megadetector 10.0.1__py3-none-any.whl → 10.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

@@ -1,135 +1,134 @@
1
- Metadata-Version: 2.4
2
- Name: megadetector
3
- Version: 10.0.1
4
- Summary: MegaDetector is an AI model that helps conservation folks spend less time doing boring things with camera trap images.
5
- Author-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
6
- Maintainer-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
7
- License: MIT License
8
-
9
- Permission is hereby granted, free of charge, to any person obtaining a copy
10
- of this software and associated documentation files (the "Software"), to deal
11
- in the Software without restriction, including without limitation the rights
12
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
- copies of the Software, and to permit persons to whom the Software is
14
- furnished to do so, subject to the following conditions:
15
-
16
- The above copyright notice and this permission notice shall be included in all
17
- copies or substantial portions of the Software.
18
-
19
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25
- SOFTWARE.
26
-
27
- Project-URL: Homepage, https://github.com/agentmorris/MegaDetector
28
- Project-URL: Documentation, https://megadetector.readthedocs.io
29
- Project-URL: Bug Reports, https://github.com/agentmorris/MegaDetector/issues
30
- Project-URL: Source, https://github.com/agentmorris/MegaDetector
31
- Keywords: camera traps,conservation,wildlife,ai,megadetector
32
- Classifier: Programming Language :: Python :: 3
33
- Requires-Python: <3.14,>=3.9
34
- Description-Content-Type: text/markdown
35
- License-File: LICENSE
36
- Requires-Dist: mkl==2024.0; sys_platform != "darwin"
37
- Requires-Dist: numpy>=1.26.4
38
- Requires-Dist: Pillow>=9.5
39
- Requires-Dist: tqdm>=4.64.0
40
- Requires-Dist: jsonpickle>=3.0.2
41
- Requires-Dist: humanfriendly>=10.0
42
- Requires-Dist: matplotlib>=3.8.0
43
- Requires-Dist: opencv-python>=4.8.0
44
- Requires-Dist: requests>=2.31.0
45
- Requires-Dist: pyqtree>=1.0.0
46
- Requires-Dist: scikit-learn>=1.3.1
47
- Requires-Dist: pandas>=2.1.1
48
- Requires-Dist: python-dateutil
49
- Requires-Dist: send2trash
50
- Requires-Dist: python-dateutil
51
- Requires-Dist: clipboard
52
- Requires-Dist: dill
53
- Requires-Dist: ruff
54
- Requires-Dist: pytest
55
- Requires-Dist: ultralytics-yolov5==0.1.1
56
- Requires-Dist: yolov9pip==0.0.4
57
- Dynamic: license-file
58
-
59
- # MegaDetector
60
-
61
- This package is a pip-installable version of the support/inference code for [MegaDetector](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector), an object detection model that helps conservation biologists spend less time doing boring things with camera trap images. Complete documentation for this Python package is available at [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
62
-
63
- If you aren't looking for the Python package specifically, and you just want to learn more about what MegaDetector is all about, head over to the [MegaDetector repo](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector).
64
-
65
- If you don't want to run MegaDetector, and you just want to use the utilities in this package - postprocessing, manipulating large volumes of camera trap images, etc. - you may want to check out the [megadetector-utils](https://pypi.org/project/megadetector-utils/) package, which is identical to this one, but excludes all of the PyTorch/YOLO dependencies, and is thus approximately one zillion times smaller.
66
-
67
- ## Installation
68
-
69
- Install with:
70
-
71
- `pip install megadetector`
72
-
73
- MegaDetector model weights aren't downloaded at the time you install the package, but they will be (optionally) automatically downloaded the first time you run the model.
74
-
75
- ## Package reference
76
-
77
- See [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
78
-
79
-
80
- ## Examples of things you can do with this package
81
-
82
- ### Run MegaDetector on one image and count the number of detections
83
-
84
- ```
85
- from megadetector.utils import url_utils
86
- from megadetector.visualization import visualization_utils as vis_utils
87
- from megadetector.detection import run_detector
88
-
89
- # This is the image at the bottom of this page, it has one animal in it
90
- image_url = 'https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web.jpg'
91
- temporary_filename = url_utils.download_url(image_url)
92
-
93
- image = vis_utils.load_image(temporary_filename)
94
-
95
- # This will automatically download MDv5a; you can also specify a filename.
96
- model = run_detector.load_detector('MDV5A')
97
-
98
- result = model.generate_detections_one_image(image)
99
-
100
- detections_above_threshold = [d for d in result['detections'] if d['conf'] > 0.2]
101
- print('Found {} detections above threshold'.format(len(detections_above_threshold)))
102
- ```
103
-
104
- ### Run MegaDetector on a folder of images
105
-
106
- ```
107
- from megadetector.detection.run_detector_batch import \
108
- load_and_run_detector_batch, write_results_to_file
109
- from megadetector.utils import path_utils
110
- import os
111
-
112
- # Pick a folder to run MD on recursively, and an output file
113
- image_folder = os.path.expanduser('~/megadetector_test_images')
114
- output_file = os.path.expanduser('~/megadetector_output_test.json')
115
-
116
- # Recursively find images
117
- image_file_names = path_utils.find_images(image_folder,recursive=True)
118
-
119
- # This will automatically download MDv5a; you can also specify a filename.
120
- results = load_and_run_detector_batch('MDV5A', image_file_names)
121
-
122
- # Write results to a format that Timelapse and other downstream tools like.
123
- write_results_to_file(results,
124
- output_file,
125
- relative_path_base=image_folder,
126
- detector_file=detector_filename)
127
- ```
128
-
129
- ## Contact
130
-
131
- Contact <a href="cameratraps@lila.science">cameratraps@lila.science</a> with questions.
132
-
133
- ## Gratuitous animal picture
134
-
135
- <img src="https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web_detections.jpg"><br/>Image credit University of Minnesota, from the [Orinoquía Camera Traps](http://lila.science/datasets/orinoquia-camera-traps/) data set.
1
+ Metadata-Version: 2.4
2
+ Name: megadetector
3
+ Version: 10.0.3
4
+ Summary: MegaDetector is an AI model that helps conservation folks spend less time doing boring things with camera trap images.
5
+ Author-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
6
+ Maintainer-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
7
+ License: MIT License
8
+
9
+ Permission is hereby granted, free of charge, to any person obtaining a copy
10
+ of this software and associated documentation files (the "Software"), to deal
11
+ in the Software without restriction, including without limitation the rights
12
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
+ copies of the Software, and to permit persons to whom the Software is
14
+ furnished to do so, subject to the following conditions:
15
+
16
+ The above copyright notice and this permission notice shall be included in all
17
+ copies or substantial portions of the Software.
18
+
19
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25
+ SOFTWARE.
26
+
27
+ Project-URL: Homepage, https://github.com/agentmorris/MegaDetector
28
+ Project-URL: Documentation, https://megadetector.readthedocs.io
29
+ Project-URL: Bug Reports, https://github.com/agentmorris/MegaDetector/issues
30
+ Project-URL: Source, https://github.com/agentmorris/MegaDetector
31
+ Keywords: camera traps,conservation,wildlife,ai,megadetector
32
+ Classifier: Programming Language :: Python :: 3
33
+ Requires-Python: <3.14,>=3.9
34
+ Description-Content-Type: text/markdown
35
+ License-File: LICENSE
36
+ Requires-Dist: mkl==2024.0; sys_platform != "darwin"
37
+ Requires-Dist: numpy>=1.26.4
38
+ Requires-Dist: Pillow>=9.5
39
+ Requires-Dist: tqdm>=4.64.0
40
+ Requires-Dist: jsonpickle>=3.0.2
41
+ Requires-Dist: humanfriendly>=10.0
42
+ Requires-Dist: matplotlib>=3.8.0
43
+ Requires-Dist: opencv-python>=4.8.0
44
+ Requires-Dist: requests>=2.31.0
45
+ Requires-Dist: pyqtree>=1.0.0
46
+ Requires-Dist: scikit-learn>=1.3.1
47
+ Requires-Dist: pandas>=2.1.1
48
+ Requires-Dist: python-dateutil
49
+ Requires-Dist: send2trash
50
+ Requires-Dist: clipboard
51
+ Requires-Dist: dill
52
+ Requires-Dist: ruff
53
+ Requires-Dist: pytest
54
+ Requires-Dist: ultralytics-yolov5==0.1.1
55
+ Requires-Dist: yolov9pip==0.0.4
56
+ Dynamic: license-file
57
+
58
+ # MegaDetector
59
+
60
+ This package is a pip-installable version of the support/inference code for [MegaDetector](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector), an object detection model that helps conservation biologists spend less time doing boring things with camera trap images. Complete documentation for this Python package is available at [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
61
+
62
+ If you aren't looking for the Python package specifically, and you just want to learn more about what MegaDetector is all about, head over to the [MegaDetector repo](https://github.com/agentmorris/MegaDetector/?tab=readme-ov-file#megadetector).
63
+
64
+ If you don't want to run MegaDetector, and you just want to use the utilities in this package - postprocessing, manipulating large volumes of camera trap images, etc. - you may want to check out the [megadetector-utils](https://pypi.org/project/megadetector-utils/) package, which is identical to this one, but excludes all of the PyTorch/YOLO dependencies, and is thus approximately one zillion times smaller.
65
+
66
+ ## Installation
67
+
68
+ Install with:
69
+
70
+ `pip install megadetector`
71
+
72
+ MegaDetector model weights aren't downloaded at the time you install the package, but they will be (optionally) automatically downloaded the first time you run the model.
73
+
74
+ ## Package reference
75
+
76
+ See [megadetector.readthedocs.io](https://megadetector.readthedocs.io).
77
+
78
+
79
+ ## Examples of things you can do with this package
80
+
81
+ ### Run MegaDetector on one image and count the number of detections
82
+
83
+ ```
84
+ from megadetector.utils import url_utils
85
+ from megadetector.visualization import visualization_utils as vis_utils
86
+ from megadetector.detection import run_detector
87
+
88
+ # This is the image at the bottom of this page, it has one animal in it
89
+ image_url = 'https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web.jpg'
90
+ temporary_filename = url_utils.download_url(image_url)
91
+
92
+ image = vis_utils.load_image(temporary_filename)
93
+
94
+ # This will automatically download MDv5a; you can also specify a filename.
95
+ model = run_detector.load_detector('MDV5A')
96
+
97
+ result = model.generate_detections_one_image(image)
98
+
99
+ detections_above_threshold = [d for d in result['detections'] if d['conf'] > 0.2]
100
+ print('Found {} detections above threshold'.format(len(detections_above_threshold)))
101
+ ```
102
+
103
+ ### Run MegaDetector on a folder of images
104
+
105
+ ```
106
+ from megadetector.detection.run_detector_batch import \
107
+ load_and_run_detector_batch, write_results_to_file
108
+ from megadetector.utils import path_utils
109
+ import os
110
+
111
+ # Pick a folder to run MD on recursively, and an output file
112
+ image_folder = os.path.expanduser('~/megadetector_test_images')
113
+ output_file = os.path.expanduser('~/megadetector_output_test.json')
114
+
115
+ # Recursively find images
116
+ image_file_names = path_utils.find_images(image_folder,recursive=True)
117
+
118
+ # This will automatically download MDv5a; you can also specify a filename.
119
+ results = load_and_run_detector_batch('MDV5A', image_file_names)
120
+
121
+ # Write results to a format that Timelapse and other downstream tools like.
122
+ write_results_to_file(results,
123
+ output_file,
124
+ relative_path_base=image_folder,
125
+ detector_file=detector_filename)
126
+ ```
127
+
128
+ ## Contact
129
+
130
+ Contact <a href="cameratraps@lila.science">cameratraps@lila.science</a> with questions.
131
+
132
+ ## Gratuitous animal picture
133
+
134
+ <img src="https://github.com/agentmorris/MegaDetector/raw/main/images/orinoquia-thumb-web_detections.jpg"><br/>Image credit University of Minnesota, from the [Orinoquía Camera Traps](http://lila.science/datasets/orinoquia-camera-traps/) data set.
@@ -70,20 +70,21 @@ megadetector/data_management/lila/lila_common.py,sha256=IRWs46TrxcjckLidDwXPmb5O
70
70
  megadetector/data_management/lila/test_lila_metadata_urls.py,sha256=ThU78Ks5V3rFyJSKStFcM5M2yTlhR_pgMTa6_KuF5Hs,5256
71
71
  megadetector/detection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
72
  megadetector/detection/change_detection.py,sha256=Ne3GajbH_0KPBU8ruHp4Rkr0uKd5oKAMQ3CQTRKRHgQ,28659
73
- megadetector/detection/process_video.py,sha256=yc5TdaCxUX1dBzckXwp0b7ehXjfNqAIAjQIFG5qDEy4,52388
74
- megadetector/detection/pytorch_detector.py,sha256=-0b016Oyv0IlQcRvvKnK7m0ab0aTnPBn30KLTDc230k,46861
75
- megadetector/detection/run_detector.py,sha256=mFnGU3D6jZuLTatuszftWpwf8qC_nA5rJv1HRjhL9F4,46479
76
- megadetector/detection/run_detector_batch.py,sha256=RCpGHW-WSCr87JNcG6Iuumtx30auXnSWWl4CbueCUSs,72863
73
+ megadetector/detection/process_video.py,sha256=WQMhP6kjjsQIA_V0SMQ66yAyFatt34VPgEvLvaqolnc,17292
74
+ megadetector/detection/pytorch_detector.py,sha256=Jczkwd47I8X-CtddvB7HvREYau0QNtzGAuOLVCWT9Pc,60407
75
+ megadetector/detection/run_detector.py,sha256=TTX29zxDN_O7ja61sOmMIVewUz3yRvKg1D1AAYhVEkc,46851
76
+ megadetector/detection/run_detector_batch.py,sha256=j2wu6gQ593T6N1o4-KsT6mNaGQbc8Rr6NdGAA5rxYXE,88307
77
77
  megadetector/detection/run_inference_with_yolov5_val.py,sha256=A-AQuARVVy7oR9WtenCZwzvd5U3HQwihMr4Jkiv9U0g,53515
78
+ megadetector/detection/run_md_and_speciesnet.py,sha256=WJqwu62j_XS1LUr1pak8eeKnJ8-OsX5Fy8644cmHC54,49646
78
79
  megadetector/detection/run_tiled_inference.py,sha256=wrQkKIloHBO9v2i0nZ1_Tt75iFtVrnco3Y4FafoVxdw,39382
79
80
  megadetector/detection/tf_detector.py,sha256=3b2MiqgMw8KBDzHQliUSDXWrmKpa9iZnfe6EgYpMcYo,8398
80
- megadetector/detection/video_utils.py,sha256=nk2xsbJK5e7IcXdYD7648MkicnPL8KDv-scLQAK_tQc,44095
81
+ megadetector/detection/video_utils.py,sha256=YSWpyUO1XKEemsNNfnbRbZFkt69JhFSJki3Q3Symhqg,49628
81
82
  megadetector/postprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
83
  megadetector/postprocessing/add_max_conf.py,sha256=9MYtsH2mwkiaZb7Qcor5J_HskfAj7d9srp8G_Qldpk0,1722
83
84
  megadetector/postprocessing/categorize_detections_by_size.py,sha256=DpZpRNFlyeOfWuOc6ICuENgIWDCEtiErJ_frBZp9lYM,5382
84
- megadetector/postprocessing/classification_postprocessing.py,sha256=y3y46XDydA7SvSQpfJ8XA0-PhNw3y5eB7Obvb2mDiMo,59243
85
+ megadetector/postprocessing/classification_postprocessing.py,sha256=CaT0O1-Y3FcdW1tO147etsTQhMBDoMHZwtYZbdukpMI,59916
85
86
  megadetector/postprocessing/combine_batch_outputs.py,sha256=I7cVKoAi_Dr5a8TBZGp9hU1QmkaDHB5tIgN3oGOeUfk,8417
86
- megadetector/postprocessing/compare_batch_results.py,sha256=Dn0eD5uVaaHd3vsGE3iA8qvoGZe9mAp5MGpxg7jTaic,83214
87
+ megadetector/postprocessing/compare_batch_results.py,sha256=RDlKLwea76rOWiDneSJUj6P_oMBMnD2BY4inoxLqQiw,84258
87
88
  megadetector/postprocessing/convert_output_format.py,sha256=FiwKSiMyEeNVLLfjpQtx3CrMbchwNUaW2TgLmdXGFVo,14892
88
89
  megadetector/postprocessing/create_crop_folder.py,sha256=T37HnvBEakikXY3n3Bgk5boFo_0-Z5aKnkEWXv-Ki4s,23166
89
90
  megadetector/postprocessing/detector_calibration.py,sha256=UFjJ8D6tMghatLRj3CyrtJ7vrPIJkULMNsYMIj98j2M,20495
@@ -92,14 +93,14 @@ megadetector/postprocessing/load_api_results.py,sha256=v2Nn7wSXRqAetr3V_vohxycCo
92
93
  megadetector/postprocessing/md_to_coco.py,sha256=CkN1ky4A2uZj_gUu8rmyaaxyOH00k6J5cuW_ZtKv3Ow,16932
93
94
  megadetector/postprocessing/md_to_labelme.py,sha256=r-EGyXVrSSyN6N6wqQ6pwKeV-fCNzb50ZkJqaDqjrvM,11935
94
95
  megadetector/postprocessing/md_to_wi.py,sha256=AiECnonxGBrAvWYl_hnOGvciGRZKBfF4BcJX6ZV3hyE,1211
95
- megadetector/postprocessing/merge_detections.py,sha256=wXC1dPvA2TTGyjQGeUZNFIMiEkCty6IGTiOzaVh4YxE,15664
96
+ megadetector/postprocessing/merge_detections.py,sha256=hvb4TJ6u1PyWOVQai9wZk72li1GpjmBxbpfUcV3qqXY,15749
96
97
  megadetector/postprocessing/postprocess_batch_results.py,sha256=iAoCLKgwfC_vlrUGNg9cI694nzohJLNvdT7R0FScfLI,84597
97
98
  megadetector/postprocessing/remap_detection_categories.py,sha256=BE6Ce-PGBEx1FyG3XwbYp2D5sh5xUlVf6fonaMuPMAg,7927
98
99
  megadetector/postprocessing/render_detection_confusion_matrix.py,sha256=oNvDTh5td5ynELNnhz4XaLP2HiwLuojkJlob15TpgcY,26365
99
100
  megadetector/postprocessing/separate_detections_into_folders.py,sha256=rRYvRblQFKYTV-dNt7e19Eco9eLTaGru_i9aOCGyEH0,32258
100
101
  megadetector/postprocessing/subset_json_detector_output.py,sha256=Quz6xxM1T0N6bb1zGVKMv5GHBECLwNtuu9Sb35bWPhI,32188
101
102
  megadetector/postprocessing/top_folders_to_bottom.py,sha256=zYrqMHjUZG8urh2CYphfs91ZQ620uqe-TL8jVYy8KVw,6049
102
- megadetector/postprocessing/validate_batch_results.py,sha256=alIAJj4g76m3sXDwjkj6JaJCfeoWrGLyY89xCvw64K4,11012
103
+ megadetector/postprocessing/validate_batch_results.py,sha256=9nr7LeKMdki9Y821ag2bZFQCxuq0OqINDH7cPXyVcY8,12059
103
104
  megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py,sha256=XgVeyga8iSC01MAjXxb2rn-CgJTYHqC_gfxxEoSn4aw,9420
104
105
  megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py,sha256=mJtexTuWRJbjxu-ss4GRs6Ivl7PFDWlFVSitXTbpbhA,2820
105
106
  megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py,sha256=ku4tHM5kRemDtX3leMZIpQPhz4gJEhIIFctCkn_5tCk,66781
@@ -114,26 +115,30 @@ megadetector/taxonomy_mapping/species_lookup.py,sha256=LQmX6Vx_RW0ai9QwRFNRs38P4
114
115
  megadetector/taxonomy_mapping/taxonomy_csv_checker.py,sha256=PIQh-5q43ibSgT6CdG1iwfZXZx_zOHWSv7AiHnql8d4,4782
115
116
  megadetector/taxonomy_mapping/taxonomy_graph.py,sha256=GjrDZq7HesF40cUA9sPz7bGKojRdM2KBFvcUPy69hp4,12203
116
117
  megadetector/taxonomy_mapping/validate_lila_category_mappings.py,sha256=sAKYreO1FDMxWl_0IvkmaGhiuS4OtzzMvSosovpugNc,2415
118
+ megadetector/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
119
+ megadetector/tests/test_nms_synthetic.py,sha256=oY6xmT1sLSSN7weQJ8TPTaZgAiSiZ6s43EffUhwLWIw,14707
117
120
  megadetector/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
118
- megadetector/utils/ct_utils.py,sha256=onduG59K7Fgx-Kndw4fyA3Fba8De3-Raw20EUghaSpk,58303
121
+ megadetector/utils/ct_utils.py,sha256=i8CjVxQPM50WppFRgQGzXc6-itkfW0e7heB6r5IE_0w,58740
119
122
  megadetector/utils/directory_listing.py,sha256=CZBzwg0Fus1xuRAp3ycEBjViDdwwk4eKdGq06ZERLDg,6414
123
+ megadetector/utils/extract_frames_from_video.py,sha256=vjSVgxtb5z2syHCVYWc2KdNUpc-O6yY8nkbj_wqsIvY,12255
120
124
  megadetector/utils/gpu_test.py,sha256=5zUfAVeSjH8I08eCqayFmMxL-0mix8SjJJTe5ORABvU,3544
121
- megadetector/utils/md_tests.py,sha256=Qp_UfmD6HhTJYu-u0xHaXTl9CFnYIngoYL6BEA4egaA,76435
125
+ megadetector/utils/md_tests.py,sha256=MrwJam7sjqV12xzu_wRFJd6t_5oMg8TpN795N0i_gEw,80384
122
126
  megadetector/utils/path_utils.py,sha256=tUNnx2OzDm4ND5rEhIw60DS0dUfXqByk6JJ4DKNlibU,98982
123
127
  megadetector/utils/process_utils.py,sha256=gQcpH9WYvGPUs0FhtJ5_Xvl6JsvoGz8_mnDQk0PbTRM,5673
124
128
  megadetector/utils/split_locations_into_train_val.py,sha256=fd_6pj1aWY6hybwaXvBn9kBcOHjI90U-OsTmEAGpeu8,10297
125
129
  megadetector/utils/string_utils.py,sha256=r2Maw3zbzk3EyaZcNkdqr96yP_8m4ey6v0WxlemEY9U,6155
126
130
  megadetector/utils/url_utils.py,sha256=VWYDHbWctTtw7mvbb_A5DTdF3v9V2mWhBoOP5MGE5S8,25728
127
- megadetector/utils/wi_utils.py,sha256=L9GU-hpEtQuOZHrZfe-Fkm9_XfucErCGo-v-n8gJytw,100521
131
+ megadetector/utils/wi_utils.py,sha256=4U-VFeWiy5DTIhiDmQ9ow7EPXEDruY6zVEoh4W_1bzU,101203
128
132
  megadetector/utils/write_html_image_list.py,sha256=6Tbe5wyUxoBYJgH9yVrxxKCeWF2BVre_wQMEOQJ-ZIU,9068
129
133
  megadetector/visualization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
130
134
  megadetector/visualization/plot_utils.py,sha256=uDDlOhdaJ3V8sGj2kS9b0cgszKc8WCq2_ofl6TW_XUs,10727
131
135
  megadetector/visualization/render_images_with_thumbnails.py,sha256=-XX4PG4wnrFjFTIwd0sMxXxKMxPuu0SZ_TfK3dI1x8Y,8425
132
136
  megadetector/visualization/visualization_utils.py,sha256=_f8x6Tx5mWeGYpvTbkBDOGGaxenK-qPi2ba3ndOLQDk,75865
133
- megadetector/visualization/visualize_db.py,sha256=DTqeLPqtSdY-DVAUJpGxkcHPnXHI5WJifsTuWoDKaRY,25951
134
- megadetector/visualization/visualize_detector_output.py,sha256=BBX93VFHJubMJVH0h-QNncS_VypOitPFHV_mv4NPqy0,20217
135
- megadetector-10.0.1.dist-info/licenses/LICENSE,sha256=RMa3qq-7Cyk7DdtqRj_bP1oInGFgjyHn9-PZ3PcrqIs,1100
136
- megadetector-10.0.1.dist-info/METADATA,sha256=oXLdQRPLjiUd7E-evUM-nWhZ7MoMVmIJu7dtN5Yla-M,6519
137
- megadetector-10.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
138
- megadetector-10.0.1.dist-info/top_level.txt,sha256=wf9DXa8EwiOSZ4G5IPjakSxBPxTDjhYYnqWRfR-zS4M,13
139
- megadetector-10.0.1.dist-info/RECORD,,
137
+ megadetector/visualization/visualize_db.py,sha256=8YDWSR0eMehXYdPtak9z8UUw35xV7hu-0eCuzgSLjWc,25558
138
+ megadetector/visualization/visualize_detector_output.py,sha256=uMa5QzJEr72Z3NyPBYOTHS_hs-WtN4jFQDg6suBJZ_4,20217
139
+ megadetector/visualization/visualize_video_output.py,sha256=WqG9lr9LWO5x3NW3WRKrC_DOvyftLu0VkXkmCIFtbik,20257
140
+ megadetector-10.0.3.dist-info/licenses/LICENSE,sha256=RMa3qq-7Cyk7DdtqRj_bP1oInGFgjyHn9-PZ3PcrqIs,1100
141
+ megadetector-10.0.3.dist-info/METADATA,sha256=mUoOYppfputCqFcprgWezSiulGDhC9KmgpJQKgRD0L8,6353
142
+ megadetector-10.0.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
143
+ megadetector-10.0.3.dist-info/top_level.txt,sha256=wf9DXa8EwiOSZ4G5IPjakSxBPxTDjhYYnqWRfR-zS4M,13
144
+ megadetector-10.0.3.dist-info/RECORD,,