megadetector 10.0.2__py3-none-any.whl → 10.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (30) hide show
  1. megadetector/data_management/animl_to_md.py +158 -0
  2. megadetector/data_management/zamba_to_md.py +188 -0
  3. megadetector/detection/process_video.py +165 -946
  4. megadetector/detection/pytorch_detector.py +575 -276
  5. megadetector/detection/run_detector_batch.py +629 -202
  6. megadetector/detection/run_md_and_speciesnet.py +1319 -0
  7. megadetector/detection/video_utils.py +243 -107
  8. megadetector/postprocessing/classification_postprocessing.py +12 -1
  9. megadetector/postprocessing/combine_batch_outputs.py +2 -0
  10. megadetector/postprocessing/compare_batch_results.py +21 -2
  11. megadetector/postprocessing/merge_detections.py +16 -12
  12. megadetector/postprocessing/separate_detections_into_folders.py +1 -1
  13. megadetector/postprocessing/subset_json_detector_output.py +1 -3
  14. megadetector/postprocessing/validate_batch_results.py +25 -2
  15. megadetector/tests/__init__.py +0 -0
  16. megadetector/tests/test_nms_synthetic.py +335 -0
  17. megadetector/utils/ct_utils.py +69 -5
  18. megadetector/utils/extract_frames_from_video.py +303 -0
  19. megadetector/utils/md_tests.py +583 -524
  20. megadetector/utils/path_utils.py +4 -15
  21. megadetector/utils/wi_utils.py +20 -4
  22. megadetector/visualization/visualization_utils.py +1 -1
  23. megadetector/visualization/visualize_db.py +8 -22
  24. megadetector/visualization/visualize_detector_output.py +7 -5
  25. megadetector/visualization/visualize_video_output.py +607 -0
  26. {megadetector-10.0.2.dist-info → megadetector-10.0.4.dist-info}/METADATA +134 -135
  27. {megadetector-10.0.2.dist-info → megadetector-10.0.4.dist-info}/RECORD +30 -23
  28. {megadetector-10.0.2.dist-info → megadetector-10.0.4.dist-info}/licenses/LICENSE +0 -0
  29. {megadetector-10.0.2.dist-info → megadetector-10.0.4.dist-info}/top_level.txt +0 -0
  30. {megadetector-10.0.2.dist-info → megadetector-10.0.4.dist-info}/WHEEL +0 -0
@@ -0,0 +1,158 @@
1
+ """
2
+
3
+ animl_to_md.py
4
+
5
+ Convert a .csv file produced by the Animl package:
6
+
7
+ https://github.com/conservationtechlab/animl-py
8
+
9
+ ...to a MD results file suitable for import into Timelapse.
10
+
11
+ Columns are expected to be:
12
+
13
+ file
14
+ category (MD category identifies: 1==animal, 2==person, 3==vehicle)
15
+ detection_conf
16
+ bbox1,bbox2,bbox3,bbox4
17
+ class
18
+ classification_conf
19
+
20
+ """
21
+
22
+ #%% Imports and constants
23
+
24
+ import sys
25
+ import argparse
26
+
27
+ import pandas as pd
28
+
29
+ from megadetector.utils.ct_utils import write_json
30
+ from megadetector.detection.run_detector import DEFAULT_DETECTOR_LABEL_MAP
31
+ detection_category_id_to_name = DEFAULT_DETECTOR_LABEL_MAP
32
+
33
+
34
+ #%% Main function
35
+
36
+ def animl_results_to_md_results(input_file,output_file=None):
37
+ """
38
+ Converts the .csv file [input_file] to the MD-formatted .json file [output_file].
39
+
40
+ If [output_file] is None, '.json' will be appended to the input file.
41
+ """
42
+
43
+ if output_file is None:
44
+ output_file = input_file + '.json'
45
+
46
+ df = pd.read_csv(input_file)
47
+
48
+ expected_columns = ('file','category','detection_conf',
49
+ 'bbox1','bbox2','bbox3','bbox4','class','classification_conf')
50
+
51
+ for s in expected_columns:
52
+ assert s in df.columns,\
53
+ 'Expected column {} not found'.format(s)
54
+
55
+ classification_category_name_to_id = {}
56
+ filename_to_results = {}
57
+
58
+ # i_row = 0; row = df.iloc[i_row]
59
+ for i_row,row in df.iterrows():
60
+
61
+ # Is this the first detection we've seen for this file?
62
+ if row['file'] in filename_to_results:
63
+ im = filename_to_results[row['file']]
64
+ else:
65
+ im = {}
66
+ im['detections'] = []
67
+ im['file'] = row['file']
68
+ filename_to_results[im['file']] = im
69
+
70
+ assert isinstance(row['category'],int),'Invalid category identifier in row {}'.format(im['file'])
71
+ detection_category_id = str(row['category'])
72
+ assert detection_category_id in detection_category_id_to_name,\
73
+ 'Unrecognized detection category ID {}'.format(detection_category_id)
74
+
75
+ detection = {}
76
+ detection['category'] = detection_category_id
77
+ detection['conf'] = row['detection_conf']
78
+ bbox = [row['bbox1'],row['bbox2'],row['bbox3'],row['bbox4']]
79
+ detection['bbox'] = bbox
80
+ classification_category_name = row['class']
81
+
82
+ # Have we seen this classification category before?
83
+ if classification_category_name in classification_category_name_to_id:
84
+ classification_category_id = \
85
+ classification_category_name_to_id[classification_category_name]
86
+ else:
87
+ classification_category_id = str(len(classification_category_name_to_id))
88
+ classification_category_name_to_id[classification_category_name] = \
89
+ classification_category_id
90
+
91
+ classifications = [[classification_category_id,row['classification_conf']]]
92
+ detection['classifications'] = classifications
93
+
94
+ im['detections'].append(detection)
95
+
96
+ # ...for each row
97
+
98
+ info = {}
99
+ info['format_version'] = '1.3'
100
+ info['detector'] = 'Animl'
101
+ info['classifier'] = 'Animl'
102
+
103
+ results = {}
104
+ results['info'] = info
105
+ results['detection_categories'] = detection_category_id_to_name
106
+ results['classification_categories'] = \
107
+ {v: k for k, v in classification_category_name_to_id.items()}
108
+ results['images'] = list(filename_to_results.values())
109
+
110
+ write_json(output_file,results)
111
+
112
+ # ...animl_results_to_md_results(...)
113
+
114
+
115
+ #%% Interactive driver
116
+
117
+ if False:
118
+
119
+ pass
120
+
121
+ #%%
122
+
123
+ input_file = r"G:\temp\animl-runs\animl-runs\Coati_v2\manifest.csv"
124
+ output_file = None
125
+ animl_results_to_md_results(input_file,output_file)
126
+
127
+
128
+ #%% Command-line driver
129
+
130
+ def main():
131
+ """
132
+ Command-line driver for animl_to_md
133
+ """
134
+
135
+ parser = argparse.ArgumentParser(
136
+ description='Convert an Animl-formatted .csv results file to MD-formatted .json results file')
137
+
138
+ parser.add_argument(
139
+ 'input_file',
140
+ type=str,
141
+ help='input .csv file')
142
+
143
+ parser.add_argument(
144
+ '--output_file',
145
+ type=str,
146
+ default=None,
147
+ help='output .json file (defaults to input file appended with ".json")')
148
+
149
+ if len(sys.argv[1:]) == 0:
150
+ parser.print_help()
151
+ parser.exit()
152
+
153
+ args = parser.parse_args()
154
+
155
+ animl_results_to_md_results(args.input_file,args.output_file)
156
+
157
+ if __name__ == '__main__':
158
+ main()
@@ -0,0 +1,188 @@
1
+ """
2
+
3
+ zamba_to_md.py
4
+
5
+ Convert a labels.csv file produced by Zamba Cloud to a MD results file suitable
6
+ for import into Timelapse.
7
+
8
+ Columns are expected to be:
9
+
10
+ video_uuid (not used)
11
+ original_filename (assumed to be a relative path name)
12
+ top_k_label,top_k_probability, for k = 1..N
13
+ [category name 1],[category name 2],...
14
+ corrected_label
15
+
16
+ Because the MD results file fundamentally stores detections, what we'll
17
+ actually do is create bogus detections that fill the entire image.
18
+
19
+ There is no special handling of empty/blank categories; because these results are
20
+ based on a classifier, rather than a detector (where "blank" would be the absence of
21
+ all other categories), "blank" can be queried in Timelapse just like any other class.
22
+
23
+ """
24
+
25
+ #%% Imports and constants
26
+
27
+ import sys
28
+ import argparse
29
+
30
+ import pandas as pd
31
+
32
+ from megadetector.utils.ct_utils import write_json
33
+
34
+
35
+ #%% Main function
36
+
37
+ def zamba_results_to_md_results(input_file,output_file=None):
38
+ """
39
+ Converts the .csv file [input_file] to the MD-formatted .json file [output_file].
40
+
41
+ If [output_file] is None, '.json' will be appended to the input file.
42
+
43
+ Args:
44
+ input_file (str): the .csv file to convert
45
+ output_file (str, optional): the output .json file (defaults to
46
+ [input_file].json)
47
+ """
48
+
49
+ if output_file is None:
50
+ output_file = input_file + '.json'
51
+
52
+ df = pd.read_csv(input_file)
53
+
54
+ expected_columns = ('video_uuid','corrected_label','original_filename')
55
+ for s in expected_columns:
56
+ assert s in df.columns,\
57
+ 'Expected column {} not found, are you sure this is a Zamba results .csv file?'.format(
58
+ s)
59
+
60
+ # How many results are included per file?
61
+ assert 'top_1_probability' in df.columns and 'top_1_label' in df.columns
62
+ top_k = 2
63
+ while(True):
64
+ p_string = 'top_' + str(top_k) + '_probability'
65
+ label_string = 'top_' + str(top_k) + '_label'
66
+
67
+ if p_string in df.columns:
68
+ assert label_string in df.columns,\
69
+ 'Oops, {} is a column but {} is not'.format(
70
+ p_string,label_string)
71
+ top_k += 1
72
+ continue
73
+ else:
74
+ assert label_string not in df.columns,\
75
+ 'Oops, {} is a column but {} is not'.format(
76
+ label_string,p_string)
77
+ top_k -= 1
78
+ break
79
+
80
+ print('Found {} probability column pairs'.format(top_k))
81
+
82
+ # Category names start after the fixed columns and the probability columns
83
+ category_names = []
84
+ column_names = list(df.columns)
85
+ first_category_name_index = 0
86
+ while('top_' in column_names[first_category_name_index] or \
87
+ column_names[first_category_name_index] in expected_columns):
88
+ first_category_name_index += 1
89
+
90
+ i_column = first_category_name_index
91
+ while( (i_column < len(column_names)) and (column_names[i_column] != 'corrected_label') ):
92
+ category_names.append(column_names[i_column])
93
+ i_column += 1
94
+
95
+ print('Found {} categories:\n'.format(len(category_names)))
96
+
97
+ for s in category_names:
98
+ print(s)
99
+
100
+ info = {}
101
+ info['format_version'] = '1.3'
102
+ info['detector'] = 'Zamba Cloud'
103
+ info['classifier'] = 'Zamba Cloud'
104
+
105
+ detection_category_id_to_name = {}
106
+ for category_id,category_name in enumerate(category_names):
107
+ detection_category_id_to_name[str(category_id)] = category_name
108
+ detection_category_name_to_id = {v: k for k, v in detection_category_id_to_name.items()}
109
+
110
+ images = []
111
+
112
+ # i_row = 0; row = df.iloc[i_row]
113
+ for i_row,row in df.iterrows():
114
+
115
+ im = {}
116
+ images.append(im)
117
+ im['file'] = row['original_filename']
118
+
119
+ detections = []
120
+
121
+ # k = 1
122
+ for k in range(1,top_k+1):
123
+ label = row['top_{}_label'.format(k)]
124
+ confidence = row['top_{}_probability'.format(k)]
125
+ det = {}
126
+ det['category'] = detection_category_name_to_id[label]
127
+ det['conf'] = confidence
128
+ det['bbox'] = [0,0,1.0,1.0]
129
+ detections.append(det)
130
+
131
+ im['detections'] = detections
132
+
133
+ # ...for each row
134
+
135
+ results = {}
136
+ results['info'] = info
137
+ results['detection_categories'] = detection_category_id_to_name
138
+ results['images'] = images
139
+
140
+ write_json(output_file,results)
141
+
142
+ # ...zamba_results_to_md_results(...)
143
+
144
+
145
+ #%% Interactive driver
146
+
147
+ if False:
148
+
149
+ pass
150
+
151
+ #%%
152
+
153
+ input_file = r"G:\temp\labels-job-b95a4b76-e332-4e17-ab40-03469392d36a-2023-11-04_16-28-50.060130.csv"
154
+ output_file = None
155
+ zamba_results_to_md_results(input_file,output_file)
156
+
157
+
158
+ #%% Command-line driver
159
+
160
+ def main():
161
+ """
162
+ Command-line driver for zamba_to_md
163
+ """
164
+
165
+ parser = argparse.ArgumentParser(
166
+ description='Convert a Zamba-formatted .csv results file to a MD-formatted .json results file')
167
+
168
+ parser.add_argument(
169
+ 'input_file',
170
+ type=str,
171
+ help='input .csv file')
172
+
173
+ parser.add_argument(
174
+ '--output_file',
175
+ type=str,
176
+ default=None,
177
+ help='output .json file (defaults to input file appended with ".json")')
178
+
179
+ if len(sys.argv[1:]) == 0:
180
+ parser.print_help()
181
+ parser.exit()
182
+
183
+ args = parser.parse_args()
184
+
185
+ zamba_results_to_md_results(args.input_file,args.output_file)
186
+
187
+ if __name__ == '__main__':
188
+ main()