
-
|
|
1569
|
-
if output_files is not None:
|
|
1570
|
-
assert len(output_files) == n_batches, \
|
|
1571
|
-
'Expected {} output files, received {}'.format(
|
|
1572
|
-
n_batches,len(output_files))
|
|
1573
|
-
else:
|
|
1574
|
-
output_files = []
|
|
1575
|
-
for i_batch in range(0,n_batches):
|
|
1576
|
-
batch_string = 'batch_{}'.format(str(i_batch).zfill(3))
|
|
1577
|
-
output_files.append(insert_before_extension(instances_json,batch_string))
|
|
1578
|
-
|
|
1579
|
-
batches = split_list_into_n_chunks(instances, n_batches)
|
|
1580
|
-
|
|
1581
|
-
for i_batch,batch in enumerate(batches):
|
|
1582
|
-
batch_dict = {'instances':batch}
|
|
1583
|
-
with open(output_files[i_batch],'w') as f:
|
|
1584
|
-
json.dump(batch_dict,f,indent=1)
|
|
1585
|
-
|
|
1586
|
-
print('Wrote {} batches to file'.format(n_batches))
|
|
1587
|
-
|
|
1588
|
-
return output_files
|
|
1589
|
-
|
|
1590
|
-
|
|
1591
|
-
def merge_prediction_json_files(input_prediction_files,output_prediction_file):
|
|
1592
|
-
"""
|
|
1593
|
-
Merge all predictions.json files in [files] into a single .json file.
|
|
1594
|
-
|
|
1595
|
-
Args:
|
|
1596
|
-
input_prediction_files (list): list of predictions.json files to merge
|
|
1597
|
-
output_prediction_file (str): output .json file
|
|
1598
|
-
"""
|
|
1599
|
-
|
|
1600
|
-
predictions = []
|
|
1601
|
-
image_filenames_processed = set()
|
|
1602
|
-
|
|
1603
|
-
# input_json_fn = input_prediction_files[0]
|
|
1604
|
-
for input_json_fn in tqdm(input_prediction_files):
|
|
1605
|
-
|
|
1606
|
-
assert os.path.isfile(input_json_fn), \
|
|
1607
|
-
'Could not find prediction file {}'.format(input_json_fn)
|
|
1608
|
-
with open(input_json_fn,'r') as f:
|
|
1609
|
-
results_this_file = json.load(f)
|
|
1610
|
-
assert isinstance(results_this_file,dict)
|
|
1611
|
-
predictions_this_file = results_this_file['predictions']
|
|
1612
|
-
for prediction in predictions_this_file:
|
|
1613
|
-
image_fn = prediction['filepath']
|
|
1614
|
-
assert image_fn not in image_filenames_processed
|
|
1615
|
-
predictions.extend(predictions_this_file)
|
|
1616
|
-
|
|
1617
|
-
output_dict = {'predictions':predictions}
|
|
1618
|
-
|
|
1619
|
-
os.makedirs(os.path.dirname(output_prediction_file),exist_ok=True)
|
|
1620
|
-
with open(output_prediction_file,'w') as f:
|
|
1621
|
-
json.dump(output_dict,f,indent=1)
|
|
1622
|
-
|
|
1623
|
-
# ...def merge_prediction_json_files(...)
|
|
1624
|
-
|
|
1625
|
-
|
|
1626
|
-
def load_md_or_speciesnet_file(fn,verbose=True):
|
|
1627
|
-
"""
|
|
1628
|
-
Load a .json file that may be in MD or SpeciesNet format. Typically used so
|
|
1629
|
-
SpeciesNet files can be supplied to functions originally written to support MD
|
|
1630
|
-
format.
|
|
1631
|
-
|
|
1632
|
-
Args:
|
|
1633
|
-
fn (str): a .json file in predictions.json (MD or SpeciesNet) format
|
|
1634
|
-
verbose (bool, optional): enable additional debug output
|
|
1635
|
-
|
|
1636
|
-
Returns:
|
|
1637
|
-
dict: the contents of [fn], in MD format.
|
|
1638
|
-
"""
|
|
1639
|
-
|
|
1640
|
-
with open(fn,'r') as f:
|
|
1641
|
-
detector_output = json.load(f)
|
|
1642
|
-
|
|
1643
|
-
# Convert to MD format if necessary
|
|
1644
|
-
if 'predictions' in detector_output:
|
|
1645
|
-
if verbose:
|
|
1646
|
-
print('This appears to be a SpeciesNet output file, converting to MD format')
|
|
1647
|
-
md_temp_dir = os.path.join(tempfile.gettempdir(), 'megadetector_temp_files')
|
|
1648
|
-
os.makedirs(md_temp_dir,exist_ok=True)
|
|
1649
|
-
temp_results_file = os.path.join(md_temp_dir,str(uuid.uuid1()) + '.json')
|
|
1650
|
-
print('Writing temporary results to {}'.format(temp_results_file))
|
|
1651
|
-
generate_md_results_from_predictions_json(predictions_json_file=fn,
|
|
1652
|
-
md_results_file=temp_results_file,
|
|
1653
|
-
base_folder=None)
|
|
1654
|
-
with open(temp_results_file,'r') as f:
|
|
1655
|
-
detector_output = json.load(f)
|
|
1656
|
-
try:
|
|
1657
|
-
os.remove(temp_results_file)
|
|
1658
|
-
except Exception:
|
|
1659
|
-
if verbose:
|
|
1660
|
-
print('Warning: error removing temporary .json {}'.format(temp_results_file))
|
|
1661
|
-
|
|
1662
|
-
assert 'images' in detector_output, \
|
|
1663
|
-
'Detector output file should be a json file with an "images" field.'
|
|
1664
|
-
|
|
1665
|
-
return detector_output
|
|
1666
|
-
|
|
1667
|
-
# ...def load_md_or_speciesnet_file(...)
|
|
1668
|
-
|
|
1669
|
-
|
|
1670
|
-
def validate_predictions_file(fn,instances=None,verbose=True):
|
|
1671
|
-
"""
|
|
1672
|
-
Validate the predictions.json file [fn].
|
|
1673
|
-
|
|
1674
|
-
Args:
|
|
1675
|
-
fn (str): a .json file in predictions.json (SpeciesNet) format
|
|
1676
|
-
instances (str or list, optional): a folder, instances.json file,
|
|
1677
|
-
or dict loaded from an instances.json file. If supplied, this
|
|
1678
|
-
function will verify that [fn] contains the same number of
|
|
1679
|
-
images as [instances].
|
|
1680
|
-
verbose (bool, optional): enable additional debug output
|
|
1681
|
-
|
|
1682
|
-
Returns:
|
|
1683
|
-
dict: the contents of [fn]
|
|
1684
|
-
"""
|
|
1685
|
-
|
|
1686
|
-
with open(fn,'r') as f:
|
|
1687
|
-
d = json.load(f)
|
|
1688
|
-
predictions = d['predictions']
|
|
1689
|
-
|
|
1690
|
-
failures = []
|
|
1691
|
-
|
|
1692
|
-
for im in predictions:
|
|
1693
|
-
if 'failures' in im:
|
|
1694
|
-
failures.append(im)
|
|
1695
|
-
|
|
1696
|
-
if verbose:
|
|
1697
|
-
print('Read predictions for {} images, with {} failure(s)'.format(
|
|
1698
|
-
len(d['predictions']),len(failures)))
|
|
1699
|
-
|
|
1700
|
-
if instances is not None:
|
|
1701
|
-
|
|
1702
|
-
if isinstance(instances,str):
|
|
1703
|
-
if os.path.isdir(instances):
|
|
1704
|
-
instances = generate_instances_json_from_folder(folder=instances)
|
|
1705
|
-
elif os.path.isfile(instances):
|
|
1706
|
-
with open(instances,'r') as f:
|
|
1707
|
-
instances = json.load(f)
|
|
1708
|
-
else:
|
|
1709
|
-
raise ValueError('Could not find instances file/folder {}'.format(
|
|
1710
|
-
instances))
|
|
1711
|
-
assert isinstance(instances,dict)
|
|
1712
|
-
assert 'instances' in instances
|
|
1713
|
-
instances = instances['instances']
|
|
1714
|
-
if verbose:
|
|
1715
|
-
print('Expected results for {} files'.format(len(instances)))
|
|
1716
|
-
assert len(instances) == len(predictions), \
|
|
1717
|
-
'{} instances expected, {} found'.format(
|
|
1718
|
-
len(instances),len(predictions))
|
|
1719
|
-
|
|
1720
|
-
expected_files = set([instance['filepath'] for instance in instances])
|
|
1721
|
-
found_files = set([prediction['filepath'] for prediction in predictions])
|
|
1722
|
-
assert expected_files == found_files
|
|
1723
|
-
|
|
1724
|
-
# ...if a list of instances was supplied
|
|
1725
|
-
|
|
1726
|
-
return d
|
|
1727
|
-
|
|
1728
|
-
# ...def validate_predictions_file(...)
|
|
1729
|
-
|
|
1730
|
-
|
|
1731
|
-
def find_geofence_adjustments(ensemble_json_file,use_latin_names=False):
|
|
1732
|
-
"""
|
|
1733
|
-
Count the number of instances of each unique change made by the geofence.
|
|
1734
|
-
|
|
1735
|
-
Args:
|
|
1736
|
-
ensemble_json_file (str): SpeciesNet-formatted .json file produced
|
|
1737
|
-
by the full ensemble.
|
|
1738
|
-
use_latin_names (bool, optional): return a mapping using binomial names
|
|
1739
|
-
rather than common names.
|
|
1740
|
-
|
|
1741
|
-
Returns:
|
|
1742
|
-
dict: maps strings that look like "puma,felidae family" to integers,
|
|
1743
|
-
where that entry would indicate the number of times that "puma" was
|
|
1744
|
-
predicted, but mapped to family level by the geofence. Sorted in
|
|
1745
|
-
descending order by count.
|
|
1746
|
-
"""
|
|
1747
|
-
|
|
1748
|
-
# Load and validate ensemble results
|
|
1749
|
-
ensemble_results = validate_predictions_file(ensemble_json_file)
|
|
1750
|
-
|
|
1751
|
-
assert isinstance(ensemble_results,dict)
|
|
1752
|
-
predictions = ensemble_results['predictions']
|
|
1753
|
-
|
|
1754
|
-
# Maps comma-separated pairs of common names (or binomial names) to
|
|
1755
|
-
# the number of times that transition (first --> second) happened
|
|
1756
|
-
rollup_pair_to_count = defaultdict(int)
|
|
1757
|
-
|
|
1758
|
-
# prediction = predictions[0]
|
|
1759
|
-
for prediction in tqdm(predictions):
|
|
1760
|
-
|
|
1761
|
-
if 'failures' in prediction and \
|
|
1762
|
-
prediction['failures'] is not None and \
|
|
1763
|
-
len(prediction['failures']) > 0:
|
|
1764
|
-
continue
|
|
1765
|
-
|
|
1766
|
-
assert 'prediction_source' in prediction, \
|
|
1767
|
-
'Prediction present without [prediction_source] field, are you sure this ' + \
|
|
1768
|
-
'is an ensemble output file?'
|
|
1769
|
-
|
|
1770
|
-
if 'geofence' in prediction['prediction_source']:
|
|
1771
|
-
|
|
1772
|
-
classification_taxonomy_string = \
|
|
1773
|
-
prediction['classifications']['classes'][0]
|
|
1774
|
-
prediction_taxonomy_string = prediction['prediction']
|
|
1775
|
-
assert is_valid_prediction_string(classification_taxonomy_string)
|
|
1776
|
-
assert is_valid_prediction_string(prediction_taxonomy_string)
|
|
1777
|
-
|
|
1778
|
-
# Typical examples:
|
|
1779
|
-
# '86f5b978-4f30-40cc-bd08-be9e3fba27a0;mammalia;rodentia;sciuridae;sciurus;carolinensis;eastern gray squirrel'
|
|
1780
|
-
# 'e4d1e892-0e4b-475a-a8ac-b5c3502e0d55;mammalia;rodentia;sciuridae;;;sciuridae family'
|
|
1781
|
-
classification_common_name = classification_taxonomy_string.split(';')[-1]
|
|
1782
|
-
prediction_common_name = prediction_taxonomy_string.split(';')[-1]
|
|
1783
|
-
classification_binomial_name = classification_taxonomy_string.split(';')[-2]
|
|
1784
|
-
prediction_binomial_name = prediction_taxonomy_string.split(';')[-2]
|
|
1785
|
-
|
|
1786
|
-
input_name = classification_binomial_name if use_latin_names else \
|
|
1787
|
-
classification_common_name
|
|
1788
|
-
output_name = prediction_binomial_name if use_latin_names else \
|
|
1789
|
-
prediction_common_name
|
|
1790
|
-
|
|
1791
|
-
rollup_pair = input_name.strip() + ',' + output_name.strip()
|
|
1792
|
-
rollup_pair_to_count[rollup_pair] += 1
|
|
1793
|
-
|
|
1794
|
-
# ...if we made a geofencing change
|
|
1795
|
-
|
|
1796
|
-
# ...for each prediction
|
|
1797
|
-
|
|
1798
|
-
rollup_pair_to_count = sort_dictionary_by_value(rollup_pair_to_count,reverse=True)
|
|
1799
|
-
|
|
1800
|
-
return rollup_pair_to_count
|
|
1801
|
-
|
|
1802
|
-
# ...def find_geofence_adjustments(...)
|
|
1803
|
-
|
|
1804
|
-
|
|
1805
|
-
def generate_geofence_adjustment_html_summary(rollup_pair_to_count,min_count=10):
|
|
1806
|
-
"""
|
|
1807
|
-
Given a list of geofence rollups, likely generated by find_geofence_adjustments,
|
|
1808
|
-
generate an HTML summary of the changes made by geofencing. The resulting HTML
|
|
1809
|
-
is wrapped in <div>, but not, for example, in <html> or <body>.
|
|
1810
|
-
|
|
1811
|
-
Args:
|
|
1812
|
-
rollup_pair_to_count (dict): list of changes made by geofencing, see
|
|
1813
|
-
find_geofence_adjustments for details
|
|
1814
|
-
min_count (int, optional): minimum number of changes a pair needs in order
|
|
1815
|
-
to be included in the report.
|
|
1816
|
-
"""
|
|
1817
|
-
|
|
1818
|
-
geofence_footer = ''
|
|
1819
|
-
|
|
1820
|
-
# Restrict to the list of taxa that were impacted by geofencing
|
|
1821
|
-
rollup_pair_to_count = \
|
|
1822
|
-
{key: value for key, value in rollup_pair_to_count.items() if value >= min_count}
|
|
1823
|
-
|
|
1824
|
-
# rollup_pair_to_count is sorted in descending order by count
|
|
1825
|
-
assert is_list_sorted(list(rollup_pair_to_count.values()),reverse=True)
|
|
1826
|
-
|
|
1827
|
-
if len(rollup_pair_to_count) > 0:
|
|
1828
|
-
|
|
1829
|
-
geofence_footer = \
|
|
1830
|
-
'<h3>Geofence changes that occurred more than {} times</h3>\n'.format(min_count)
|
|
1831
|
-
geofence_footer += '<div class="contentdiv">\n'
|
|
1832
|
-
|
|
1833
|
-
print('\nRollup changes with count > {}:'.format(min_count))
|
|
1834
|
-
for rollup_pair in rollup_pair_to_count.keys():
|
|
1835
|
-
count = rollup_pair_to_count[rollup_pair]
|
|
1836
|
-
rollup_pair_s = rollup_pair.replace(',',' --> ')
|
|
1837
|
-
print('{}: {}'.format(rollup_pair_s,count))
|
|
1838
|
-
rollup_pair_html = rollup_pair.replace(',',' → ')
|
|
1839
|
-
geofence_footer += '{} ({})<br/>\n'.format(rollup_pair_html,count)
|
|
1840
|
-
|
|
1841
|
-
geofence_footer += '</div>\n'
|
|
1842
|
-
|
|
1843
|
-
return geofence_footer
|
|
1844
|
-
|
|
1845
|
-
# ...def generate_geofence_adjustment_html_summary(...)
|
|
1846
|
-
|
|
1847
|
-
|
|
1848
|
-
#%% Module-level globals related to taxonomy mapping and geofencing
|
|
1849
|
-
|
|
1850
|
-
# This maps a taxonomy string (e.g. mammalia;cetartiodactyla;cervidae;odocoileus;virginianus) to
|
|
1851
|
-
# a dict with keys taxon_id, common_name, kingdom, phylum, class, order, family, genus, species
|
|
1852
|
-
taxonomy_string_to_taxonomy_info = None
|
|
1853
|
-
|
|
1854
|
-
# Maps a binomial name (one, two, or three ws-delimited tokens) to the same dict described above.
|
|
1855
|
-
binomial_name_to_taxonomy_info = None
|
|
1856
|
-
|
|
1857
|
-
# Maps a common name to the same dict described above
|
|
1858
|
-
common_name_to_taxonomy_info = None
|
|
1859
|
-
|
|
1860
|
-
# Dict mapping 5-token semicolon-delimited taxonomy strings to geofencing rules
|
|
1861
|
-
taxonomy_string_to_geofencing_rules = None
|
|
1862
|
-
|
|
1863
|
-
# Maps lower-case country names to upper-case country codes
|
|
1864
|
-
country_to_country_code = None
|
|
1865
|
-
|
|
1866
|
-
# Maps upper-case country codes to lower-case country names
|
|
1867
|
-
country_code_to_country = None
|
|
1868
|
-
|
|
1869
|
-
|
|
1870
|
-
#%% Functions related to geofencing and taxonomy mapping
|
|
1871
|
-
|
|
1872
|
-
def taxonomy_info_to_taxonomy_string(taxonomy_info, include_taxon_id_and_common_name=False):
|
|
1873
|
-
"""
|
|
1874
|
-
Convert a taxonomy record in dict format to a five- or seven-token semicolon-delimited string
|
|
1875
|
-
|
|
1876
|
-
Args:
|
|
1877
|
-
taxonomy_info (dict): dict in the format stored in, e.g., taxonomy_string_to_taxonomy_info
|
|
1878
|
-
include_taxon_id_and_common_name (bool, optional): by default, this function returns a
|
|
1879
|
-
five-token string of latin names; if this argument is True, it includes the leading
|
|
1880
|
-
(GUID) and trailing (common name) tokens
|
|
1881
|
-
|
|
1882
|
-
Returns:
|
|
1883
|
-
str: string in the format used as keys in, e.g., taxonomy_string_to_taxonomy_info
|
|
1884
|
-
"""
|
|
1885
|
-
s = taxonomy_info['class'] + ';' + \
|
|
1886
|
-
taxonomy_info['order'] + ';' + \
|
|
1887
|
-
taxonomy_info['family'] + ';' + \
|
|
1888
|
-
taxonomy_info['genus'] + ';' + \
|
|
1889
|
-
taxonomy_info['species']
|
|
1890
|
-
|
|
1891
|
-
if include_taxon_id_and_common_name:
|
|
1892
|
-
s = taxonomy_info['taxon_id'] + ';' + s + ';' + taxonomy_info['common_name']
|
|
1893
|
-
|
|
1894
|
-
return s
|
|
1895
|
-
|
|
1896
|
-
|
|
1897
|
-
def initialize_taxonomy_info(taxonomy_file,force_init=False,encoding='cp1252'):
|
|
1898
|
-
"""
|
|
1899
|
-
Load WI taxonomy information from a .json file. Stores information in the global
|
|
1900
|
-
dicts [taxonomy_string_to_taxonomy_info], [binomial_name_to_taxonomy_info], and
|
|
1901
|
-
[common_name_to_taxonomy_info].
|
|
1902
|
-
|
|
1903
|
-
Args:
|
|
1904
|
-
taxonomy_file (str): .json file containing mappings from the short taxonomy strings
|
|
1905
|
-
to the longer strings with GUID and common name, see example below.
|
|
1906
|
-
force_init (bool, optional): if the output dicts already exist, should we
|
|
1907
|
-
re-initialize anyway?
|
|
1908
|
-
encoding (str, optional): character encoding to use when opening the .json file
|
|
1909
|
-
"""
|
|
1910
|
-
|
|
1911
|
-
if encoding is None:
|
|
1912
|
-
encoding = 'cp1252'
|
|
1913
|
-
|
|
1914
|
-
global taxonomy_string_to_taxonomy_info
|
|
1915
|
-
global binomial_name_to_taxonomy_info
|
|
1916
|
-
global common_name_to_taxonomy_info
|
|
1917
|
-
|
|
1918
|
-
if (taxonomy_string_to_taxonomy_info is not None) and (not force_init):
|
|
1919
|
-
return
|
|
1920
|
-
|
|
1921
|
-
"""
|
|
1922
|
-
Taxonomy keys are taxonomy strings, e.g.:
|
|
1923
|
-
|
|
1924
|
-
'mammalia;cetartiodactyla;cervidae;odocoileus;virginianus'
|
|
1925
|
-
|
|
1926
|
-
Taxonomy values are extended strings w/Taxon IDs and common names, e.g.:
|
|
1927
|
-
|
|
1928
|
-
'5c7ce479-8a45-40b3-ae21-7c97dfae22f5;mammalia;cetartiodactyla;cervidae;odocoileus;virginianus;white-tailed deer'
|
|
1929
|
-
"""
|
|
1930
|
-
|
|
1931
|
-
with open(taxonomy_file,encoding=encoding,errors='ignore') as f:
|
|
1932
|
-
taxonomy_table = json.load(f,strict=False)
|
|
1933
|
-
|
|
1934
|
-
# Right now I'm punting on some unusual-character issues, but here is some scrap that
|
|
1935
|
-
# might help address this in the future
|
|
1936
|
-
if False:
|
|
1937
|
-
import codecs
|
|
1938
|
-
with codecs.open(taxonomy_file,'r',encoding=encoding,errors='ignore') as f:
|
|
1939
|
-
s = f.read()
|
|
1940
|
-
import unicodedata
|
|
1941
|
-
s = unicodedata.normalize('NFKD', s).encode('ascii', 'ignore')
|
|
1942
|
-
taxonomy_table = json.loads(s,strict=False)
|
|
1943
|
-
|
|
1944
|
-
taxonomy_string_to_taxonomy_info = {}
|
|
1945
|
-
binomial_name_to_taxonomy_info = {}
|
|
1946
|
-
common_name_to_taxonomy_info = {}
|
|
1947
|
-
|
|
1948
|
-
# taxonomy_string = next(iter(taxonomy_table.keys()))
|
|
1949
|
-
for taxonomy_string in taxonomy_table.keys():
|
|
1950
|
-
|
|
1951
|
-
taxonomy_string = taxonomy_string.lower()
|
|
1952
|
-
|
|
1953
|
-
taxon_info = {}
|
|
1954
|
-
extended_string = taxonomy_table[taxonomy_string]
|
|
1955
|
-
tokens = extended_string.split(';')
|
|
1956
|
-
assert len(tokens) == 7
|
|
1957
|
-
taxon_info['taxon_id'] = tokens[0]
|
|
1958
|
-
assert len(taxon_info['taxon_id']) == 36
|
|
1959
|
-
taxon_info['kingdom'] = 'animal'
|
|
1960
|
-
taxon_info['phylum'] = 'chordata'
|
|
1961
|
-
taxon_info['class'] = tokens[1]
|
|
1962
|
-
taxon_info['order'] = tokens[2]
|
|
1963
|
-
taxon_info['family'] = tokens[3]
|
|
1964
|
-
taxon_info['genus'] = tokens[4]
|
|
1965
|
-
taxon_info['species'] = tokens[5]
|
|
1966
|
-
taxon_info['common_name'] = tokens[6]
|
|
1967
|
-
|
|
1968
|
-
if taxon_info['common_name'] != '':
|
|
1969
|
-
common_name_to_taxonomy_info[taxon_info['common_name']] = taxon_info
|
|
1970
|
-
|
|
1971
|
-
taxonomy_string_to_taxonomy_info[taxonomy_string] = taxon_info
|
|
1972
|
-
|
|
1973
|
-
binomial_name = None
|
|
1974
|
-
if len(tokens[4]) > 0 and len(tokens[5]) > 0:
|
|
1975
|
-
# strip(), but don't remove spaces from the species name;
|
|
1976
|
-
# subspecies are separated with a space, e.g. canis;lupus dingo
|
|
1977
|
-
binomial_name = tokens[4].strip() + ' ' + tokens[5].strip()
|
|
1978
|
-
elif len(tokens[4]) > 0:
|
|
1979
|
-
binomial_name = tokens[4].strip()
|
|
1980
|
-
elif len(tokens[3]) > 0:
|
|
1981
|
-
binomial_name = tokens[3].strip()
|
|
1982
|
-
elif len(tokens[2]) > 0:
|
|
1983
|
-
binomial_name = tokens[2].strip()
|
|
1984
|
-
elif len(tokens[1]) > 0:
|
|
1985
|
-
binomial_name = tokens[1].strip()
|
|
1986
|
-
if binomial_name is None:
|
|
1987
|
-
# print('Warning: no binomial name for {}'.format(taxonomy_string))
|
|
1988
|
-
pass
|
|
1989
|
-
else:
|
|
1990
|
-
binomial_name_to_taxonomy_info[binomial_name] = taxon_info
|
|
1991
|
-
|
|
1992
|
-
print('Created {} records in taxonomy_string_to_taxonomy_info'.format(len(taxonomy_string_to_taxonomy_info)))
|
|
1993
|
-
print('Created {} records in common_name_to_taxonomy_info'.format(len(common_name_to_taxonomy_info)))
|
|
1994
|
-
|
|
1995
|
-
# ...def initialize_taxonomy_info(...)
|
|
1996
|
-
|
|
1997
|
-
|
|
1998
|
-
def _parse_code_list(codes):
|
|
1999
|
-
"""
|
|
2000
|
-
Turn a list of country or state codes in string, delimited string, or list format
|
|
2001
|
-
into a list. Also does basic validity checking.
|
|
2002
|
-
"""
|
|
2003
|
-
|
|
2004
|
-
if not isinstance(codes,list):
|
|
2005
|
-
|
|
2006
|
-
assert isinstance(codes,str)
|
|
2007
|
-
|
|
2008
|
-
codes = codes.strip()
|
|
2009
|
-
|
|
2010
|
-
# This is just a single codes
|
|
2011
|
-
if ',' not in codes:
|
|
2012
|
-
codes = [codes]
|
|
2013
|
-
else:
|
|
2014
|
-
codes = codes.split(',')
|
|
2015
|
-
codes = [c.strip() for c in codes]
|
|
2016
|
-
|
|
2017
|
-
assert isinstance(codes,list)
|
|
2018
|
-
|
|
2019
|
-
codes = [c.upper().strip() for c in codes]
|
|
2020
|
-
|
|
2021
|
-
for c in codes:
|
|
2022
|
-
assert len(c) in (2,3)
|
|
2023
|
-
|
|
2024
|
-
return codes
|
|
2025
|
-
|
|
2026
|
-
|
|
2027
|
-
def _generate_csv_rows_to_block_all_countries_except(
|
|
2028
|
-
species_string,
|
|
2029
|
-
block_except_list):
|
|
2030
|
-
"""
|
|
2031
|
-
Generate rows in the format expected by geofence_fixes.csv, representing a list of
|
|
2032
|
-
allow and block rules to block all countries currently allowed for this species
|
|
2033
|
-
except [allow_countries], and add allow rules these countries.
|
|
2034
|
-
"""
|
|
2035
|
-
|
|
2036
|
-
assert is_valid_taxonomy_string(species_string), \
|
|
2037
|
-
'{} is not a valid taxonomy string'.format(species_string)
|
|
2038
|
-
|
|
2039
|
-
global taxonomy_string_to_taxonomy_info
|
|
2040
|
-
global binomial_name_to_taxonomy_info
|
|
2041
|
-
global common_name_to_taxonomy_info
|
|
2042
|
-
|
|
2043
|
-
assert taxonomy_string_to_geofencing_rules is not None, \
|
|
2044
|
-
'Initialize geofencing prior to species lookup'
|
|
2045
|
-
assert taxonomy_string_to_taxonomy_info is not None, \
|
|
2046
|
-
'Initialize taxonomy lookup prior to species lookup'
|
|
2047
|
-
|
|
2048
|
-
geofencing_rules_this_species = \
|
|
2049
|
-
taxonomy_string_to_geofencing_rules[species_string]
|
|
2050
|
-
|
|
2051
|
-
allowed_countries = []
|
|
2052
|
-
if 'allow' in geofencing_rules_this_species:
|
|
2053
|
-
allowed_countries.extend(geofencing_rules_this_species['allow'])
|
|
2054
|
-
|
|
2055
|
-
blocked_countries = []
|
|
2056
|
-
if 'block' in geofencing_rules_this_species:
|
|
2057
|
-
blocked_countries.extend(geofencing_rules_this_species['block'])
|
|
2058
|
-
|
|
2059
|
-
block_except_list = _parse_code_list(block_except_list)
|
|
2060
|
-
|
|
2061
|
-
countries_to_block = []
|
|
2062
|
-
countries_to_allow = []
|
|
2063
|
-
|
|
2064
|
-
# country = allowed_countries[0]
|
|
2065
|
-
for country in allowed_countries:
|
|
2066
|
-
if country not in block_except_list and country not in blocked_countries:
|
|
2067
|
-
countries_to_block.append(country)
|
|
2068
|
-
|
|
2069
|
-
for country in block_except_list:
|
|
2070
|
-
if country in blocked_countries:
|
|
2071
|
-
raise ValueError("I can't allow a country that has already been blocked")
|
|
2072
|
-
if country not in allowed_countries:
|
|
2073
|
-
countries_to_allow.append(country)
|
|
2074
|
-
|
|
2075
|
-
rows = generate_csv_rows_for_species(species_string,
|
|
2076
|
-
allow_countries=countries_to_allow,
|
|
2077
|
-
block_countries=countries_to_block)
|
|
2078
|
-
|
|
2079
|
-
return rows
|
|
2080
|
-
|
|
2081
|
-
# ...def _generate_csv_rows_to_block_all_countries_except(...)
|
|
2082
|
-
|
|
2083
|
-
|
|
2084
|
-
def generate_csv_rows_for_species(species_string,
|
|
2085
|
-
allow_countries=None,
|
|
2086
|
-
block_countries=None,
|
|
2087
|
-
allow_states=None,
|
|
2088
|
-
block_states=None):
|
|
2089
|
-
"""
|
|
2090
|
-
Generate rows in the format expected by geofence_fixes.csv, representing a list of
|
|
2091
|
-
allow and/or block rules for the specified species and countries/states. Does not check
|
|
2092
|
-
that the rules make sense; e.g. nothing will stop you in this function from both allowing
|
|
2093
|
-
and blocking a country.
|
|
2094
|
-
|
|
2095
|
-
Args:
|
|
2096
|
-
species_string (str): five-token string in semicolon-delimited WI taxonomy format
|
|
2097
|
-
allow_countries (list or str, optional): three-letter country codes, list of
|
|
2098
|
-
country codes, or comma-separated list of country codes to allow
|
|
2099
|
-
block_countries (list or str, optional): three-letter country codes, list of
|
|
2100
|
-
country codes, or comma-separated list of country codes to block
|
|
2101
|
-
allow_states (list or str, optional): two-letter state codes, list of
|
|
2102
|
-
state codes, or comma-separated list of state codes to allow
|
|
2103
|
-
block_states (list or str, optional): two-letter state code, list of
|
|
2104
|
-
state codes, or comma-separated list of state codes to block
|
|
2105
|
-
|
|
2106
|
-
Returns:
|
|
2107
|
-
list of str: lines ready to be pasted into geofence_fixes.csv
|
|
2108
|
-
"""
|
|
2109
|
-
|
|
2110
|
-
assert is_valid_taxonomy_string(species_string), \
|
|
2111
|
-
'{} is not a valid taxonomy string'.format(species_string)
|
|
2112
|
-
|
|
2113
|
-
lines = []
|
|
2114
|
-
|
|
2115
|
-
if allow_countries is not None:
|
|
2116
|
-
allow_countries = _parse_code_list(allow_countries)
|
|
2117
|
-
for country in allow_countries:
|
|
2118
|
-
lines.append(species_string + ',allow,' + country + ',')
|
|
2119
|
-
|
|
2120
|
-
if block_countries is not None:
|
|
2121
|
-
block_countries = _parse_code_list(block_countries)
|
|
2122
|
-
for country in block_countries:
|
|
2123
|
-
lines.append(species_string + ',block,' + country + ',')
|
|
2124
|
-
|
|
2125
|
-
if allow_states is not None:
|
|
2126
|
-
allow_states = _parse_code_list(allow_states)
|
|
2127
|
-
for state in allow_states:
|
|
2128
|
-
lines.append(species_string + ',allow,USA,' + state)
|
|
2129
|
-
|
|
2130
|
-
if block_states is not None:
|
|
2131
|
-
block_states = _parse_code_list(block_states)
|
|
2132
|
-
for state in block_states:
|
|
2133
|
-
lines.append(species_string + ',block,USA,' + state)
|
|
2134
|
-
|
|
2135
|
-
return lines
|
|
2136
|
-
|
|
2137
|
-
# ...def generate_csv_rows_for_species(...)
|
|
2138
|
-
|
|
2139
|
-
|
|
2140
|
-
def initialize_geofencing(geofencing_file,country_code_file,force_init=False):
|
|
2141
|
-
"""
|
|
2142
|
-
Load geofencing information from a .json file, and country code mappings from
|
|
2143
|
-
a .csv file. Stores results in the global tables [taxonomy_string_to_geofencing_rules],
|
|
2144
|
-
[country_to_country_code], and [country_code_to_country].
|
|
2145
|
-
|
|
2146
|
-
Args:
|
|
2147
|
-
geofencing_file (str): .json file with geofencing rules
|
|
2148
|
-
country_code_file (str): .csv file with country code mappings, in columns
|
|
2149
|
-
called "name" and "alpha-3", e.g. from
|
|
2150
|
-
https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes/blob/master/all/all.csv
|
|
2151
|
-
force_init (bool, optional): if the output dicts already exist, should we
|
|
2152
|
-
re-initialize anyway?
|
|
2153
|
-
"""
|
|
2154
|
-
|
|
2155
|
-
global taxonomy_string_to_geofencing_rules
|
|
2156
|
-
global country_to_country_code
|
|
2157
|
-
global country_code_to_country
|
|
2158
|
-
|
|
2159
|
-
if (country_to_country_code is not None) and \
|
|
2160
|
-
(country_code_to_country is not None) and \
|
|
2161
|
-
(taxonomy_string_to_geofencing_rules is not None) and \
|
|
2162
|
-
(not force_init):
|
|
2163
|
-
return
|
|
2164
|
-
|
|
2165
|
-
# Read country code information
|
|
2166
|
-
country_code_df = pd.read_csv(country_code_file)
|
|
2167
|
-
country_to_country_code = {}
|
|
2168
|
-
country_code_to_country = {}
|
|
2169
|
-
for i_row,row in country_code_df.iterrows():
|
|
2170
|
-
country_to_country_code[row['name'].lower()] = row['alpha-3'].upper()
|
|
2171
|
-
country_code_to_country[row['alpha-3'].upper()] = row['name'].lower()
|
|
2172
|
-
|
|
2173
|
-
# Read geofencing information
|
|
2174
|
-
with open(geofencing_file,'r',encoding='utf-8') as f:
|
|
2175
|
-
taxonomy_string_to_geofencing_rules = json.load(f)
|
|
2176
|
-
|
|
2177
|
-
"""
|
|
2178
|
-
Geofencing keys are taxonomy strings, e.g.:
|
|
2179
|
-
|
|
2180
|
-
'mammalia;cetartiodactyla;cervidae;odocoileus;virginianus'
|
|
2181
|
-
|
|
2182
|
-
Geofencing values are tables mapping allow/block to country codes, optionally including region/state codes, e.g.:
|
|
2183
|
-
|
|
2184
|
-
{'allow': {
|
|
2185
|
-
'ALA': [],
|
|
2186
|
-
'ARG': [],
|
|
2187
|
-
...
|
|
2188
|
-
'SUR': [],
|
|
2189
|
-
'TTO': [],
|
|
2190
|
-
'USA': ['AL',
|
|
2191
|
-
'AR',
|
|
2192
|
-
'AZ',
|
|
2193
|
-
...
|
|
2194
|
-
}
|
|
2195
|
-
"""
|
|
2196
|
-
|
|
2197
|
-
# Validate
|
|
2198
|
-
|
|
2199
|
-
# species_string = next(iter(taxonomy_string_to_geofencing_rules.keys()))
|
|
2200
|
-
for species_string in taxonomy_string_to_geofencing_rules.keys():
|
|
2201
|
-
|
|
2202
|
-
species_rules = taxonomy_string_to_geofencing_rules[species_string]
|
|
2203
|
-
|
|
2204
|
-
if len(species_rules.keys()) > 1:
|
|
2205
|
-
print('Warning: taxon {} has both allow and block rules'.format(species_string))
|
|
2206
|
-
|
|
2207
|
-
for rule_type in species_rules.keys():
|
|
2208
|
-
|
|
2209
|
-
assert rule_type in ('allow','block')
|
|
2210
|
-
all_country_rules_this_species = species_rules[rule_type]
|
|
2211
|
-
|
|
2212
|
-
for country_code in all_country_rules_this_species.keys():
|
|
2213
|
-
assert country_code in country_code_to_country
|
|
2214
|
-
region_rules = all_country_rules_this_species[country_code]
|
|
2215
|
-
# Right now we only have regional rules for the USA; these may be part of
|
|
2216
|
-
# allow or block rules.
|
|
2217
|
-
if len(region_rules) > 0:
|
|
2218
|
-
assert country_code == 'USA'
|
|
2219
|
-
|
|
2220
|
-
# ...for each species
|
|
2221
|
-
|
|
2222
|
-
# ...def initialize_geofencing(...)
|
|
2223
|
-
|
|
2224
|
-
|
|
2225
|
-
def _species_string_to_canonical_species_string(species):
|
|
2226
|
-
"""
|
|
2227
|
-
Convert a string that may be a 5-token species string, a binomial name,
|
|
2228
|
-
or a common name into a 5-token species string, using taxonomic lookup.
|
|
2229
|
-
"""
|
|
2230
|
-
|
|
2231
|
-
global taxonomy_string_to_taxonomy_info
|
|
2232
|
-
global binomial_name_to_taxonomy_info
|
|
2233
|
-
global common_name_to_taxonomy_info
|
|
2234
|
-
|
|
2235
|
-
assert taxonomy_string_to_geofencing_rules is not None, \
|
|
2236
|
-
'Initialize geofencing prior to species lookup'
|
|
2237
|
-
assert taxonomy_string_to_taxonomy_info is not None, \
|
|
2238
|
-
'Initialize taxonomy lookup prior to species lookup'
|
|
2239
|
-
|
|
2240
|
-
species = species.lower()
|
|
2241
|
-
|
|
2242
|
-
# Turn "species" into a taxonomy string
|
|
2243
|
-
|
|
2244
|
-
# If this is already a taxonomy string...
|
|
2245
|
-
if len(species.split(';')) == 5:
|
|
2246
|
-
taxonomy_string = species
|
|
2247
|
-
# If this is a common name...
|
|
2248
|
-
elif species in common_name_to_taxonomy_info:
|
|
2249
|
-
taxonomy_info = common_name_to_taxonomy_info[species]
|
|
2250
|
-
taxonomy_string = taxonomy_info_to_taxonomy_string(taxonomy_info)
|
|
2251
|
-
# If this is a binomial name...
|
|
2252
|
-
elif (species in binomial_name_to_taxonomy_info):
|
|
2253
|
-
taxonomy_info = binomial_name_to_taxonomy_info[species]
|
|
2254
|
-
taxonomy_string = taxonomy_info_to_taxonomy_string(taxonomy_info)
|
|
2255
|
-
else:
|
|
2256
|
-
raise ValueError('Could not find taxonomic information for {}'.format(species))
|
|
2257
|
-
|
|
2258
|
-
return taxonomy_string
|
|
2259
|
-
|
|
2260
|
-
|
|
2261
|
-
def species_allowed_in_country(species,country,state=None,return_status=False):
|
|
2262
|
-
"""
|
|
2263
|
-
Determines whether [species] is allowed in [country], according to
|
|
2264
|
-
already-initialized geofencing rules.
|
|
2265
|
-
|
|
2266
|
-
Args:
|
|
2267
|
-
species (str): can be a common name, a binomial name, or a species string
|
|
2268
|
-
country (str): country name or three-letter code
|
|
2269
|
-
state (str, optional): two-letter US state code
|
|
2270
|
-
return_status (bool, optional): by default, this function returns a bool;
|
|
2271
|
-
if you want to know *why* [species] is allowed/not allowed, settings
|
|
2272
|
-
return_status to True will return additional information.
|
|
2273
|
-
|
|
2274
|
-
Returns:
|
|
2275
|
-
bool or str: typically returns True if [species] is allowed in [country], else
|
|
2276
|
-
False. Returns a more detailed string if return_status is set.
|
|
2277
|
-
"""
|
|
2278
|
-
|
|
2279
|
-
global taxonomy_string_to_taxonomy_info
|
|
2280
|
-
global binomial_name_to_taxonomy_info
|
|
2281
|
-
global common_name_to_taxonomy_info
|
|
2282
|
-
|
|
2283
|
-
assert taxonomy_string_to_geofencing_rules is not None, \
|
|
2284
|
-
'Initialize geofencing prior to species lookup'
|
|
2285
|
-
assert taxonomy_string_to_taxonomy_info is not None, \
|
|
2286
|
-
'Initialize taxonomy lookup prior to species lookup'
|
|
2287
|
-
|
|
2288
|
-
taxonomy_string = _species_string_to_canonical_species_string(species)
|
|
2289
|
-
|
|
2290
|
-
# Normalize [state]
|
|
2291
|
-
|
|
2292
|
-
if state is not None:
|
|
2293
|
-
state = state.upper()
|
|
2294
|
-
assert len(state) == 2
|
|
2295
|
-
|
|
2296
|
-
# Turn "country" into a country code
|
|
2297
|
-
|
|
2298
|
-
if len(country) == 3:
|
|
2299
|
-
assert country.upper() in country_code_to_country
|
|
2300
|
-
country = country.upper()
|
|
2301
|
-
else:
|
|
2302
|
-
assert country.lower() in country_to_country_code
|
|
2303
|
-
country = country_to_country_code[country.lower()]
|
|
2304
|
-
|
|
2305
|
-
country_code = country.upper()
|
|
2306
|
-
|
|
2307
|
-
# Species with no rules are allowed everywhere
|
|
2308
|
-
if taxonomy_string not in taxonomy_string_to_geofencing_rules:
|
|
2309
|
-
status = 'allow_by_default'
|
|
2310
|
-
if return_status:
|
|
2311
|
-
return status
|
|
2312
|
-
else:
|
|
2313
|
-
return True
|
|
2314
|
-
|
|
2315
|
-
geofencing_rules_this_species = taxonomy_string_to_geofencing_rules[taxonomy_string]
|
|
2316
|
-
allowed_countries = []
|
|
2317
|
-
blocked_countries = []
|
|
2318
|
-
|
|
2319
|
-
rule_types_this_species = list(geofencing_rules_this_species.keys())
|
|
2320
|
-
for rule_type in rule_types_this_species:
|
|
2321
|
-
assert rule_type in ('allow','block')
|
|
2322
|
-
|
|
2323
|
-
if 'block' in rule_types_this_species:
|
|
2324
|
-
blocked_countries = list(geofencing_rules_this_species['block'])
|
|
2325
|
-
if 'allow' in rule_types_this_species:
|
|
2326
|
-
allowed_countries = list(geofencing_rules_this_species['allow'])
|
|
2327
|
-
|
|
2328
|
-
status = None
|
|
2329
|
-
|
|
2330
|
-
# The convention is that block rules win over allow rules
|
|
2331
|
-
if country_code in blocked_countries:
|
|
2332
|
-
if country_code in allowed_countries:
|
|
2333
|
-
status = 'blocked_over_allow'
|
|
2334
|
-
else:
|
|
2335
|
-
status = 'blocked'
|
|
2336
|
-
elif country_code in allowed_countries:
|
|
2337
|
-
status = 'allowed'
|
|
2338
|
-
elif len(allowed_countries) > 0:
|
|
2339
|
-
# The convention is that if allow rules exist, any country not on that list
|
|
2340
|
-
# is blocked.
|
|
2341
|
-
status = 'block_not_on_country_allow_list'
|
|
2342
|
-
else:
|
|
2343
|
-
# Only block rules exist for this species, and they don't include this country
|
|
2344
|
-
assert len(blocked_countries) > 0
|
|
2345
|
-
status = 'allow_not_on_block_list'
|
|
2346
|
-
|
|
2347
|
-
# Now let's see whether we have to deal with any regional rules.
|
|
2348
|
-
#
|
|
2349
|
-
# Right now regional rules only exist for the US.
|
|
2350
|
-
if (country_code == 'USA') and ('USA' in geofencing_rules_this_species[rule_type]):
|
|
2351
|
-
|
|
2352
|
-
if state is None:
|
|
2353
|
-
|
|
2354
|
-
state_list = geofencing_rules_this_species[rule_type][country_code]
|
|
2355
|
-
if len(state_list) > 0:
|
|
2356
|
-
assert status.startswith('allow')
|
|
2357
|
-
status = 'allow_no_state'
|
|
2358
|
-
|
|
2359
|
-
else:
|
|
2360
|
-
|
|
2361
|
-
state_list = geofencing_rules_this_species[rule_type][country_code]
|
|
2362
|
-
|
|
2363
|
-
if state in state_list:
|
|
2364
|
-
# If the state is on the list, do what the list says
|
|
2365
|
-
if rule_type == 'allow':
|
|
2366
|
-
status = 'allow_on_state_allow_list'
|
|
2367
|
-
else:
|
|
2368
|
-
status = 'block_on_state_block_list'
|
|
2369
|
-
else:
|
|
2370
|
-
# If the state is not on the list, do the opposite of what the list says
|
|
2371
|
-
if rule_type == 'allow':
|
|
2372
|
-
status = 'block_not_on_state_allow_list'
|
|
2373
|
-
else:
|
|
2374
|
-
status = 'allow_not_on_state_block_list'
|
|
2375
|
-
|
|
2376
|
-
if return_status:
|
|
2377
|
-
return status
|
|
2378
|
-
else:
|
|
2379
|
-
if status.startswith('allow'):
|
|
2380
|
-
return True
|
|
2381
|
-
else:
|
|
2382
|
-
assert status.startswith('block')
|
|
2383
|
-
return False
|
|
2384
|
-
|
|
2385
|
-
# ...def species_allowed_in_country(...)
|
|
2386
|
-
|
|
2387
|
-
|
|
2388
|
-
def export_geofence_data_to_csv(csv_fn, include_common_names=True):
|
|
2389
|
-
"""
|
|
2390
|
-
Converts the geofence .json representation into an equivalent .csv representation,
|
|
2391
|
-
with one taxon per row and one region per column. Empty values indicate non-allowed
|
|
2392
|
-
combinations, positive numbers indicate allowed combinations. Negative values
|
|
2393
|
-
are reserved for specific non-allowed combinations.
|
|
2394
|
-
|
|
2395
|
-
Module-global geofence data should already have been initialized with
|
|
2396
|
-
initialize_geofencing().
|
|
2397
|
-
|
|
2398
|
-
Args:
|
|
2399
|
-
csv_fn (str): output .csv file
|
|
2400
|
-
include_common_names (bool, optional): include a column for common names
|
|
2401
|
-
|
|
2402
|
-
Returns:
|
|
2403
|
-
dataframe: the pandas representation of the csv output file
|
|
2404
|
-
"""
|
|
2405
|
-
|
|
2406
|
-
global taxonomy_string_to_geofencing_rules
|
|
2407
|
-
global taxonomy_string_to_taxonomy_info
|
|
2408
|
-
|
|
2409
|
-
all_taxa = sorted(list(taxonomy_string_to_geofencing_rules.keys()))
|
|
2410
|
-
print('Preparing geofencing export for {} taxa'.format(len(all_taxa)))
|
|
2411
|
-
|
|
2412
|
-
all_regions = set()
|
|
2413
|
-
|
|
2414
|
-
# taxon = all_taxa[0]
|
|
2415
|
-
for taxon in all_taxa:
|
|
2416
|
-
|
|
2417
|
-
taxon_rules = taxonomy_string_to_geofencing_rules[taxon]
|
|
2418
|
-
for rule_type in taxon_rules.keys():
|
|
2419
|
-
|
|
2420
|
-
assert rule_type in ('allow','block')
|
|
2421
|
-
all_country_rules_this_species = taxon_rules[rule_type]
|
|
2422
|
-
|
|
2423
|
-
for country_code in all_country_rules_this_species.keys():
|
|
2424
|
-
all_regions.add(country_code)
|
|
2425
|
-
assert country_code in country_code_to_country
|
|
2426
|
-
assert len(country_code) == 3
|
|
2427
|
-
region_rules = all_country_rules_this_species[country_code]
|
|
2428
|
-
if len(region_rules) > 0:
|
|
2429
|
-
assert country_code == 'USA'
|
|
2430
|
-
for region_name in region_rules:
|
|
2431
|
-
assert len(region_name) == 2
|
|
2432
|
-
assert isinstance(region_name,str)
|
|
2433
|
-
all_regions.add(country_code + ':' + region_name)
|
|
2434
|
-
|
|
2435
|
-
all_regions = sorted(list(all_regions))
|
|
2436
|
-
|
|
2437
|
-
print('Found {} regions'.format(len(all_regions)))
|
|
2438
|
-
|
|
2439
|
-
n_allowed = 0
|
|
2440
|
-
df = pd.DataFrame(index=all_taxa,columns=all_regions)
|
|
2441
|
-
# df = df.fillna(np.nan)
|
|
2442
|
-
|
|
2443
|
-
for taxon in tqdm(all_taxa):
|
|
2444
|
-
for region in all_regions:
|
|
2445
|
-
tokens = region.split(':')
|
|
2446
|
-
country_code = tokens[0]
|
|
2447
|
-
state_code = None
|
|
2448
|
-
if len(tokens) > 1:
|
|
2449
|
-
state_code = tokens[1]
|
|
2450
|
-
allowed = species_allowed_in_country(species=taxon,
|
|
2451
|
-
country=country_code,
|
|
2452
|
-
state=state_code,
|
|
2453
|
-
return_status=False)
|
|
2454
|
-
if allowed:
|
|
2455
|
-
n_allowed += 1
|
|
2456
|
-
df.loc[taxon,region] = 1
|
|
2457
|
-
|
|
2458
|
-
# ...for each region
|
|
2459
|
-
|
|
2460
|
-
# ...for each taxon
|
|
2461
|
-
|
|
2462
|
-
print('Allowed {} of {} combinations'.format(n_allowed,len(all_taxa)*len(all_regions)))
|
|
2463
|
-
|
|
2464
|
-
# Before saving, convert columns with numeric values to integers
|
|
2465
|
-
for col in df.columns:
|
|
2466
|
-
# Check whether each column has any non-NaN values that could be integers
|
|
2467
|
-
if df[col].notna().any() and pd.to_numeric(df[col], errors='coerce').notna().any():
|
|
2468
|
-
# Convert column to Int64 type (pandas nullable integer type)
|
|
2469
|
-
df[col] = pd.to_numeric(df[col], errors='coerce').astype('Int64')
|
|
2470
|
-
|
|
2471
|
-
if include_common_names:
|
|
2472
|
-
df.insert(loc=0,column='common_name',value='')
|
|
2473
|
-
for taxon in all_taxa:
|
|
2474
|
-
if taxon in taxonomy_string_to_taxonomy_info:
|
|
2475
|
-
taxonomy_info = taxonomy_string_to_taxonomy_info[taxon]
|
|
2476
|
-
common_name = taxonomy_info['common_name']
|
|
2477
|
-
assert isinstance(common_name,str) and len(common_name) < 50
|
|
2478
|
-
df.loc[taxon,'common_name'] = common_name
|
|
2479
|
-
|
|
2480
|
-
df.to_csv(csv_fn,index=True,header=True)
|
|
2481
|
-
|
|
2482
|
-
# ...def export_geofence_data_to_csv(...)
|
|
2483
|
-
|
|
2484
|
-
|
|
2485
|
-
#%% Interactive driver(s)
|
|
2486
|
-
|
|
2487
|
-
if False:
|
|
2488
|
-
|
|
2489
|
-
pass
|
|
2490
|
-
|
|
2491
|
-
#%% Shared cell to initialize geofencing and taxonomy information
|
|
2492
|
-
|
|
2493
|
-
from megadetector.utils.wi_utils import species_allowed_in_country # noqa
|
|
2494
|
-
from megadetector.utils.wi_utils import initialize_geofencing, initialize_taxonomy_info # noqa
|
|
2495
|
-
from megadetector.utils.wi_utils import _species_string_to_canonical_species_string # noqa
|
|
2496
|
-
from megadetector.utils.wi_utils import generate_csv_rows_for_species # noqa
|
|
2497
|
-
from megadetector.utils.wi_utils import _generate_csv_rows_to_block_all_countries_except # noqa
|
|
2498
|
-
|
|
2499
|
-
from megadetector.utils.wi_utils import taxonomy_string_to_geofencing_rules # noqa
|
|
2500
|
-
from megadetector.utils.wi_utils import taxonomy_string_to_taxonomy_info # noqa
|
|
2501
|
-
from megadetector.utils.wi_utils import common_name_to_taxonomy_info # noqa
|
|
2502
|
-
from megadetector.utils.wi_utils import binomial_name_to_taxonomy_info # noqa
|
|
2503
|
-
from megadetector.utils.wi_utils import country_to_country_code # noqa
|
|
2504
|
-
from megadetector.utils.wi_utils import country_code_to_country # noqa
|
|
2505
|
-
|
|
2506
|
-
model_base = os.path.expanduser('~/models/speciesnet')
|
|
2507
|
-
geofencing_file = os.path.join(model_base,'crop','geofence_release.2025.02.27.0702.json')
|
|
2508
|
-
country_code_file = os.path.join(model_base,'country-codes.csv')
|
|
2509
|
-
# encoding = 'cp1252'; taxonomy_file = r'g:\temp\taxonomy_mapping-' + encoding + '.json'
|
|
2510
|
-
encoding = None; taxonomy_file = os.path.join(model_base,'taxonomy_mapping.json')
|
|
2511
|
-
|
|
2512
|
-
initialize_geofencing(geofencing_file, country_code_file, force_init=True)
|
|
2513
|
-
initialize_taxonomy_info(taxonomy_file, force_init=True, encoding=encoding)
|
|
2514
|
-
|
|
2515
|
-
# from megadetector.utils.path_utils import open_file; open_file(geofencing_file)
|
|
2516
|
-
|
|
2517
|
-
|
|
2518
|
-
#%% Generate a block list
|
|
2519
|
-
|
|
2520
|
-
taxon_name = 'cercopithecidae'
|
|
2521
|
-
taxonomy_info = binomial_name_to_taxonomy_info[taxon_name]
|
|
2522
|
-
taxonomy_string_short = taxonomy_info_to_taxonomy_string(taxonomy_info)
|
|
2523
|
-
assert len(taxonomy_string_short.split(';')) == 5
|
|
2524
|
-
|
|
2525
|
-
block_list = 'ATG,BHS,BRB,BLZ,CAN,CRI,CUB,DMA,DOM,SLV,GRD,GTM,HTI,HND,JAM,' + \
|
|
2526
|
-
'MEX,NIC,PAN,KNA,LCA,VCT,TTO,USA,ARG,BOL,BRA,CHL,COL,ECU,GUY,PRY,PER,' + \
|
|
2527
|
-
'SUR,URY,VEN,ALB,AND,ARM,AUT,AZE,BLR,BEL,BIH,BGR,HRV,CYP,CZE,DNK,EST,FIN,' + \
|
|
2528
|
-
'FRA,GEO,DEU,GRC,HUN,ISL,IRL,ITA,KAZ,XKX,LVA,LIE,LTU,LUX,MLT,MDA,MCO,MNE,' + \
|
|
2529
|
-
'NLD,MKD,NOR,POL,PRT,ROU,RUS,SMR,SRB,SVK,SVN,ESP,SWE,CHE,TUR,UKR,GBR,VAT,AUS'
|
|
2530
|
-
|
|
2531
|
-
rows = generate_csv_rows_for_species(species_string=taxonomy_string_short,
|
|
2532
|
-
allow_countries=None,
|
|
2533
|
-
block_countries=block_list,
|
|
2534
|
-
allow_states=None,
|
|
2535
|
-
block_states=None)
|
|
2536
|
-
|
|
2537
|
-
# import clipboard; clipboard.copy('\n'.join(rows))
|
|
2538
|
-
print(rows)
|
|
2539
|
-
|
|
2540
|
-
|
|
2541
|
-
#%% Look up taxonomy info for a common name
|
|
2542
|
-
|
|
2543
|
-
common_name = 'domestic horse'
|
|
2544
|
-
info = common_name_to_taxonomy_info[common_name]
|
|
2545
|
-
s = taxonomy_info_to_taxonomy_string(info,include_taxon_id_and_common_name=True)
|
|
2546
|
-
print(s)
|
|
2547
|
-
|
|
2548
|
-
|
|
2549
|
-
#%% Generate a block-except list
|
|
2550
|
-
|
|
2551
|
-
block_except_list = 'ALB,AND,ARM,AUT,AZE,BEL,BGR,BIH,BLR,CHE,CYP,CZE,DEU,DNK,ESP,EST,FIN,FRA,GBR,GEO,GRC,HRV,HUN,IRL,IRN,IRQ,ISL,ISR,ITA,KAZ,LIE,LTU,LUX,LVA,MDA,MKD,MLT,MNE,NLD,NOR,POL,PRT,ROU,RUS,SMR,SRB,SVK,SVN,SWE,TUR,UKR,UZB'
|
|
2552
|
-
species = 'eurasian badger'
|
|
2553
|
-
species_string = _species_string_to_canonical_species_string(species)
|
|
2554
|
-
rows = _generate_csv_rows_to_block_all_countries_except(species_string,block_except_list)
|
|
2555
|
-
|
|
2556
|
-
# import clipboard; clipboard.copy('\n'.join(rows))
|
|
2557
|
-
print(rows)
|
|
2558
|
-
|
|
2559
|
-
|
|
2560
|
-
#%% Generate an allow-list
|
|
2561
|
-
|
|
2562
|
-
taxon_name = 'potoroidae'
|
|
2563
|
-
taxonomy_info = binomial_name_to_taxonomy_info[taxon_name]
|
|
2564
|
-
taxonomy_string_short = taxonomy_info_to_taxonomy_string(taxonomy_info)
|
|
2565
|
-
assert len(taxonomy_string_short.split(';')) == 5
|
|
2566
|
-
|
|
2567
|
-
rows = generate_csv_rows_for_species(species_string=taxonomy_string_short,
|
|
2568
|
-
allow_countries=['AUS'],
|
|
2569
|
-
block_countries=None,
|
|
2570
|
-
allow_states=None,
|
|
2571
|
-
block_states=None)
|
|
2572
|
-
|
|
2573
|
-
# import clipboard; clipboard.copy('\n'.join(rows))
|
|
2574
|
-
print(rows)
|
|
2575
|
-
|
|
2576
|
-
|
|
2577
|
-
#%% Test the effects of geofence changes
|
|
2578
|
-
|
|
2579
|
-
species = 'canis lupus dingo'
|
|
2580
|
-
country = 'guatemala'
|
|
2581
|
-
species_allowed_in_country(species,country,state=None,return_status=False)
|
|
2582
|
-
|
|
2583
|
-
|
|
2584
|
-
#%% Geofencing lookups
|
|
2585
|
-
|
|
2586
|
-
# This can be a latin or common name
|
|
2587
|
-
taxon = 'potoroidae'
|
|
2588
|
-
# print(common_name_to_taxonomy_info[taxon])
|
|
2589
|
-
|
|
2590
|
-
# This can be a name or country code
|
|
2591
|
-
country = 'AUS'
|
|
2592
|
-
print(species_allowed_in_country(taxon, country))
|
|
2593
|
-
|
|
2594
|
-
|
|
2595
|
-
#%% Bulk geofence lookups
|
|
2596
|
-
|
|
2597
|
-
if True:
|
|
2598
|
-
|
|
2599
|
-
# Make sure some Guatemalan species are allowed in Guatemala
|
|
2600
|
-
all_species = [
|
|
2601
|
-
'didelphis marsupialis',
|
|
2602
|
-
'didelphis virginiana',
|
|
2603
|
-
'dasypus novemcinctus',
|
|
2604
|
-
'urocyon cinereoargenteus',
|
|
2605
|
-
'nasua narica',
|
|
2606
|
-
'eira barbara',
|
|
2607
|
-
'conepatus semistriatus',
|
|
2608
|
-
'leopardus wiedii',
|
|
2609
|
-
'leopardus pardalis',
|
|
2610
|
-
'puma concolor',
|
|
2611
|
-
'panthera onca',
|
|
2612
|
-
'tapirus bairdii',
|
|
2613
|
-
'pecari tajacu',
|
|
2614
|
-
'tayassu pecari',
|
|
2615
|
-
'mazama temama',
|
|
2616
|
-
'mazama pandora',
|
|
2617
|
-
'odocoileus virginianus',
|
|
2618
|
-
'dasyprocta punctata',
|
|
2619
|
-
'tinamus major',
|
|
2620
|
-
'crax rubra',
|
|
2621
|
-
'meleagris ocellata',
|
|
2622
|
-
'gulo gulo' # Consistency check; this species should be blocked
|
|
2623
|
-
]
|
|
2624
|
-
|
|
2625
|
-
country ='guatemala'
|
|
2626
|
-
state = None
|
|
2627
|
-
|
|
2628
|
-
if True:
|
|
2629
|
-
|
|
2630
|
-
# Make sure some PNW species are allowed in the right states
|
|
2631
|
-
all_species = \
|
|
2632
|
-
['Taxidea taxus',
|
|
2633
|
-
'Martes americana',
|
|
2634
|
-
'Ovis canadensis',
|
|
2635
|
-
'Ursus americanus',
|
|
2636
|
-
'Lynx rufus',
|
|
2637
|
-
'Lynx canadensis',
|
|
2638
|
-
'Puma concolor',
|
|
2639
|
-
'Canis latrans',
|
|
2640
|
-
'Cervus canadensis',
|
|
2641
|
-
'Canis lupus',
|
|
2642
|
-
'Ursus arctos',
|
|
2643
|
-
'Marmota caligata',
|
|
2644
|
-
'Alces alces',
|
|
2645
|
-
'Oreamnos americanus',
|
|
2646
|
-
'Odocoileus hemionus',
|
|
2647
|
-
'Vulpes vulpes',
|
|
2648
|
-
'Lepus americanus',
|
|
2649
|
-
'Mephitis mephitis',
|
|
2650
|
-
'Odocoileus virginianus',
|
|
2651
|
-
'Marmota flaviventris',
|
|
2652
|
-
'tapirus bairdii' # Consistency check; this species should be blocked
|
|
2653
|
-
]
|
|
2654
|
-
|
|
2655
|
-
all_species = [s.lower() for s in all_species]
|
|
2656
|
-
|
|
2657
|
-
country = 'USA'
|
|
2658
|
-
state = 'WA'
|
|
2659
|
-
# state = 'MT'
|
|
2660
|
-
|
|
2661
|
-
if True:
|
|
2662
|
-
|
|
2663
|
-
all_species = ['ammospermophilus harrisii']
|
|
2664
|
-
country = 'USA'
|
|
2665
|
-
state = 'CA'
|
|
2666
|
-
|
|
2667
|
-
for species in all_species:
|
|
2668
|
-
|
|
2669
|
-
taxonomy_info = binomial_name_to_taxonomy_info[species]
|
|
2670
|
-
allowed = species_allowed_in_country(species, country, state=state, return_status=True)
|
|
2671
|
-
state_string = ''
|
|
2672
|
-
if state is not None:
|
|
2673
|
-
state_string = ' ({})'.format(state)
|
|
2674
|
-
print('{} ({}) for {}{}: {}'.format(taxonomy_info['common_name'],species,country,state_string,allowed))
|