mediml 0.9.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. MEDiml/MEDscan.py +1696 -0
  2. MEDiml/__init__.py +21 -0
  3. MEDiml/biomarkers/BatchExtractor.py +806 -0
  4. MEDiml/biomarkers/BatchExtractorTexturalFilters.py +840 -0
  5. MEDiml/biomarkers/__init__.py +16 -0
  6. MEDiml/biomarkers/diagnostics.py +125 -0
  7. MEDiml/biomarkers/get_oriented_bound_box.py +158 -0
  8. MEDiml/biomarkers/glcm.py +1602 -0
  9. MEDiml/biomarkers/gldzm.py +523 -0
  10. MEDiml/biomarkers/glrlm.py +1315 -0
  11. MEDiml/biomarkers/glszm.py +555 -0
  12. MEDiml/biomarkers/int_vol_hist.py +527 -0
  13. MEDiml/biomarkers/intensity_histogram.py +615 -0
  14. MEDiml/biomarkers/local_intensity.py +89 -0
  15. MEDiml/biomarkers/morph.py +1756 -0
  16. MEDiml/biomarkers/ngldm.py +780 -0
  17. MEDiml/biomarkers/ngtdm.py +414 -0
  18. MEDiml/biomarkers/stats.py +373 -0
  19. MEDiml/biomarkers/utils.py +389 -0
  20. MEDiml/filters/TexturalFilter.py +299 -0
  21. MEDiml/filters/__init__.py +9 -0
  22. MEDiml/filters/apply_filter.py +134 -0
  23. MEDiml/filters/gabor.py +215 -0
  24. MEDiml/filters/laws.py +283 -0
  25. MEDiml/filters/log.py +147 -0
  26. MEDiml/filters/mean.py +121 -0
  27. MEDiml/filters/textural_filters_kernels.py +1738 -0
  28. MEDiml/filters/utils.py +107 -0
  29. MEDiml/filters/wavelet.py +237 -0
  30. MEDiml/learning/DataCleaner.py +198 -0
  31. MEDiml/learning/DesignExperiment.py +480 -0
  32. MEDiml/learning/FSR.py +667 -0
  33. MEDiml/learning/Normalization.py +112 -0
  34. MEDiml/learning/RadiomicsLearner.py +714 -0
  35. MEDiml/learning/Results.py +2237 -0
  36. MEDiml/learning/Stats.py +694 -0
  37. MEDiml/learning/__init__.py +10 -0
  38. MEDiml/learning/cleaning_utils.py +107 -0
  39. MEDiml/learning/ml_utils.py +1015 -0
  40. MEDiml/processing/__init__.py +6 -0
  41. MEDiml/processing/compute_suv_map.py +121 -0
  42. MEDiml/processing/discretisation.py +149 -0
  43. MEDiml/processing/interpolation.py +275 -0
  44. MEDiml/processing/resegmentation.py +66 -0
  45. MEDiml/processing/segmentation.py +912 -0
  46. MEDiml/utils/__init__.py +25 -0
  47. MEDiml/utils/batch_patients.py +45 -0
  48. MEDiml/utils/create_radiomics_table.py +131 -0
  49. MEDiml/utils/data_frame_export.py +42 -0
  50. MEDiml/utils/find_process_names.py +16 -0
  51. MEDiml/utils/get_file_paths.py +34 -0
  52. MEDiml/utils/get_full_rad_names.py +21 -0
  53. MEDiml/utils/get_institutions_from_ids.py +16 -0
  54. MEDiml/utils/get_patient_id_from_scan_name.py +22 -0
  55. MEDiml/utils/get_patient_names.py +26 -0
  56. MEDiml/utils/get_radiomic_names.py +27 -0
  57. MEDiml/utils/get_scan_name_from_rad_name.py +22 -0
  58. MEDiml/utils/image_reader_SITK.py +37 -0
  59. MEDiml/utils/image_volume_obj.py +22 -0
  60. MEDiml/utils/imref.py +340 -0
  61. MEDiml/utils/initialize_features_names.py +62 -0
  62. MEDiml/utils/inpolygon.py +159 -0
  63. MEDiml/utils/interp3.py +43 -0
  64. MEDiml/utils/json_utils.py +78 -0
  65. MEDiml/utils/mode.py +31 -0
  66. MEDiml/utils/parse_contour_string.py +58 -0
  67. MEDiml/utils/save_MEDscan.py +30 -0
  68. MEDiml/utils/strfind.py +32 -0
  69. MEDiml/utils/textureTools.py +188 -0
  70. MEDiml/utils/texture_features_names.py +115 -0
  71. MEDiml/utils/write_radiomics_csv.py +47 -0
  72. MEDiml/wrangling/DataManager.py +1724 -0
  73. MEDiml/wrangling/ProcessDICOM.py +512 -0
  74. MEDiml/wrangling/__init__.py +3 -0
  75. mediml-0.9.9.dist-info/LICENSE.md +674 -0
  76. mediml-0.9.9.dist-info/METADATA +232 -0
  77. mediml-0.9.9.dist-info/RECORD +78 -0
  78. mediml-0.9.9.dist-info/WHEEL +4 -0
@@ -0,0 +1,232 @@
1
+ Metadata-Version: 2.1
2
+ Name: mediml
3
+ Version: 0.9.9
4
+ Summary: MEDiml is a Python package for processing and extracting features from medical images
5
+ Home-page: https://mediml.app/
6
+ License: GPL-3.0
7
+ Keywords: python,ibsi,medical-imaging,cancer-imaging-research,radiomics,medical-image-analysis,features-extraction,radiomics-extraction,radiomics-features,radiomics-analysis
8
+ Author: MEDomics Consortium
9
+ Author-email: medomics.info@gmail.com
10
+ Requires-Python: >=3.8.0,<=3.10
11
+ Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.10
14
+ Classifier: Programming Language :: Python :: 3.8
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Requires-Dist: Pillow
17
+ Requires-Dist: PyWavelets
18
+ Requires-Dist: SimpleITK
19
+ Requires-Dist: Sphinx
20
+ Requires-Dist: ipykernel
21
+ Requires-Dist: ipywidgets
22
+ Requires-Dist: isort
23
+ Requires-Dist: jupyter
24
+ Requires-Dist: matplotlib
25
+ Requires-Dist: networkx
26
+ Requires-Dist: neuroCombat
27
+ Requires-Dist: nibabel
28
+ Requires-Dist: nilearn
29
+ Requires-Dist: numpy
30
+ Requires-Dist: numpyencoder
31
+ Requires-Dist: pandas (<2.0.0)
32
+ Requires-Dist: protobuf
33
+ Requires-Dist: pycaret
34
+ Requires-Dist: pydicom
35
+ Requires-Dist: ray[default]
36
+ Requires-Dist: scikit_image
37
+ Requires-Dist: scikit_learn
38
+ Requires-Dist: scipy
39
+ Requires-Dist: seaborn
40
+ Requires-Dist: setuptools
41
+ Requires-Dist: sphinx-carousel (==1.2.0)
42
+ Requires-Dist: sphinx-jsonschema (==1.19.1)
43
+ Requires-Dist: sphinx-rtd-dark-mode (==1.2.4)
44
+ Requires-Dist: tabulate
45
+ Requires-Dist: tqdm
46
+ Requires-Dist: wget
47
+ Requires-Dist: xgboost
48
+ Project-URL: Bug Tracker, https://github.com/MEDomicsLab/MEDiml/issues
49
+ Project-URL: Documentation, https://mediml.readthedocs.io/
50
+ Project-URL: Repository, https://github.com/MEDomicsLab/MEDiml/
51
+ Description-Content-Type: text/markdown
52
+
53
+ <div align="center">
54
+
55
+ <img src="https://github.com/MEDomicsLab/MEDiml/blob/main/docs/figures/MEDimlLogo150.png?raw=true" style="width:150px;"/>
56
+
57
+ [![PyPI - Python Version](https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10-blue)](https://www.python.org/downloads/release/python-380/)
58
+ [![PyPI - version](https://img.shields.io/badge/pypi-v0.9.8-blue)](https://pypi.org/project/medimage-pkg/)
59
+ [![Continuous Integration](https://github.com/MEDomicsLab/MEDiml/actions/workflows/python-app.yml/badge.svg)](https://github.com/MEDomicsLab/MEDiml/actions/workflows/python-app.yml)
60
+ [![Documentation Status](https://readthedocs.org/projects/mediml/badge/?version=latest)](https://mediml.readthedocs.io/en/latest/?badge=latest)
61
+ [![License: GPL-3](https://img.shields.io/badge/license-GPLv3-blue)](LICENSE)
62
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MahdiAll99/MEDimage/blob/main/notebooks/tutorial/DataManager-Tutorial.ipynb)
63
+
64
+ </div>
65
+
66
+ ## Table of Contents
67
+ * [1. Introduction](#1-introduction)
68
+ * [2. Installation](#2-installation)
69
+ * [3. Generating the documentation locally](#3-generating-the-documentation-locally)
70
+ * [4. A simple example](#4-a-simple-example)
71
+ * [5. Tutorials](#5-tutorials)
72
+ * [6. IBSI Standardization](#6-ibsi-standardization)
73
+ * [IBSI Chapter 1](#ibsi-chapter-1)
74
+ * [IBSI Chapter 2](#ibsi-chapter-2)
75
+ * [7. Acknowledgement](#7-acknowledgement)
76
+ * [8. Authors](#8-authors)
77
+ * [9. Statement](#9-statement)
78
+
79
+ ## 1. Introduction
80
+ MEDiml is an open-source Python package that can be used for processing multi-modal medical images (MRI, CT or PET) and for extracting their radiomic features. This package is meant to facilitate the processing of medical images and the subsequent computation of all types of radiomic features while maintaining the reproducibility of analyses. This package has been standardized with the [IBSI](https://theibsi.github.io/) norms.
81
+
82
+ ![MEDiml overview](https://raw.githubusercontent.com/MahdiAll99/MEDimage/main/docs/figures/pakcage-overview.png)
83
+
84
+
85
+ ## 2. Installation
86
+
87
+ ### Python installation
88
+ The MEDiml package requires *Python 3.8* or more. If you don't have it installed on your machine, follow the instructions [here](https://github.com/MEDomicsLab/MEDiml/blob/main/python.md) to install it.
89
+
90
+ ### Package installation
91
+ You can easily install the ``MEDiml`` package from PyPI using:
92
+ ```
93
+ pip install MEDiml
94
+ ```
95
+
96
+ For more installation options (Conda, Poetry...) check out the [installation documentation](https://mediml.readthedocs.io/en/latest/Installation.html).
97
+
98
+ ## 3. Generating the documentation locally
99
+ The [documentation](https://mediml.readthedocs.io/en/latest/) of the MEDiml package was created using Sphinx. However, you can generate and host it locally by compiling the documentation source code using :
100
+
101
+ ```
102
+ cd docs
103
+ make clean
104
+ make html
105
+ ```
106
+
107
+ Then open it locally using:
108
+
109
+ ```
110
+ cd _build/html
111
+ python -m http.server
112
+ ```
113
+
114
+ ## 4. A simple example
115
+ ```python
116
+ import os
117
+ import pickle
118
+
119
+ import MEDiml
120
+
121
+ # Load MEDiml DataManager
122
+ dm = MEDiml.DataManager(path_dicoms=os.getcwd())
123
+
124
+ # Process the DICOM files and retrieve the MEDiml object
125
+ med_obj = dm.process_all_dicoms()[0]
126
+
127
+ # Extract ROI mask from the object
128
+ vol_obj_init, roi_obj_init = MEDiml.processing.get_roi_from_indexes(
129
+ med_obj,
130
+ name_roi='{ED}+{ET}+{NET}',
131
+ box_string='full')
132
+
133
+ # Extract features from the imaging data
134
+ local_intensity = MEDiml.biomarkers.local_intensity.extract_all(
135
+ img_obj=vol_obj_init.data,
136
+ roi_obj=roi_obj_init.data,
137
+ res=[1, 1, 1]
138
+ )
139
+
140
+ # Update radiomics results class
141
+ med_obj.update_radiomics(loc_int_features=local_intensity)
142
+
143
+ # Saving radiomics results
144
+ med_obj.save_radiomics(
145
+ scan_file_name='STS-UdS-001__T1.MRscan.npy',
146
+ path_save=os.getcwd(),
147
+ roi_type='GrossTumorVolume',
148
+ roi_type_label='GTV',
149
+ )
150
+ ```
151
+
152
+ ## 5. Tutorials
153
+
154
+ We have created many [tutorial notebooks](https://github.com/MEDomicsLab/MEDiml/tree/main/notebooks) to assist you in learning how to use the different parts of the package. More details can be found in the [documentation](https://mediml.readthedocs.io/en/latest/tutorials.html).
155
+
156
+ ## 6. IBSI Standardization
157
+ The image biomarker standardization initiative ([IBSI](https://theibsi.github.io)) is an independent international collaboration that aims to standardize the extraction of image biomarkers from acquired imaging. The IBSI therefore seeks to provide image biomarker nomenclature and definitions, benchmark datasets, and benchmark values to verify image processing and image biomarker calculations, as well as reporting guidelines, for high-throughput image analysis. We participate in this collaboration with our package to make sure it respects international nomenclatures and definitions. The participation was separated into two chapters:
158
+
159
+ - ### IBSI Chapter 1
160
+ [The IBSI chapter 1](https://theibsi.github.io/ibsi1/) is dedicated to the standardization of commonly used radiomic features. It was initiated in September 2016 and reached completion in March 2020. We have created two [jupyter notebooks](https://github.com/MEDomicsLab/MEDiml/tree/main/notebooks/ibsi) for each phase of the chapter and made them available for the users to run the IBSI tests for themselves. The tests can also be explored in interactive Colab notebooks that are directly accessible here:
161
+
162
+ - **Phase 1**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MahdiAll99/MEDimage/blob/main/notebooks/ibsi/ibsi1p1.ipynb)
163
+ - **Phase 2**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MahdiAll99/MEDimage/blob/main/notebooks/ibsi/ibsi1p2.ipynb)
164
+
165
+ - ### IBSI Chapter 2
166
+ [The IBSI chapter 2](https://theibsi.github.io/ibsi2/) was launched in June 2020 and reached completion in February 2024. It is dedicated to the standardization of commonly used imaging filters in radiomic studies. We have created two [jupyter notebooks](https://github.com/MEDomicsLab/MEDiml/tree/main/notebooks/ibsi) for each phase of the chapter and made them available for the users to run the IBSI tests for themselves and validate image filtering and image biomarker calculations from filter response maps. The tests can also be explored in interactive Colab notebooks that are directly accessible here:
167
+
168
+ - **Phase 1**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MahdiAll99/MEDimage/blob/main/notebooks/ibsi/ibsi2p1.ipynb)
169
+ - **Phase 2**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MahdiAll99/MEDimage/blob/main/notebooks/ibsi/ibsi2p2.ipynb)
170
+
171
+ Our team at *UdeS* (a.k.a. Université de Sherbrooke) has already submitted the benchmarked values to the [IBSI uploading website](https://ibsi.radiomics.hevs.ch/).
172
+
173
+ ---
174
+ **Miscellaneous**
175
+
176
+ You can avoid the next steps (Jupyter installation and environment setup) if you installed the package using Conda or Poetry according to the documentation.
177
+
178
+ ---
179
+
180
+ You can view and run the tests locally by installing the [Jupyter Notebook](https://jupyter.org/) application on your machine:
181
+ ```
182
+ python -m pip install jupyter
183
+ ```
184
+ Then add the installed `MEDiml` environment to the Jupyter Notebook kernels using:
185
+
186
+ ```
187
+ python -m ipykernel install --user --name=MEDiml
188
+ ```
189
+
190
+ Then access the IBSI tests folder using:
191
+
192
+ ```
193
+ cd notebooks/ibsi/
194
+ ```
195
+
196
+ Finally, launch Jupyter Notebook to navigate through the IBSI notebooks using:
197
+
198
+ ```
199
+ jupyter notebook
200
+ ```
201
+
202
+ ## 7. Acknowledgement
203
+ MEDiml is an open-source package developed at the [MEDomicsLab](https://www.medomicslab.com/en/) laboratory with the collaboration of the international consortium [MEDomics](https://www.medomics.ai/). We welcome any contribution and feedback. Furthermore, we wish that this package could serve the growing radiomics research community by providing a flexible as well as [IBSI](https://theibsi.github.io/) standardized tool to reimplement existing methods and develop new ones.
204
+
205
+ ## 8. Authors
206
+ * [MEDomicsLab](https://www.medomicslab.com/en/): Research laboratory at Université de Sherbrooke & McGill University.
207
+ * [MEDomics](https://github.com/medomics/): MEDomics consortium.
208
+
209
+ ## 9. Statement
210
+
211
+ This package is part of https://github.com/medomics, a package providing research utility tools for developing precision medicine applications.
212
+
213
+ ```
214
+ Copyright (C) 2024 MEDomics consortium
215
+
216
+ GPL3 LICENSE SYNOPSIS
217
+
218
+ Here's what the license entails:
219
+
220
+ 1. Anyone can copy, modify and distribute this software.
221
+ 2. You have to include the license and copyright notice with each and every distribution.
222
+ 3. You can use this software privately.
223
+ 4. You can use this software for commercial purposes.
224
+ 5. If you dare build your business solely from this code, you risk open-sourcing the whole code base.
225
+ 6. If you modify it, you have to indicate changes made to the code.
226
+ 7. Any modifications of this code base MUST be distributed with the same license, GPLv3.
227
+ 8. This software is provided without warranty.
228
+ 9. The software author or license can not be held liable for any damages inflicted by the software.
229
+ ```
230
+
231
+ More information on about the [LICENSE can be found here](https://github.com/MEDomicsLab/MEDiml/blob/main/LICENSE.md)
232
+
@@ -0,0 +1,78 @@
1
+ MEDiml/__init__.py,sha256=KbXEX6rWtKcIrxtujycKfIwuTiL_38qKcoC8_tdyAAY,586
2
+ MEDiml/biomarkers/__init__.py,sha256=cNKDEauniVRnwFPG9muapTA_zCZEm6aCzrRi1eekE9A,433
3
+ MEDiml/biomarkers/BatchExtractor.py,sha256=84TQk_A9yCMDN9oVU32KdvHYpr1xar027VPhFnGuw34,33922
4
+ MEDiml/biomarkers/BatchExtractorTexturalFilters.py,sha256=ClunDOCxBwIHHQwGG38kWvH7iiZcCe9-Pe5ifGyPbG4,34040
5
+ MEDiml/biomarkers/diagnostics.py,sha256=zDudk5RbTg5JBY04lR9zub0boiOWznk5yP6e9K2YGyM,4324
6
+ MEDiml/biomarkers/get_oriented_bound_box.py,sha256=h6UFavrOLdP89MqQ3sKHhGjYDFWzLnnoJ3Lu0JU7kGM,5137
7
+ MEDiml/biomarkers/glcm.py,sha256=oEpCTrn67OAdqAUUOBnPqiTUL0dLO5LcHP3zGgIpnEM,69948
8
+ MEDiml/biomarkers/gldzm.py,sha256=uho51u1tHS7bCCYbMWneCKVmAljlDE1fkKds8yCASUk,19966
9
+ MEDiml/biomarkers/glrlm.py,sha256=YJw5-W9mASeKVQ3d796rioPZDu6N26OB6_TxtjQqHHU,56988
10
+ MEDiml/biomarkers/glszm.py,sha256=XoAO8gC5uzMbTPvl9RZXUTcuQFoE_oA5ywYAqnvXavw,19119
11
+ MEDiml/biomarkers/int_vol_hist.py,sha256=HNOU4V88kfOfxDIE2GRRd6l6Qd0pLZkTHSDm39isgUQ,20008
12
+ MEDiml/biomarkers/intensity_histogram.py,sha256=wROtCU62Y2pgg1_hEV1NTmzBVckcH1U8KJYjWlf0A0M,23109
13
+ MEDiml/biomarkers/local_intensity.py,sha256=txj_6RRrqm0yCb0ZQ0nktAOHQ7GxzZLqXuSIvEaA22c,3577
14
+ MEDiml/biomarkers/morph.py,sha256=CPGhJ5r0l00rl4fL2F7_A0KFZWBGNJNlH_AgOBx9XBI,71610
15
+ MEDiml/biomarkers/ngldm.py,sha256=8_bMZt_XeO7h5txY_rcMB8mx7_gdrhLpKp90yC13wrw,28926
16
+ MEDiml/biomarkers/ngtdm.py,sha256=MCoutIN7vsqG6LZB8EqxQN25PCmRoFIiHqjFrmdICkc,16864
17
+ MEDiml/biomarkers/stats.py,sha256=xHIbGlGLcEYGAOkIjLjyT-D1XBI36FR--EmvEzniH4w,14996
18
+ MEDiml/biomarkers/utils.py,sha256=E9jFVs_YtLbpL3JnDhPdhcOgMo7je8s_DG3sqOkvIIk,12745
19
+ MEDiml/filters/__init__.py,sha256=p3JLl57Ezv2Z6Ah8pQjGbkO8YroZUAttQ3En5R5EKiM,207
20
+ MEDiml/filters/apply_filter.py,sha256=F4ob72cNfwDLiY9_3I80Wbm8ibDtkVzpx3lfmx0owqo,6010
21
+ MEDiml/filters/gabor.py,sha256=pc1OnadhO50hGWS24GedTGHB3p0IezRd_2ej9DLQA0M,9094
22
+ MEDiml/filters/laws.py,sha256=QNFffG0_8v18UgA_-IY0355dPKzXquvJHaa9mb1kzhw,11619
23
+ MEDiml/filters/log.py,sha256=u9xFkQeYKms1nVcLhkYp62fuKt0Pvj5oo2D9H24SVjY,6020
24
+ MEDiml/filters/mean.py,sha256=Rjh7FOsRXX5TZlG1PVDJ2npszMvFrumjrDmyF8TDQ2Q,4600
25
+ MEDiml/filters/textural_filters_kernels.py,sha256=RHo9l-7y-8aQUu0v-Iv_fnjFkE0SKeQ9KucIKdXWTvs,56991
26
+ MEDiml/filters/TexturalFilter.py,sha256=lX2C9-hYYJo1as1orxX_L29mCl_2mHeOTgcpm9fHGvI,11757
27
+ MEDiml/filters/utils.py,sha256=AoIJ8YdVH3gkBmitGvD-s6yzDUPSFmHB0gI0vC-DhWc,4153
28
+ MEDiml/filters/wavelet.py,sha256=bgJYTFADc_55TlqdZVggsGdMRfliC0egbZPCuDKp86A,9135
29
+ MEDiml/learning/__init__.py,sha256=7de2DhkryzM52OmWEO86Da1_-LJbaNws_7Elzfo7AWY,327
30
+ MEDiml/learning/cleaning_utils.py,sha256=mN9qH75AWehYDHpyeLENP2QtLGEhfRrpx3CMO59Qwos,4062
31
+ MEDiml/learning/DataCleaner.py,sha256=gmGC8BIP8PvHeWgmlxKfdOy4xg495ycYoDrzUonMSEg,9178
32
+ MEDiml/learning/DesignExperiment.py,sha256=fmTmlizN6aYj8PcKX9PUeLbhULvWiTHBM5zltvfv6i0,22518
33
+ MEDiml/learning/FSR.py,sha256=fVK6EOgnznxqx_xyJtxFF4umjgATk7B_2sARmaDS9CU,29731
34
+ MEDiml/learning/ml_utils.py,sha256=2voN42AgboO5oGr1g9NQ8FDTKvDib9AV04IeVb9TP9A,41981
35
+ MEDiml/learning/Normalization.py,sha256=6_5YKqlsVYYDm_a-0d1FutLfvsdmeBTr3fb6-RPFjMU,4723
36
+ MEDiml/learning/RadiomicsLearner.py,sha256=LdlsBQYEzYC16CSGu4YGtxVfDeTaUuvlhClYOpVNQzU,33581
37
+ MEDiml/learning/Results.py,sha256=f5JUgTbcX-8g5-zJhl5Ft9K5MyrFmJfufMbiDIyhY34,106130
38
+ MEDiml/learning/Stats.py,sha256=cyZENLASy-k7ioFCNl5vu7DbNjnfZcEWyFhgBUlA6NA,27797
39
+ MEDiml/MEDscan.py,sha256=KLuj8IJ9j-KGAJbEDZV6smlEW_ARGN_wuGaNjaNdflQ,77974
40
+ MEDiml/processing/__init__.py,sha256=zcJuHnF3JKCQaEU4C1zjYSmfvIFnjy9HMGIt0J6Snpw,170
41
+ MEDiml/processing/compute_suv_map.py,sha256=t0AmqAAXJVWNcd3qSVI4BW3XvISpbAfG1kndp114PwM,4394
42
+ MEDiml/processing/discretisation.py,sha256=LeIz0vsk6TAt4-40fWVPNx83AlA_bUmgawqs1e2vzV8,5491
43
+ MEDiml/processing/interpolation.py,sha256=guR3A7GpzHXDnOwlEdeK6ahqbMJIddJexAlT_JDwKB4,13367
44
+ MEDiml/processing/resegmentation.py,sha256=0WbXniLDYIsdJgm_1tu9W-9BALq0t-tP8PmTd_I-Z9A,1963
45
+ MEDiml/processing/segmentation.py,sha256=0qrEZYWyTTnaHrb_KVq8dCON5uCdFqG2VEjNue9A9II,38363
46
+ MEDiml/utils/__init__.py,sha256=JOKlE6zuWztRvz_I6DQtao4suXUD8a9ULvEy5_0hOUY,807
47
+ MEDiml/utils/batch_patients.py,sha256=9TGCBVzBjr6Gv5rsQRpNt9dRJKWC1nPpXeJkcdWimPM,1582
48
+ MEDiml/utils/create_radiomics_table.py,sha256=v9eEsp2hKwdGA99j2-6UlxTj9QGZojett6auQxsQnNA,5448
49
+ MEDiml/utils/data_frame_export.py,sha256=ULUBqvXQK0fY8rKtSa9Pdgga4XnR6qEvHQvLvHprhb8,1417
50
+ MEDiml/utils/find_process_names.py,sha256=VZnGfGxmnUZKIJu1b5oD2eXRejoLGpLSXdslpK0nTrM,413
51
+ MEDiml/utils/get_file_paths.py,sha256=iQWAZ2IyyhbCm1SmlTeVjyYqfbl7P-YZA_2T-vqulHo,1203
52
+ MEDiml/utils/get_full_rad_names.py,sha256=CGwre3fGb4JGUPgFJolcglfEWCkVslUOMT6A5mB92E4,670
53
+ MEDiml/utils/get_institutions_from_ids.py,sha256=Xf-lKWgOGyG4Z-E6Ej9I2vwS5ZUyhdL74bKa7K59C8s,548
54
+ MEDiml/utils/get_patient_id_from_scan_name.py,sha256=tGR2XKllIWC3Fp4Dj2fSCmXzXnq7E8gj88h1bxXmzVU,540
55
+ MEDiml/utils/get_patient_names.py,sha256=HFdJtzrcYesg7KERxWexKQD0w9NsMyYQ2hxVSD2irnk,700
56
+ MEDiml/utils/get_radiomic_names.py,sha256=lHlyurUBLYR3ocTORY0QyqW6BDYbFMR0NU5LJWe4e9A,709
57
+ MEDiml/utils/get_scan_name_from_rad_name.py,sha256=B9Lrwhn3i-QXuMdbZkRsBTavypynZUR628Vu-HoOxmY,604
58
+ MEDiml/utils/image_reader_SITK.py,sha256=uctYZGH5EfvArrSxyacNhZv8-N_yOiCDbuCMj5GIUgw,1252
59
+ MEDiml/utils/image_volume_obj.py,sha256=Kq-Co7Nar1BcUGgiWGEn--2hlOzICZr_08Cw3ujdo38,699
60
+ MEDiml/utils/imref.py,sha256=0kw29OCvYSatMGuUNQZWEhmuxjv7DqxLpJKQ0qRUfCQ,15766
61
+ MEDiml/utils/initialize_features_names.py,sha256=8yDDvD6wzyC4hSTgULAH8QUHuo9quOIXkMsLlmHrqWQ,2841
62
+ MEDiml/utils/inpolygon.py,sha256=EEBhYEu5T77deV7ZU0doy7aGXgsb5ySjrZkkKtHfVXc,5826
63
+ MEDiml/utils/interp3.py,sha256=MxLJMviqqEsZSAtQQqh2Cb4DSR2b6Rd4nH3KsCwp5BE,1414
64
+ MEDiml/utils/json_utils.py,sha256=0ffPvyWFy9jzaGmBv5BXLhuxFU7L-voWP7bAW_PE8cU,2320
65
+ MEDiml/utils/mode.py,sha256=bg_svPlxZQvHN-xktCBFnMoKGhJHMLT-kmv27kRGhwY,959
66
+ MEDiml/utils/parse_contour_string.py,sha256=nC5O0zLB7zJkwSQo1yzANkdQTXsoSlRi8CLjdcl-YkE,2177
67
+ MEDiml/utils/save_MEDscan.py,sha256=fLPtPIB2g1jHqD9t5FkHNV1vmCVm2ATW6Z84Ez7Qmjw,831
68
+ MEDiml/utils/strfind.py,sha256=Hpnzl821Cw-KP-DE9e1SPKRe-oYUf0TGZIj8vaN9CLc,909
69
+ MEDiml/utils/texture_features_names.py,sha256=XS9xWO_Et1AiPQnV7UiDgyusbpy4TMCmKGjMRobXvPI,2367
70
+ MEDiml/utils/textureTools.py,sha256=m-vv9NCJqgHECsNaTAF4XpDL9rsDt9tRnm3aG9_g21Y,6350
71
+ MEDiml/utils/write_radiomics_csv.py,sha256=Vohm2TgnI6S6pKh9lLqO4JRmS4H5nKj-_ky0CkAZLCQ,1584
72
+ MEDiml/wrangling/__init__.py,sha256=oA_HQAA9nxokOsqSitE0DA8EFY3wMYIRUfCf4ULqDpA,74
73
+ MEDiml/wrangling/DataManager.py,sha256=-YmpfKPUF4yv7wEo4ObN23L_l7Mmo5M6X8NPozXKxdM,87253
74
+ MEDiml/wrangling/ProcessDICOM.py,sha256=ZJ3mkc8_ZYnfnzmIlpp6cS6RTlFm6aotgJxKPlSqTMY,25023
75
+ mediml-0.9.9.dist-info/LICENSE.md,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
76
+ mediml-0.9.9.dist-info/WHEEL,sha256=DA86_h4QwwzGeRoz62o1svYt5kGEXpoUTuTtwzoTb30,83
77
+ mediml-0.9.9.dist-info/METADATA,sha256=XQM-EGNRlVmzTshjpTwPtIt_W822lTPBREsdCQmkOAM,11328
78
+ mediml-0.9.9.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: poetry 1.0.8
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any