mediapipe-nightly 0.0.0.post20231103__cp311-cp311-macosx_11_0_universal2.whl
Sign up to get free protection for your applications and to get access to all the features.
- mediapipe/__init__.py +26 -0
- mediapipe/calculators/__init__.py +0 -0
- mediapipe/calculators/audio/__init__.py +0 -0
- mediapipe/calculators/audio/mfcc_mel_calculators_pb2.py +34 -0
- mediapipe/calculators/audio/rational_factor_resample_calculator_pb2.py +33 -0
- mediapipe/calculators/audio/spectrogram_calculator_pb2.py +35 -0
- mediapipe/calculators/audio/stabilized_log_calculator_pb2.py +31 -0
- mediapipe/calculators/audio/time_series_framer_calculator_pb2.py +33 -0
- mediapipe/calculators/core/__init__.py +0 -0
- mediapipe/calculators/core/bypass_calculator_pb2.py +31 -0
- mediapipe/calculators/core/clip_vector_size_calculator_pb2.py +31 -0
- mediapipe/calculators/core/concatenate_vector_calculator_pb2.py +31 -0
- mediapipe/calculators/core/constant_side_packet_calculator_pb2.py +37 -0
- mediapipe/calculators/core/dequantize_byte_array_calculator_pb2.py +31 -0
- mediapipe/calculators/core/flow_limiter_calculator_pb2.py +32 -0
- mediapipe/calculators/core/gate_calculator_pb2.py +33 -0
- mediapipe/calculators/core/get_vector_item_calculator_pb2.py +31 -0
- mediapipe/calculators/core/graph_profile_calculator_pb2.py +31 -0
- mediapipe/calculators/core/packet_cloner_calculator_pb2.py +31 -0
- mediapipe/calculators/core/packet_resampler_calculator_pb2.py +33 -0
- mediapipe/calculators/core/packet_thinner_calculator_pb2.py +33 -0
- mediapipe/calculators/core/quantize_float_vector_calculator_pb2.py +31 -0
- mediapipe/calculators/core/sequence_shift_calculator_pb2.py +31 -0
- mediapipe/calculators/core/split_vector_calculator_pb2.py +33 -0
- mediapipe/calculators/image/__init__.py +0 -0
- mediapipe/calculators/image/bilateral_filter_calculator_pb2.py +31 -0
- mediapipe/calculators/image/feature_detector_calculator_pb2.py +31 -0
- mediapipe/calculators/image/image_clone_calculator_pb2.py +31 -0
- mediapipe/calculators/image/image_cropping_calculator_pb2.py +33 -0
- mediapipe/calculators/image/image_transformation_calculator_pb2.py +38 -0
- mediapipe/calculators/image/mask_overlay_calculator_pb2.py +33 -0
- mediapipe/calculators/image/opencv_encoded_image_to_image_frame_calculator_pb2.py +31 -0
- mediapipe/calculators/image/opencv_image_encoder_calculator_pb2.py +35 -0
- mediapipe/calculators/image/recolor_calculator_pb2.py +34 -0
- mediapipe/calculators/image/rotation_mode_pb2.py +28 -0
- mediapipe/calculators/image/scale_image_calculator_pb2.py +34 -0
- mediapipe/calculators/image/segmentation_smoothing_calculator_pb2.py +31 -0
- mediapipe/calculators/image/set_alpha_calculator_pb2.py +31 -0
- mediapipe/calculators/image/warp_affine_calculator_pb2.py +36 -0
- mediapipe/calculators/internal/__init__.py +0 -0
- mediapipe/calculators/internal/callback_packet_calculator_pb2.py +33 -0
- mediapipe/calculators/tensor/__init__.py +0 -0
- mediapipe/calculators/tensor/audio_to_tensor_calculator_pb2.py +35 -0
- mediapipe/calculators/tensor/bert_preprocessor_calculator_pb2.py +31 -0
- mediapipe/calculators/tensor/feedback_tensors_calculator_pb2.py +37 -0
- mediapipe/calculators/tensor/image_to_tensor_calculator_pb2.py +40 -0
- mediapipe/calculators/tensor/inference_calculator_pb2.py +53 -0
- mediapipe/calculators/tensor/landmarks_to_tensor_calculator_pb2.py +33 -0
- mediapipe/calculators/tensor/regex_preprocessor_calculator_pb2.py +31 -0
- mediapipe/calculators/tensor/tensor_converter_calculator_pb2.py +34 -0
- mediapipe/calculators/tensor/tensor_to_joints_calculator_pb2.py +31 -0
- mediapipe/calculators/tensor/tensors_readback_calculator_pb2.py +35 -0
- mediapipe/calculators/tensor/tensors_to_audio_calculator_pb2.py +33 -0
- mediapipe/calculators/tensor/tensors_to_classification_calculator_pb2.py +44 -0
- mediapipe/calculators/tensor/tensors_to_detections_calculator_pb2.py +39 -0
- mediapipe/calculators/tensor/tensors_to_floats_calculator_pb2.py +33 -0
- mediapipe/calculators/tensor/tensors_to_landmarks_calculator_pb2.py +33 -0
- mediapipe/calculators/tensor/tensors_to_segmentation_calculator_pb2.py +34 -0
- mediapipe/calculators/tflite/__init__.py +0 -0
- mediapipe/calculators/tflite/ssd_anchors_calculator_pb2.py +32 -0
- mediapipe/calculators/tflite/tflite_converter_calculator_pb2.py +33 -0
- mediapipe/calculators/tflite/tflite_custom_op_resolver_calculator_pb2.py +31 -0
- mediapipe/calculators/tflite/tflite_inference_calculator_pb2.py +49 -0
- mediapipe/calculators/tflite/tflite_tensors_to_classification_calculator_pb2.py +31 -0
- mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator_pb2.py +31 -0
- mediapipe/calculators/tflite/tflite_tensors_to_landmarks_calculator_pb2.py +33 -0
- mediapipe/calculators/tflite/tflite_tensors_to_segmentation_calculator_pb2.py +31 -0
- mediapipe/calculators/util/__init__.py +0 -0
- mediapipe/calculators/util/align_hand_to_pose_in_world_calculator_pb2.py +31 -0
- mediapipe/calculators/util/annotation_overlay_calculator_pb2.py +32 -0
- mediapipe/calculators/util/association_calculator_pb2.py +31 -0
- mediapipe/calculators/util/collection_has_min_size_calculator_pb2.py +31 -0
- mediapipe/calculators/util/combine_joints_calculator_pb2.py +36 -0
- mediapipe/calculators/util/detection_label_id_to_text_calculator_pb2.py +36 -0
- mediapipe/calculators/util/detections_to_rects_calculator_pb2.py +33 -0
- mediapipe/calculators/util/detections_to_render_data_calculator_pb2.py +33 -0
- mediapipe/calculators/util/face_to_rect_calculator_pb2.py +25 -0
- mediapipe/calculators/util/filter_detections_calculator_pb2.py +31 -0
- mediapipe/calculators/util/flat_color_image_calculator_pb2.py +32 -0
- mediapipe/calculators/util/labels_to_render_data_calculator_pb2.py +34 -0
- mediapipe/calculators/util/landmark_projection_calculator_pb2.py +31 -0
- mediapipe/calculators/util/landmarks_refinement_calculator_pb2.py +41 -0
- mediapipe/calculators/util/landmarks_smoothing_calculator_pb2.py +33 -0
- mediapipe/calculators/util/landmarks_to_detection_calculator_pb2.py +31 -0
- mediapipe/calculators/util/landmarks_to_floats_calculator_pb2.py +31 -0
- mediapipe/calculators/util/landmarks_to_render_data_calculator_pb2.py +32 -0
- mediapipe/calculators/util/landmarks_transformation_calculator_pb2.py +37 -0
- mediapipe/calculators/util/latency_pb2.py +25 -0
- mediapipe/calculators/util/local_file_contents_calculator_pb2.py +31 -0
- mediapipe/calculators/util/logic_calculator_pb2.py +34 -0
- mediapipe/calculators/util/non_max_suppression_calculator_pb2.py +35 -0
- mediapipe/calculators/util/packet_frequency_calculator_pb2.py +31 -0
- mediapipe/calculators/util/packet_frequency_pb2.py +25 -0
- mediapipe/calculators/util/packet_latency_calculator_pb2.py +31 -0
- mediapipe/calculators/util/rect_to_render_data_calculator_pb2.py +32 -0
- mediapipe/calculators/util/rect_to_render_scale_calculator_pb2.py +31 -0
- mediapipe/calculators/util/rect_transformation_calculator_pb2.py +31 -0
- mediapipe/calculators/util/refine_landmarks_from_heatmap_calculator_pb2.py +31 -0
- mediapipe/calculators/util/set_joints_visibility_calculator_pb2.py +41 -0
- mediapipe/calculators/util/thresholding_calculator_pb2.py +31 -0
- mediapipe/calculators/util/timed_box_list_id_to_label_calculator_pb2.py +31 -0
- mediapipe/calculators/util/timed_box_list_to_render_data_calculator_pb2.py +32 -0
- mediapipe/calculators/util/top_k_scores_calculator_pb2.py +31 -0
- mediapipe/calculators/util/visibility_copy_calculator_pb2.py +27 -0
- mediapipe/calculators/util/visibility_smoothing_calculator_pb2.py +31 -0
- mediapipe/calculators/video/__init__.py +0 -0
- mediapipe/calculators/video/box_detector_calculator_pb2.py +32 -0
- mediapipe/calculators/video/box_tracker_calculator_pb2.py +32 -0
- mediapipe/calculators/video/flow_packager_calculator_pb2.py +32 -0
- mediapipe/calculators/video/flow_to_image_calculator_pb2.py +31 -0
- mediapipe/calculators/video/motion_analysis_calculator_pb2.py +42 -0
- mediapipe/calculators/video/opencv_video_encoder_calculator_pb2.py +31 -0
- mediapipe/calculators/video/tool/__init__.py +0 -0
- mediapipe/calculators/video/tool/flow_quantizer_model_pb2.py +25 -0
- mediapipe/calculators/video/tracked_detection_manager_calculator_pb2.py +32 -0
- mediapipe/calculators/video/video_pre_stream_calculator_pb2.py +35 -0
- mediapipe/examples/__init__.py +14 -0
- mediapipe/examples/desktop/__init__.py +14 -0
- mediapipe/framework/__init__.py +0 -0
- mediapipe/framework/calculator_options_pb2.py +28 -0
- mediapipe/framework/calculator_pb2.py +56 -0
- mediapipe/framework/calculator_profile_pb2.py +47 -0
- mediapipe/framework/deps/__init__.py +0 -0
- mediapipe/framework/deps/proto_descriptor_pb2.py +28 -0
- mediapipe/framework/formats/__init__.py +0 -0
- mediapipe/framework/formats/affine_transform_data_pb2.py +27 -0
- mediapipe/framework/formats/annotation/__init__.py +0 -0
- mediapipe/framework/formats/annotation/locus_pb2.py +31 -0
- mediapipe/framework/formats/annotation/rasterization_pb2.py +28 -0
- mediapipe/framework/formats/body_rig_pb2.py +27 -0
- mediapipe/framework/formats/classification_pb2.py +30 -0
- mediapipe/framework/formats/detection_pb2.py +35 -0
- mediapipe/framework/formats/image_file_properties_pb2.py +25 -0
- mediapipe/framework/formats/image_format_pb2.py +28 -0
- mediapipe/framework/formats/landmark_pb2.py +36 -0
- mediapipe/framework/formats/location_data_pb2.py +37 -0
- mediapipe/framework/formats/matrix_data_pb2.py +30 -0
- mediapipe/framework/formats/motion/__init__.py +0 -0
- mediapipe/framework/formats/motion/optical_flow_field_data_pb2.py +29 -0
- mediapipe/framework/formats/object_detection/__init__.py +0 -0
- mediapipe/framework/formats/object_detection/anchor_pb2.py +25 -0
- mediapipe/framework/formats/rect_pb2.py +28 -0
- mediapipe/framework/formats/time_series_header_pb2.py +27 -0
- mediapipe/framework/mediapipe_options_pb2.py +26 -0
- mediapipe/framework/packet_factory_pb2.py +30 -0
- mediapipe/framework/packet_generator_pb2.py +32 -0
- mediapipe/framework/status_handler_pb2.py +27 -0
- mediapipe/framework/stream_handler/__init__.py +0 -0
- mediapipe/framework/stream_handler/default_input_stream_handler_pb2.py +27 -0
- mediapipe/framework/stream_handler/fixed_size_input_stream_handler_pb2.py +27 -0
- mediapipe/framework/stream_handler/sync_set_input_stream_handler_pb2.py +29 -0
- mediapipe/framework/stream_handler/timestamp_align_input_stream_handler_pb2.py +27 -0
- mediapipe/framework/stream_handler_pb2.py +29 -0
- mediapipe/framework/test_calculators_pb2.py +31 -0
- mediapipe/framework/thread_pool_executor_pb2.py +29 -0
- mediapipe/framework/tool/__init__.py +0 -0
- mediapipe/framework/tool/calculator_graph_template_pb2.py +44 -0
- mediapipe/framework/tool/field_data_pb2.py +27 -0
- mediapipe/framework/tool/node_chain_subgraph_pb2.py +31 -0
- mediapipe/framework/tool/packet_generator_wrapper_calculator_pb2.py +28 -0
- mediapipe/framework/tool/source_pb2.py +33 -0
- mediapipe/framework/tool/switch_container_pb2.py +32 -0
- mediapipe/gpu/__init__.py +0 -0
- mediapipe/gpu/copy_calculator_pb2.py +33 -0
- mediapipe/gpu/gl_animation_overlay_calculator_pb2.py +31 -0
- mediapipe/gpu/gl_context_options_pb2.py +31 -0
- mediapipe/gpu/gl_scaler_calculator_pb2.py +32 -0
- mediapipe/gpu/gl_surface_sink_calculator_pb2.py +32 -0
- mediapipe/gpu/gpu_origin_pb2.py +28 -0
- mediapipe/gpu/scale_mode_pb2.py +27 -0
- mediapipe/model_maker/__init__.py +27 -0
- mediapipe/model_maker/setup.py +107 -0
- mediapipe/modules/__init__.py +0 -0
- mediapipe/modules/face_detection/__init__.py +0 -0
- mediapipe/modules/face_detection/face_detection_full_range_cpu.binarypb +0 -0
- mediapipe/modules/face_detection/face_detection_full_range_sparse.tflite +0 -0
- mediapipe/modules/face_detection/face_detection_pb2.py +30 -0
- mediapipe/modules/face_detection/face_detection_short_range.tflite +0 -0
- mediapipe/modules/face_detection/face_detection_short_range_cpu.binarypb +0 -0
- mediapipe/modules/face_geometry/__init__.py +0 -0
- mediapipe/modules/face_geometry/data/__init__.py +0 -0
- mediapipe/modules/face_geometry/effect_renderer_calculator_pb2.py +27 -0
- mediapipe/modules/face_geometry/env_generator_calculator_pb2.py +28 -0
- mediapipe/modules/face_geometry/geometry_pipeline_calculator_pb2.py +27 -0
- mediapipe/modules/face_geometry/libs/__init__.py +0 -0
- mediapipe/modules/face_geometry/protos/__init__.py +0 -0
- mediapipe/modules/face_geometry/protos/environment_pb2.py +30 -0
- mediapipe/modules/face_geometry/protos/face_geometry_pb2.py +28 -0
- mediapipe/modules/face_geometry/protos/geometry_pipeline_metadata_pb2.py +31 -0
- mediapipe/modules/face_geometry/protos/mesh_3d_pb2.py +30 -0
- mediapipe/modules/face_landmark/__init__.py +0 -0
- mediapipe/modules/face_landmark/face_landmark.tflite +0 -0
- mediapipe/modules/face_landmark/face_landmark_front_cpu.binarypb +0 -0
- mediapipe/modules/face_landmark/face_landmark_with_attention.tflite +0 -0
- mediapipe/modules/hand_landmark/__init__.py +0 -0
- mediapipe/modules/hand_landmark/calculators/__init__.py +0 -0
- mediapipe/modules/hand_landmark/hand_landmark_full.tflite +0 -0
- mediapipe/modules/hand_landmark/hand_landmark_lite.tflite +0 -0
- mediapipe/modules/hand_landmark/hand_landmark_tracking_cpu.binarypb +0 -0
- mediapipe/modules/hand_landmark/handedness.txt +2 -0
- mediapipe/modules/holistic_landmark/__init__.py +0 -0
- mediapipe/modules/holistic_landmark/calculators/__init__.py +0 -0
- mediapipe/modules/holistic_landmark/calculators/roi_tracking_calculator_pb2.py +37 -0
- mediapipe/modules/holistic_landmark/hand_recrop.tflite +0 -0
- mediapipe/modules/holistic_landmark/holistic_landmark_cpu.binarypb +0 -0
- mediapipe/modules/iris_landmark/__init__.py +0 -0
- mediapipe/modules/iris_landmark/iris_landmark.tflite +0 -0
- mediapipe/modules/objectron/__init__.py +0 -0
- mediapipe/modules/objectron/calculators/__init__.py +0 -0
- mediapipe/modules/objectron/calculators/a_r_capture_metadata_pb2.py +101 -0
- mediapipe/modules/objectron/calculators/annotation_data_pb2.py +37 -0
- mediapipe/modules/objectron/calculators/belief_decoder_config_pb2.py +27 -0
- mediapipe/modules/objectron/calculators/camera_parameters_pb2.py +29 -0
- mediapipe/modules/objectron/calculators/filter_detection_calculator_pb2.py +35 -0
- mediapipe/modules/objectron/calculators/frame_annotation_to_rect_calculator_pb2.py +31 -0
- mediapipe/modules/objectron/calculators/frame_annotation_tracker_calculator_pb2.py +31 -0
- mediapipe/modules/objectron/calculators/lift_2d_frame_annotation_to_3d_calculator_pb2.py +32 -0
- mediapipe/modules/objectron/calculators/object_pb2.py +37 -0
- mediapipe/modules/objectron/calculators/tensors_to_objects_calculator_pb2.py +32 -0
- mediapipe/modules/objectron/calculators/tflite_tensors_to_objects_calculator_pb2.py +32 -0
- mediapipe/modules/objectron/object_detection_oidv4_labelmap.txt +24 -0
- mediapipe/modules/objectron/objectron_cpu.binarypb +0 -0
- mediapipe/modules/palm_detection/__init__.py +0 -0
- mediapipe/modules/palm_detection/palm_detection_full.tflite +0 -0
- mediapipe/modules/palm_detection/palm_detection_lite.tflite +0 -0
- mediapipe/modules/pose_detection/__init__.py +0 -0
- mediapipe/modules/pose_detection/pose_detection.tflite +0 -0
- mediapipe/modules/pose_landmark/__init__.py +0 -0
- mediapipe/modules/pose_landmark/pose_landmark_cpu.binarypb +0 -0
- mediapipe/modules/pose_landmark/pose_landmark_full.tflite +0 -0
- mediapipe/modules/selfie_segmentation/__init__.py +0 -0
- mediapipe/modules/selfie_segmentation/selfie_segmentation.tflite +0 -0
- mediapipe/modules/selfie_segmentation/selfie_segmentation_cpu.binarypb +0 -0
- mediapipe/modules/selfie_segmentation/selfie_segmentation_landscape.tflite +0 -0
- mediapipe/python/__init__.py +28 -0
- mediapipe/python/_framework_bindings/arm64.cpython-311-darwin.so +0 -0
- mediapipe/python/_framework_bindings.cpython-311-darwin.so +0 -0
- mediapipe/python/calculator_graph_test.py +251 -0
- mediapipe/python/image_frame_test.py +194 -0
- mediapipe/python/image_test.py +218 -0
- mediapipe/python/packet_creator.py +275 -0
- mediapipe/python/packet_getter.py +119 -0
- mediapipe/python/packet_test.py +533 -0
- mediapipe/python/solution_base.py +632 -0
- mediapipe/python/solution_base_test.py +396 -0
- mediapipe/python/solutions/__init__.py +27 -0
- mediapipe/python/solutions/download_utils.py +37 -0
- mediapipe/python/solutions/drawing_styles.py +249 -0
- mediapipe/python/solutions/drawing_utils.py +316 -0
- mediapipe/python/solutions/drawing_utils_test.py +258 -0
- mediapipe/python/solutions/face_detection.py +105 -0
- mediapipe/python/solutions/face_detection_test.py +92 -0
- mediapipe/python/solutions/face_mesh.py +125 -0
- mediapipe/python/solutions/face_mesh_connections.py +500 -0
- mediapipe/python/solutions/face_mesh_test.py +170 -0
- mediapipe/python/solutions/hands.py +153 -0
- mediapipe/python/solutions/hands_connections.py +32 -0
- mediapipe/python/solutions/hands_test.py +218 -0
- mediapipe/python/solutions/holistic.py +167 -0
- mediapipe/python/solutions/holistic_test.py +142 -0
- mediapipe/python/solutions/objectron.py +288 -0
- mediapipe/python/solutions/objectron_test.py +81 -0
- mediapipe/python/solutions/pose.py +192 -0
- mediapipe/python/solutions/pose_connections.py +22 -0
- mediapipe/python/solutions/pose_test.py +262 -0
- mediapipe/python/solutions/selfie_segmentation.py +76 -0
- mediapipe/python/solutions/selfie_segmentation_test.py +68 -0
- mediapipe/python/timestamp_test.py +78 -0
- mediapipe/tasks/__init__.py +14 -0
- mediapipe/tasks/cc/__init__.py +0 -0
- mediapipe/tasks/cc/audio/__init__.py +0 -0
- mediapipe/tasks/cc/audio/audio_classifier/__init__.py +0 -0
- mediapipe/tasks/cc/audio/audio_classifier/proto/__init__.py +0 -0
- mediapipe/tasks/cc/audio/audio_classifier/proto/audio_classifier_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/audio/audio_embedder/__init__.py +0 -0
- mediapipe/tasks/cc/audio/audio_embedder/proto/__init__.py +0 -0
- mediapipe/tasks/cc/audio/audio_embedder/proto/audio_embedder_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/audio/core/__init__.py +0 -0
- mediapipe/tasks/cc/audio/utils/__init__.py +0 -0
- mediapipe/tasks/cc/components/__init__.py +0 -0
- mediapipe/tasks/cc/components/calculators/__init__.py +0 -0
- mediapipe/tasks/cc/components/calculators/classification_aggregation_calculator_pb2.py +31 -0
- mediapipe/tasks/cc/components/calculators/score_calibration_calculator_pb2.py +35 -0
- mediapipe/tasks/cc/components/calculators/tensors_to_embeddings_calculator_pb2.py +32 -0
- mediapipe/tasks/cc/components/containers/__init__.py +0 -0
- mediapipe/tasks/cc/components/containers/proto/__init__.py +0 -0
- mediapipe/tasks/cc/components/containers/proto/classifications_pb2.py +29 -0
- mediapipe/tasks/cc/components/containers/proto/embeddings_pb2.py +34 -0
- mediapipe/tasks/cc/components/containers/proto/landmarks_detection_result_pb2.py +31 -0
- mediapipe/tasks/cc/components/processors/__init__.py +0 -0
- mediapipe/tasks/cc/components/processors/proto/__init__.py +0 -0
- mediapipe/tasks/cc/components/processors/proto/classification_postprocessing_graph_options_pb2.py +38 -0
- mediapipe/tasks/cc/components/processors/proto/classifier_options_pb2.py +26 -0
- mediapipe/tasks/cc/components/processors/proto/detection_postprocessing_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/components/processors/proto/detector_options_pb2.py +26 -0
- mediapipe/tasks/cc/components/processors/proto/embedder_options_pb2.py +26 -0
- mediapipe/tasks/cc/components/processors/proto/embedding_postprocessing_graph_options_pb2.py +32 -0
- mediapipe/tasks/cc/components/processors/proto/image_preprocessing_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/components/processors/proto/llm_params_pb2.py +27 -0
- mediapipe/tasks/cc/components/processors/proto/text_model_type_pb2.py +27 -0
- mediapipe/tasks/cc/components/processors/proto/text_preprocessing_graph_options_pb2.py +32 -0
- mediapipe/tasks/cc/components/processors/proto/transformer_params_pb2.py +28 -0
- mediapipe/tasks/cc/components/utils/__init__.py +0 -0
- mediapipe/tasks/cc/core/__init__.py +0 -0
- mediapipe/tasks/cc/core/proto/__init__.py +0 -0
- mediapipe/tasks/cc/core/proto/acceleration_pb2.py +27 -0
- mediapipe/tasks/cc/core/proto/base_options_pb2.py +29 -0
- mediapipe/tasks/cc/core/proto/external_file_pb2.py +30 -0
- mediapipe/tasks/cc/core/proto/inference_subgraph_pb2.py +32 -0
- mediapipe/tasks/cc/core/proto/model_resources_calculator_pb2.py +32 -0
- mediapipe/tasks/cc/metadata/__init__.py +0 -0
- mediapipe/tasks/cc/metadata/python/__init__.py +0 -0
- mediapipe/tasks/cc/metadata/python/_pywrap_metadata_version/arm64.cpython-311-darwin.so +0 -0
- mediapipe/tasks/cc/metadata/python/_pywrap_metadata_version.cpython-311-darwin.so +0 -0
- mediapipe/tasks/cc/metadata/tests/__init__.py +0 -0
- mediapipe/tasks/cc/metadata/utils/__init__.py +0 -0
- mediapipe/tasks/cc/text/__init__.py +0 -0
- mediapipe/tasks/cc/text/custom_ops/__init__.py +0 -0
- mediapipe/tasks/cc/text/custom_ops/ragged/__init__.py +0 -0
- mediapipe/tasks/cc/text/custom_ops/sentencepiece/__init__.py +0 -0
- mediapipe/tasks/cc/text/custom_ops/sentencepiece/testdata/__init__.py +0 -0
- mediapipe/tasks/cc/text/language_detector/__init__.py +0 -0
- mediapipe/tasks/cc/text/language_detector/custom_ops/__init__.py +0 -0
- mediapipe/tasks/cc/text/language_detector/custom_ops/utils/__init__.py +0 -0
- mediapipe/tasks/cc/text/language_detector/custom_ops/utils/hash/__init__.py +0 -0
- mediapipe/tasks/cc/text/language_detector/custom_ops/utils/utf/__init__.py +0 -0
- mediapipe/tasks/cc/text/text_classifier/__init__.py +0 -0
- mediapipe/tasks/cc/text/text_classifier/proto/__init__.py +0 -0
- mediapipe/tasks/cc/text/text_classifier/proto/text_classifier_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/text/text_embedder/__init__.py +0 -0
- mediapipe/tasks/cc/text/text_embedder/proto/__init__.py +0 -0
- mediapipe/tasks/cc/text/text_embedder/proto/text_embedder_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/text/tokenizers/__init__.py +0 -0
- mediapipe/tasks/cc/text/utils/__init__.py +0 -0
- mediapipe/tasks/cc/vision/__init__.py +0 -0
- mediapipe/tasks/cc/vision/core/__init__.py +0 -0
- mediapipe/tasks/cc/vision/custom_ops/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_detector/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_detector/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_detector/proto/face_detector_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/face_geometry/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_geometry/calculators/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_geometry/calculators/env_generator_calculator_pb2.py +28 -0
- mediapipe/tasks/cc/vision/face_geometry/calculators/geometry_pipeline_calculator_pb2.py +29 -0
- mediapipe/tasks/cc/vision/face_geometry/data/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_geometry/libs/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_geometry/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_geometry/proto/environment_pb2.py +30 -0
- mediapipe/tasks/cc/vision/face_geometry/proto/face_geometry_graph_options_pb2.py +29 -0
- mediapipe/tasks/cc/vision/face_geometry/proto/face_geometry_pb2.py +28 -0
- mediapipe/tasks/cc/vision/face_geometry/proto/geometry_pipeline_metadata_pb2.py +31 -0
- mediapipe/tasks/cc/vision/face_geometry/proto/mesh_3d_pb2.py +30 -0
- mediapipe/tasks/cc/vision/face_landmarker/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_landmarker/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_landmarker/proto/face_blendshapes_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/face_landmarker/proto/face_landmarker_graph_options_pb2.py +37 -0
- mediapipe/tasks/cc/vision/face_landmarker/proto/face_landmarks_detector_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/vision/face_landmarker/proto/tensors_to_face_landmarks_graph_options_pb2.py +32 -0
- mediapipe/tasks/cc/vision/face_stylizer/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_stylizer/calculators/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_stylizer/calculators/tensors_to_image_calculator_pb2.py +36 -0
- mediapipe/tasks/cc/vision/face_stylizer/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/face_stylizer/proto/face_stylizer_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/__init__.py +0 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/calculators/__init__.py +0 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/calculators/combined_prediction_calculator_pb2.py +33 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/calculators/landmarks_to_matrix_calculator_pb2.py +31 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/proto/gesture_classifier_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/proto/gesture_embedder_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/proto/gesture_recognizer_graph_options_pb2.py +36 -0
- mediapipe/tasks/cc/vision/gesture_recognizer/proto/hand_gesture_recognizer_graph_options_pb2.py +36 -0
- mediapipe/tasks/cc/vision/hand_detector/__init__.py +0 -0
- mediapipe/tasks/cc/vision/hand_detector/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/hand_detector/proto/hand_detector_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/hand_detector/proto/hand_detector_result_pb2.py +29 -0
- mediapipe/tasks/cc/vision/hand_landmarker/__init__.py +0 -0
- mediapipe/tasks/cc/vision/hand_landmarker/calculators/__init__.py +0 -0
- mediapipe/tasks/cc/vision/hand_landmarker/calculators/hand_association_calculator_pb2.py +31 -0
- mediapipe/tasks/cc/vision/hand_landmarker/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/hand_landmarker/proto/hand_landmarker_graph_options_pb2.py +36 -0
- mediapipe/tasks/cc/vision/hand_landmarker/proto/hand_landmarks_detector_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/hand_landmarker/proto/hand_roi_refinement_graph_options_pb2.py +26 -0
- mediapipe/tasks/cc/vision/image_classifier/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_classifier/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_classifier/proto/image_classifier_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/vision/image_embedder/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_embedder/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_embedder/proto/image_embedder_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/vision/image_generator/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_generator/diffuser/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_generator/diffuser/stable_diffusion_iterate_calculator_pb2.py +40 -0
- mediapipe/tasks/cc/vision/image_generator/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_generator/proto/conditioned_image_graph_options_pb2.py +39 -0
- mediapipe/tasks/cc/vision/image_generator/proto/control_plugin_graph_options_pb2.py +33 -0
- mediapipe/tasks/cc/vision/image_generator/proto/image_generator_graph_options_pb2.py +29 -0
- mediapipe/tasks/cc/vision/image_segmenter/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_segmenter/calculators/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_segmenter/calculators/tensors_to_segmentation_calculator_pb2.py +34 -0
- mediapipe/tasks/cc/vision/image_segmenter/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/image_segmenter/proto/image_segmenter_graph_options_pb2.py +35 -0
- mediapipe/tasks/cc/vision/image_segmenter/proto/segmenter_options_pb2.py +32 -0
- mediapipe/tasks/cc/vision/interactive_segmenter/__init__.py +0 -0
- mediapipe/tasks/cc/vision/object_detector/__init__.py +0 -0
- mediapipe/tasks/cc/vision/object_detector/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/object_detector/proto/object_detector_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/pose_detector/__init__.py +0 -0
- mediapipe/tasks/cc/vision/pose_detector/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/pose_detector/proto/pose_detector_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/pose_landmarker/__init__.py +0 -0
- mediapipe/tasks/cc/vision/pose_landmarker/proto/__init__.py +0 -0
- mediapipe/tasks/cc/vision/pose_landmarker/proto/pose_landmarker_graph_options_pb2.py +36 -0
- mediapipe/tasks/cc/vision/pose_landmarker/proto/pose_landmarks_detector_graph_options_pb2.py +34 -0
- mediapipe/tasks/cc/vision/utils/__init__.py +0 -0
- mediapipe/tasks/cc/vision/utils/ghum/__init__.py +0 -0
- mediapipe/tasks/metadata/image_segmenter_metadata_schema.fbs +59 -0
- mediapipe/tasks/metadata/image_segmenter_metadata_schema_py_generated.py +108 -0
- mediapipe/tasks/metadata/metadata_schema.fbs +732 -0
- mediapipe/tasks/metadata/metadata_schema_py_generated.py +3251 -0
- mediapipe/tasks/metadata/object_detector_metadata_schema.fbs +98 -0
- mediapipe/tasks/metadata/object_detector_metadata_schema_py_generated.py +674 -0
- mediapipe/tasks/metadata/schema_py_generated.py +14263 -0
- mediapipe/tasks/python/__init__.py +26 -0
- mediapipe/tasks/python/audio/__init__.py +33 -0
- mediapipe/tasks/python/audio/audio_classifier.py +324 -0
- mediapipe/tasks/python/audio/audio_embedder.py +285 -0
- mediapipe/tasks/python/audio/core/__init__.py +16 -0
- mediapipe/tasks/python/audio/core/audio_record.py +125 -0
- mediapipe/tasks/python/audio/core/audio_task_running_mode.py +29 -0
- mediapipe/tasks/python/audio/core/base_audio_task_api.py +181 -0
- mediapipe/tasks/python/components/__init__.py +13 -0
- mediapipe/tasks/python/components/containers/__init__.py +53 -0
- mediapipe/tasks/python/components/containers/audio_data.py +137 -0
- mediapipe/tasks/python/components/containers/bounding_box.py +73 -0
- mediapipe/tasks/python/components/containers/category.py +78 -0
- mediapipe/tasks/python/components/containers/classification_result.py +111 -0
- mediapipe/tasks/python/components/containers/detections.py +181 -0
- mediapipe/tasks/python/components/containers/embedding_result.py +89 -0
- mediapipe/tasks/python/components/containers/keypoint.py +77 -0
- mediapipe/tasks/python/components/containers/landmark.py +122 -0
- mediapipe/tasks/python/components/containers/landmark_detection_result.py +106 -0
- mediapipe/tasks/python/components/containers/rect.py +109 -0
- mediapipe/tasks/python/components/processors/__init__.py +23 -0
- mediapipe/tasks/python/components/processors/classifier_options.py +86 -0
- mediapipe/tasks/python/components/utils/__init__.py +13 -0
- mediapipe/tasks/python/components/utils/cosine_similarity.py +68 -0
- mediapipe/tasks/python/core/__init__.py +13 -0
- mediapipe/tasks/python/core/base_options.py +121 -0
- mediapipe/tasks/python/core/optional_dependencies.py +25 -0
- mediapipe/tasks/python/core/task_info.py +132 -0
- mediapipe/tasks/python/metadata/__init__.py +13 -0
- mediapipe/tasks/python/metadata/flatbuffers_lib/_pywrap_flatbuffers/arm64.cpython-311-darwin.so +0 -0
- mediapipe/tasks/python/metadata/flatbuffers_lib/_pywrap_flatbuffers.cpython-311-darwin.so +0 -0
- mediapipe/tasks/python/metadata/metadata.py +928 -0
- mediapipe/tasks/python/metadata/metadata_displayer_cli.py +34 -0
- mediapipe/tasks/python/metadata/metadata_writers/__init__.py +13 -0
- mediapipe/tasks/python/metadata/metadata_writers/face_stylizer.py +138 -0
- mediapipe/tasks/python/metadata/metadata_writers/image_classifier.py +71 -0
- mediapipe/tasks/python/metadata/metadata_writers/image_segmenter.py +170 -0
- mediapipe/tasks/python/metadata/metadata_writers/metadata_info.py +1166 -0
- mediapipe/tasks/python/metadata/metadata_writers/metadata_writer.py +845 -0
- mediapipe/tasks/python/metadata/metadata_writers/model_asset_bundle_utils.py +71 -0
- mediapipe/tasks/python/metadata/metadata_writers/object_detector.py +331 -0
- mediapipe/tasks/python/metadata/metadata_writers/text_classifier.py +119 -0
- mediapipe/tasks/python/metadata/metadata_writers/writer_utils.py +91 -0
- mediapipe/tasks/python/test/__init__.py +13 -0
- mediapipe/tasks/python/test/audio/__init__.py +13 -0
- mediapipe/tasks/python/test/audio/audio_classifier_test.py +387 -0
- mediapipe/tasks/python/test/audio/audio_embedder_test.py +297 -0
- mediapipe/tasks/python/test/test_utils.py +196 -0
- mediapipe/tasks/python/test/text/__init__.py +13 -0
- mediapipe/tasks/python/test/text/language_detector_test.py +228 -0
- mediapipe/tasks/python/test/text/text_classifier_test.py +231 -0
- mediapipe/tasks/python/test/text/text_embedder_test.py +326 -0
- mediapipe/tasks/python/test/vision/__init__.py +13 -0
- mediapipe/tasks/python/test/vision/face_aligner_test.py +190 -0
- mediapipe/tasks/python/test/vision/face_detector_test.py +523 -0
- mediapipe/tasks/python/test/vision/face_landmarker_test.py +565 -0
- mediapipe/tasks/python/test/vision/face_stylizer_test.py +191 -0
- mediapipe/tasks/python/test/vision/hand_landmarker_test.py +437 -0
- mediapipe/tasks/python/test/vision/image_classifier_test.py +657 -0
- mediapipe/tasks/python/test/vision/image_embedder_test.py +423 -0
- mediapipe/tasks/python/test/vision/image_segmenter_test.py +512 -0
- mediapipe/tasks/python/test/vision/interactive_segmenter_test.py +341 -0
- mediapipe/tasks/python/test/vision/object_detector_test.py +493 -0
- mediapipe/tasks/python/test/vision/pose_landmarker_test.py +518 -0
- mediapipe/tasks/python/text/__init__.py +35 -0
- mediapipe/tasks/python/text/core/__init__.py +16 -0
- mediapipe/tasks/python/text/core/base_text_task_api.py +54 -0
- mediapipe/tasks/python/text/language_detector.py +220 -0
- mediapipe/tasks/python/text/text_classifier.py +187 -0
- mediapipe/tasks/python/text/text_embedder.py +188 -0
- mediapipe/tasks/python/vision/__init__.py +83 -0
- mediapipe/tasks/python/vision/core/__init__.py +14 -0
- mediapipe/tasks/python/vision/core/base_vision_task_api.py +226 -0
- mediapipe/tasks/python/vision/core/image_processing_options.py +39 -0
- mediapipe/tasks/python/vision/core/vision_task_running_mode.py +31 -0
- mediapipe/tasks/python/vision/face_aligner.py +158 -0
- mediapipe/tasks/python/vision/face_detector.py +332 -0
- mediapipe/tasks/python/vision/face_landmarker.py +3244 -0
- mediapipe/tasks/python/vision/face_stylizer.py +158 -0
- mediapipe/tasks/python/vision/gesture_recognizer.py +480 -0
- mediapipe/tasks/python/vision/hand_landmarker.py +504 -0
- mediapipe/tasks/python/vision/image_classifier.py +358 -0
- mediapipe/tasks/python/vision/image_embedder.py +362 -0
- mediapipe/tasks/python/vision/image_segmenter.py +433 -0
- mediapipe/tasks/python/vision/interactive_segmenter.py +285 -0
- mediapipe/tasks/python/vision/object_detector.py +385 -0
- mediapipe/tasks/python/vision/pose_landmarker.py +455 -0
- mediapipe/util/__init__.py +0 -0
- mediapipe/util/analytics/__init__.py +0 -0
- mediapipe/util/analytics/mediapipe_log_extension_pb2.py +41 -0
- mediapipe/util/analytics/mediapipe_logging_enums_pb2.py +36 -0
- mediapipe/util/audio_decoder_pb2.py +33 -0
- mediapipe/util/color_pb2.py +32 -0
- mediapipe/util/label_map_pb2.py +26 -0
- mediapipe/util/render_data_pb2.py +57 -0
- mediapipe/util/sequence/__init__.py +14 -0
- mediapipe/util/sequence/media_sequence.py +716 -0
- mediapipe/util/sequence/media_sequence_test.py +290 -0
- mediapipe/util/sequence/media_sequence_util.py +800 -0
- mediapipe/util/sequence/media_sequence_util_test.py +389 -0
- mediapipe/util/tracking/__init__.py +0 -0
- mediapipe/util/tracking/box_detector_pb2.py +38 -0
- mediapipe/util/tracking/box_tracker_pb2.py +31 -0
- mediapipe/util/tracking/camera_motion_pb2.py +30 -0
- mediapipe/util/tracking/flow_packager_pb2.py +59 -0
- mediapipe/util/tracking/frame_selection_pb2.py +34 -0
- mediapipe/util/tracking/frame_selection_solution_evaluator_pb2.py +27 -0
- mediapipe/util/tracking/motion_analysis_pb2.py +34 -0
- mediapipe/util/tracking/motion_estimation_pb2.py +65 -0
- mediapipe/util/tracking/motion_models_pb2.py +41 -0
- mediapipe/util/tracking/motion_saliency_pb2.py +25 -0
- mediapipe/util/tracking/push_pull_filtering_pb2.py +25 -0
- mediapipe/util/tracking/region_flow_computation_pb2.py +58 -0
- mediapipe/util/tracking/region_flow_pb2.py +48 -0
- mediapipe/util/tracking/tone_estimation_pb2.py +44 -0
- mediapipe/util/tracking/tone_models_pb2.py +31 -0
- mediapipe/util/tracking/tracked_detection_manager_config_pb2.py +25 -0
- mediapipe/util/tracking/tracking_pb2.py +72 -0
- mediapipe_nightly-0.0.0.post20231103.dist-info/LICENSE +218 -0
- mediapipe_nightly-0.0.0.post20231103.dist-info/METADATA +196 -0
- mediapipe_nightly-0.0.0.post20231103.dist-info/RECORD +545 -0
- mediapipe_nightly-0.0.0.post20231103.dist-info/WHEEL +5 -0
- mediapipe_nightly-0.0.0.post20231103.dist-info/top_level.txt +4 -0
@@ -0,0 +1,1166 @@
|
|
1
|
+
# Copyright 2022 The MediaPipe Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Helper classes for common model metadata information."""
|
16
|
+
|
17
|
+
import abc
|
18
|
+
import collections
|
19
|
+
import csv
|
20
|
+
import enum
|
21
|
+
import os
|
22
|
+
from typing import List, Optional, Type, Union
|
23
|
+
|
24
|
+
from mediapipe.tasks.metadata import metadata_schema_py_generated as _metadata_fb
|
25
|
+
from mediapipe.tasks.metadata import schema_py_generated as _schema_fb
|
26
|
+
from mediapipe.tasks.python.metadata.metadata_writers import writer_utils
|
27
|
+
|
28
|
+
# Min and max values for UINT8 tensors.
|
29
|
+
_MIN_UINT8 = 0
|
30
|
+
_MAX_UINT8 = 255
|
31
|
+
|
32
|
+
# Default description for vocabulary files.
|
33
|
+
_VOCAB_FILE_DESCRIPTION = ("Vocabulary file to convert natural language "
|
34
|
+
"words to embedding vectors.")
|
35
|
+
|
36
|
+
|
37
|
+
class GeneralMd:
|
38
|
+
"""A container for common metadata information of a model.
|
39
|
+
|
40
|
+
Attributes:
|
41
|
+
name: name of the model.
|
42
|
+
version: version of the model.
|
43
|
+
description: description of what the model does.
|
44
|
+
author: author of the model.
|
45
|
+
licenses: licenses of the model.
|
46
|
+
"""
|
47
|
+
|
48
|
+
def __init__(self,
|
49
|
+
name: Optional[str] = None,
|
50
|
+
version: Optional[str] = None,
|
51
|
+
description: Optional[str] = None,
|
52
|
+
author: Optional[str] = None,
|
53
|
+
licenses: Optional[str] = None) -> None:
|
54
|
+
self.name = name
|
55
|
+
self.version = version
|
56
|
+
self.description = description
|
57
|
+
self.author = author
|
58
|
+
self.licenses = licenses
|
59
|
+
|
60
|
+
def create_metadata(self) -> _metadata_fb.ModelMetadataT:
|
61
|
+
"""Creates the model metadata based on the general model information.
|
62
|
+
|
63
|
+
Returns:
|
64
|
+
A Flatbuffers Python object of the model metadata.
|
65
|
+
"""
|
66
|
+
model_metadata = _metadata_fb.ModelMetadataT()
|
67
|
+
model_metadata.name = self.name
|
68
|
+
model_metadata.version = self.version
|
69
|
+
model_metadata.description = self.description
|
70
|
+
model_metadata.author = self.author
|
71
|
+
model_metadata.license = self.licenses
|
72
|
+
return model_metadata
|
73
|
+
|
74
|
+
|
75
|
+
class AssociatedFileMd:
|
76
|
+
"""A container for common associated file metadata information.
|
77
|
+
|
78
|
+
Attributes:
|
79
|
+
file_path: path to the associated file.
|
80
|
+
description: description of the associated file.
|
81
|
+
file_type: file type of the associated file [1].
|
82
|
+
locale: locale of the associated file [2].
|
83
|
+
[1]:
|
84
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L77
|
85
|
+
[2]:
|
86
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L176
|
87
|
+
"""
|
88
|
+
|
89
|
+
def __init__(
|
90
|
+
self,
|
91
|
+
file_path: str,
|
92
|
+
description: Optional[str] = None,
|
93
|
+
file_type: Optional[int] = _metadata_fb.AssociatedFileType.UNKNOWN,
|
94
|
+
locale: Optional[str] = None) -> None:
|
95
|
+
self.file_path = file_path
|
96
|
+
self.description = description
|
97
|
+
self.file_type = file_type
|
98
|
+
self.locale = locale
|
99
|
+
|
100
|
+
def create_metadata(self) -> _metadata_fb.AssociatedFileT:
|
101
|
+
"""Creates the associated file metadata.
|
102
|
+
|
103
|
+
Returns:
|
104
|
+
A Flatbuffers Python object of the associated file metadata.
|
105
|
+
"""
|
106
|
+
file_metadata = _metadata_fb.AssociatedFileT()
|
107
|
+
file_metadata.name = os.path.basename(self.file_path)
|
108
|
+
file_metadata.description = self.description
|
109
|
+
file_metadata.type = self.file_type
|
110
|
+
file_metadata.locale = self.locale
|
111
|
+
return file_metadata
|
112
|
+
|
113
|
+
|
114
|
+
class LabelFileMd(AssociatedFileMd):
|
115
|
+
"""A container for label file metadata information."""
|
116
|
+
|
117
|
+
_LABEL_FILE_DESCRIPTION = ("Labels for categories that the model can "
|
118
|
+
"recognize.")
|
119
|
+
_FILE_TYPE = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS
|
120
|
+
|
121
|
+
def __init__(self, file_path: str, locale: Optional[str] = None) -> None:
|
122
|
+
"""Creates a LabelFileMd object.
|
123
|
+
|
124
|
+
Args:
|
125
|
+
file_path: file_path of the label file.
|
126
|
+
locale: locale of the label file [1].
|
127
|
+
[1]:
|
128
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L176
|
129
|
+
"""
|
130
|
+
super().__init__(file_path, self._LABEL_FILE_DESCRIPTION, self._FILE_TYPE,
|
131
|
+
locale)
|
132
|
+
|
133
|
+
|
134
|
+
class ScoreCalibrationMd:
|
135
|
+
"""A container for score calibration [1] metadata information.
|
136
|
+
|
137
|
+
[1]:
|
138
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L456
|
139
|
+
"""
|
140
|
+
|
141
|
+
_SCORE_CALIBRATION_FILE_DESCRIPTION = (
|
142
|
+
"Contains sigmoid-based score calibration parameters. The main purposes "
|
143
|
+
"of score calibration is to make scores across classes comparable, so "
|
144
|
+
"that a common threshold can be used for all output classes.")
|
145
|
+
_FILE_TYPE = _metadata_fb.AssociatedFileType.TENSOR_AXIS_SCORE_CALIBRATION
|
146
|
+
|
147
|
+
def __init__(self,
|
148
|
+
score_transformation_type: _metadata_fb.ScoreTransformationType,
|
149
|
+
default_score: float, file_path: str) -> None:
|
150
|
+
"""Creates a ScoreCalibrationMd object.
|
151
|
+
|
152
|
+
Args:
|
153
|
+
score_transformation_type: type of the function used for transforming the
|
154
|
+
uncalibrated score before applying score calibration.
|
155
|
+
default_score: the default calibrated score to apply if the uncalibrated
|
156
|
+
score is below min_score or if no parameters were specified for a given
|
157
|
+
index.
|
158
|
+
file_path: file_path of the score calibration file [1].
|
159
|
+
[1]:
|
160
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L133
|
161
|
+
|
162
|
+
Raises:
|
163
|
+
ValueError: if the score_calibration file is malformed.
|
164
|
+
"""
|
165
|
+
self._score_transformation_type = score_transformation_type
|
166
|
+
self._default_score = default_score
|
167
|
+
self._file_path = file_path
|
168
|
+
|
169
|
+
# Sanity check the score calibration file.
|
170
|
+
with open(self._file_path) as calibration_file:
|
171
|
+
csv_reader = csv.reader(calibration_file, delimiter=",")
|
172
|
+
for row in csv_reader:
|
173
|
+
if row and len(row) != 3 and len(row) != 4:
|
174
|
+
raise ValueError(
|
175
|
+
f"Expected empty lines or 3 or 4 parameters per line in score"
|
176
|
+
f" calibration file, but got {len(row)}.")
|
177
|
+
|
178
|
+
if row and float(row[0]) < 0:
|
179
|
+
raise ValueError(
|
180
|
+
f"Expected scale to be a non-negative value, but got "
|
181
|
+
f"{float(row[0])}.")
|
182
|
+
|
183
|
+
def create_metadata(self) -> _metadata_fb.ProcessUnitT:
|
184
|
+
"""Creates the score calibration metadata based on the information.
|
185
|
+
|
186
|
+
Returns:
|
187
|
+
A Flatbuffers Python object of the score calibration metadata.
|
188
|
+
"""
|
189
|
+
score_calibration = _metadata_fb.ProcessUnitT()
|
190
|
+
score_calibration.optionsType = (
|
191
|
+
_metadata_fb.ProcessUnitOptions.ScoreCalibrationOptions)
|
192
|
+
options = _metadata_fb.ScoreCalibrationOptionsT()
|
193
|
+
options.scoreTransformation = self._score_transformation_type
|
194
|
+
options.defaultScore = self._default_score
|
195
|
+
score_calibration.options = options
|
196
|
+
return score_calibration
|
197
|
+
|
198
|
+
def create_score_calibration_file_md(self) -> AssociatedFileMd:
|
199
|
+
return AssociatedFileMd(self._file_path,
|
200
|
+
self._SCORE_CALIBRATION_FILE_DESCRIPTION,
|
201
|
+
self._FILE_TYPE)
|
202
|
+
|
203
|
+
|
204
|
+
class ScoreThresholdingMd:
|
205
|
+
"""A container for score thresholding [1] metadata information.
|
206
|
+
|
207
|
+
[1]:
|
208
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L468
|
209
|
+
"""
|
210
|
+
|
211
|
+
def __init__(self, global_score_threshold: float) -> None:
|
212
|
+
"""Creates a ScoreThresholdingMd object.
|
213
|
+
|
214
|
+
Args:
|
215
|
+
global_score_threshold: The recommended global threshold below which
|
216
|
+
results are considered low-confidence and should be filtered out.
|
217
|
+
"""
|
218
|
+
self._global_score_threshold = global_score_threshold
|
219
|
+
|
220
|
+
def create_metadata(self) -> _metadata_fb.ProcessUnitT:
|
221
|
+
"""Creates the score thresholding metadata based on the information.
|
222
|
+
|
223
|
+
Returns:
|
224
|
+
A Flatbuffers Python object of the score thresholding metadata.
|
225
|
+
"""
|
226
|
+
score_thresholding = _metadata_fb.ProcessUnitT()
|
227
|
+
score_thresholding.optionsType = (
|
228
|
+
_metadata_fb.ProcessUnitOptions.ScoreThresholdingOptions)
|
229
|
+
options = _metadata_fb.ScoreThresholdingOptionsT()
|
230
|
+
options.globalScoreThreshold = self._global_score_threshold
|
231
|
+
score_thresholding.options = options
|
232
|
+
return score_thresholding
|
233
|
+
|
234
|
+
|
235
|
+
class RegexTokenizerMd:
|
236
|
+
"""A container for the Regex tokenizer [1] metadata information.
|
237
|
+
|
238
|
+
[1]:
|
239
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L500
|
240
|
+
"""
|
241
|
+
|
242
|
+
def __init__(self, delim_regex_pattern: str, vocab_file_path: str):
|
243
|
+
"""Initializes a RegexTokenizerMd object.
|
244
|
+
|
245
|
+
Args:
|
246
|
+
delim_regex_pattern: the regular expression to segment strings and create
|
247
|
+
tokens.
|
248
|
+
vocab_file_path: path to the vocabulary file.
|
249
|
+
"""
|
250
|
+
self._delim_regex_pattern = delim_regex_pattern
|
251
|
+
self._vocab_file_path = vocab_file_path
|
252
|
+
|
253
|
+
def create_metadata(self) -> _metadata_fb.ProcessUnitT:
|
254
|
+
"""Creates the Regex tokenizer metadata based on the information.
|
255
|
+
|
256
|
+
Returns:
|
257
|
+
A Flatbuffers Python object of the Regex tokenizer metadata.
|
258
|
+
"""
|
259
|
+
vocab = _metadata_fb.AssociatedFileT()
|
260
|
+
vocab.name = self._vocab_file_path
|
261
|
+
vocab.description = _VOCAB_FILE_DESCRIPTION
|
262
|
+
vocab.type = _metadata_fb.AssociatedFileType.VOCABULARY
|
263
|
+
|
264
|
+
# Create the RegexTokenizer.
|
265
|
+
tokenizer = _metadata_fb.ProcessUnitT()
|
266
|
+
tokenizer.optionsType = (
|
267
|
+
_metadata_fb.ProcessUnitOptions.RegexTokenizerOptions)
|
268
|
+
tokenizer.options = _metadata_fb.RegexTokenizerOptionsT()
|
269
|
+
tokenizer.options.delimRegexPattern = self._delim_regex_pattern
|
270
|
+
tokenizer.options.vocabFile = [vocab]
|
271
|
+
return tokenizer
|
272
|
+
|
273
|
+
|
274
|
+
class BertTokenizerMd:
|
275
|
+
"""A container for the Bert tokenizer [1] metadata information.
|
276
|
+
|
277
|
+
[1]:
|
278
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L477
|
279
|
+
"""
|
280
|
+
|
281
|
+
def __init__(self, vocab_file_path: str):
|
282
|
+
"""Initializes a BertTokenizerMd object.
|
283
|
+
|
284
|
+
Args:
|
285
|
+
vocab_file_path: path to the vocabulary file.
|
286
|
+
"""
|
287
|
+
self._vocab_file_path = vocab_file_path
|
288
|
+
|
289
|
+
def create_metadata(self) -> _metadata_fb.ProcessUnitT:
|
290
|
+
"""Creates the Bert tokenizer metadata based on the information.
|
291
|
+
|
292
|
+
Returns:
|
293
|
+
A Flatbuffers Python object of the Bert tokenizer metadata.
|
294
|
+
"""
|
295
|
+
vocab = _metadata_fb.AssociatedFileT()
|
296
|
+
vocab.name = self._vocab_file_path
|
297
|
+
vocab.description = _VOCAB_FILE_DESCRIPTION
|
298
|
+
vocab.type = _metadata_fb.AssociatedFileType.VOCABULARY
|
299
|
+
tokenizer = _metadata_fb.ProcessUnitT()
|
300
|
+
tokenizer.optionsType = _metadata_fb.ProcessUnitOptions.BertTokenizerOptions
|
301
|
+
tokenizer.options = _metadata_fb.BertTokenizerOptionsT()
|
302
|
+
tokenizer.options.vocabFile = [vocab]
|
303
|
+
return tokenizer
|
304
|
+
|
305
|
+
|
306
|
+
class SentencePieceTokenizerMd:
|
307
|
+
"""A container for the sentence piece tokenizer [1] metadata information.
|
308
|
+
|
309
|
+
[1]:
|
310
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L485
|
311
|
+
"""
|
312
|
+
|
313
|
+
_SP_MODEL_DESCRIPTION = "The sentence piece model file."
|
314
|
+
_SP_VOCAB_FILE_DESCRIPTION = _VOCAB_FILE_DESCRIPTION + (
|
315
|
+
" This file is optional during tokenization, while the sentence piece "
|
316
|
+
"model is mandatory.")
|
317
|
+
|
318
|
+
def __init__(self,
|
319
|
+
sentence_piece_model_path: str,
|
320
|
+
vocab_file_path: Optional[str] = None):
|
321
|
+
"""Initializes a SentencePieceTokenizerMd object.
|
322
|
+
|
323
|
+
Args:
|
324
|
+
sentence_piece_model_path: path to the sentence piece model file.
|
325
|
+
vocab_file_path: path to the vocabulary file.
|
326
|
+
"""
|
327
|
+
self._sentence_piece_model_path = sentence_piece_model_path
|
328
|
+
self._vocab_file_path = vocab_file_path
|
329
|
+
|
330
|
+
def create_metadata(self) -> _metadata_fb.ProcessUnitT:
|
331
|
+
"""Creates the sentence piece tokenizer metadata based on the information.
|
332
|
+
|
333
|
+
Returns:
|
334
|
+
A Flatbuffers Python object of the sentence piece tokenizer metadata.
|
335
|
+
"""
|
336
|
+
tokenizer = _metadata_fb.ProcessUnitT()
|
337
|
+
tokenizer.optionsType = (
|
338
|
+
_metadata_fb.ProcessUnitOptions.SentencePieceTokenizerOptions)
|
339
|
+
tokenizer.options = _metadata_fb.SentencePieceTokenizerOptionsT()
|
340
|
+
|
341
|
+
sp_model = _metadata_fb.AssociatedFileT()
|
342
|
+
sp_model.name = self._sentence_piece_model_path
|
343
|
+
sp_model.description = self._SP_MODEL_DESCRIPTION
|
344
|
+
tokenizer.options.sentencePieceModel = [sp_model]
|
345
|
+
if self._vocab_file_path:
|
346
|
+
vocab = _metadata_fb.AssociatedFileT()
|
347
|
+
vocab.name = self._vocab_file_path
|
348
|
+
vocab.description = self._SP_VOCAB_FILE_DESCRIPTION
|
349
|
+
vocab.type = _metadata_fb.AssociatedFileType.VOCABULARY
|
350
|
+
tokenizer.options.vocabFile = [vocab]
|
351
|
+
return tokenizer
|
352
|
+
|
353
|
+
|
354
|
+
class ValueRangeMd:
|
355
|
+
"""A container for value range metadata information."""
|
356
|
+
|
357
|
+
def __init__(self, min_value: int, max_value: int) -> None:
|
358
|
+
self.min_value = min_value
|
359
|
+
self.max_value = max_value
|
360
|
+
|
361
|
+
def create_metadata(self) -> _metadata_fb.ValueRangeT:
|
362
|
+
"""Creates the value range metadata based on the information."""
|
363
|
+
value_range_metadata = _metadata_fb.ValueRangeT()
|
364
|
+
value_range_metadata.min = self.min_value
|
365
|
+
value_range_metadata.max = self.max_value
|
366
|
+
return value_range_metadata
|
367
|
+
|
368
|
+
|
369
|
+
class TensorMd:
|
370
|
+
"""A container for common tensor metadata information.
|
371
|
+
|
372
|
+
Attributes:
|
373
|
+
name: name of the tensor.
|
374
|
+
description: description of what the tensor is.
|
375
|
+
min_values: per-channel minimum value of the tensor.
|
376
|
+
max_values: per-channel maximum value of the tensor.
|
377
|
+
content_type: content_type of the tensor.
|
378
|
+
associated_files: information of the associated files in the tensor.
|
379
|
+
tensor_name: name of the corresponding tensor [1] in the TFLite model. It is
|
380
|
+
used to locate the corresponding tensor and decide the order of the tensor
|
381
|
+
metadata [2] when populating model metadata.
|
382
|
+
content_range_md: information of content range [3].
|
383
|
+
[1]:
|
384
|
+
https://github.com/tensorflow/tensorflow/blob/cb67fef35567298b40ac166b0581cd8ad68e5a3a/tensorflow/lite/schema/schema.fbs#L1129-L1136
|
385
|
+
[2]:
|
386
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L623-L640
|
387
|
+
[3]:
|
388
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L385
|
389
|
+
"""
|
390
|
+
|
391
|
+
def __init__(
|
392
|
+
self,
|
393
|
+
name: Optional[str] = None,
|
394
|
+
description: Optional[str] = None,
|
395
|
+
min_values: Optional[List[float]] = None,
|
396
|
+
max_values: Optional[List[float]] = None,
|
397
|
+
content_type: int = _metadata_fb.ContentProperties.FeatureProperties,
|
398
|
+
associated_files: Optional[List[Type[AssociatedFileMd]]] = None,
|
399
|
+
tensor_name: Optional[str] = None,
|
400
|
+
content_range_md: Optional[ValueRangeMd] = None,
|
401
|
+
) -> None:
|
402
|
+
self.name = name
|
403
|
+
self.description = description
|
404
|
+
self.min_values = min_values
|
405
|
+
self.max_values = max_values
|
406
|
+
self.content_type = content_type
|
407
|
+
self.associated_files = associated_files
|
408
|
+
self.tensor_name = tensor_name
|
409
|
+
self.content_range_md = content_range_md
|
410
|
+
|
411
|
+
def create_metadata(self) -> _metadata_fb.TensorMetadataT:
|
412
|
+
"""Creates the input tensor metadata based on the information.
|
413
|
+
|
414
|
+
Returns:
|
415
|
+
A Flatbuffers Python object of the input metadata.
|
416
|
+
"""
|
417
|
+
tensor_metadata = _metadata_fb.TensorMetadataT()
|
418
|
+
tensor_metadata.name = self.name
|
419
|
+
tensor_metadata.description = self.description
|
420
|
+
|
421
|
+
# Create min and max values
|
422
|
+
stats = _metadata_fb.StatsT()
|
423
|
+
stats.max = self.max_values
|
424
|
+
stats.min = self.min_values
|
425
|
+
tensor_metadata.stats = stats
|
426
|
+
|
427
|
+
# Create content properties
|
428
|
+
content = _metadata_fb.ContentT()
|
429
|
+
if self.content_type is _metadata_fb.ContentProperties.FeatureProperties:
|
430
|
+
content.contentProperties = _metadata_fb.FeaturePropertiesT()
|
431
|
+
elif self.content_type is _metadata_fb.ContentProperties.ImageProperties:
|
432
|
+
content.contentProperties = _metadata_fb.ImagePropertiesT()
|
433
|
+
elif self.content_type is (
|
434
|
+
_metadata_fb.ContentProperties.BoundingBoxProperties):
|
435
|
+
content.contentProperties = _metadata_fb.BoundingBoxPropertiesT()
|
436
|
+
elif self.content_type is _metadata_fb.ContentProperties.AudioProperties:
|
437
|
+
content.contentProperties = _metadata_fb.AudioPropertiesT()
|
438
|
+
|
439
|
+
content.contentPropertiesType = self.content_type
|
440
|
+
tensor_metadata.content = content
|
441
|
+
if self.content_range_md:
|
442
|
+
tensor_metadata.content.range = self.content_range_md.create_metadata()
|
443
|
+
|
444
|
+
# TODO: check if multiple label files have populated locale.
|
445
|
+
# Create associated files
|
446
|
+
if self.associated_files:
|
447
|
+
tensor_metadata.associatedFiles = [
|
448
|
+
file.create_metadata() for file in self.associated_files
|
449
|
+
]
|
450
|
+
return tensor_metadata
|
451
|
+
|
452
|
+
|
453
|
+
class InputImageTensorMd(TensorMd):
|
454
|
+
"""A container for input image tensor metadata information.
|
455
|
+
|
456
|
+
Attributes:
|
457
|
+
norm_mean: the mean value used in tensor normalization [1].
|
458
|
+
norm_std: the std value used in the tensor normalization [1]. norm_mean and
|
459
|
+
norm_std must have the same dimension.
|
460
|
+
color_space_type: the color space type of the input image [2].
|
461
|
+
[1]:
|
462
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L389
|
463
|
+
[2]:
|
464
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L198
|
465
|
+
"""
|
466
|
+
|
467
|
+
# Min and max float values for image pixels.
|
468
|
+
_MIN_PIXEL = 0.0
|
469
|
+
_MAX_PIXEL = 255.0
|
470
|
+
|
471
|
+
def __init__(
|
472
|
+
self,
|
473
|
+
name: Optional[str] = None,
|
474
|
+
description: Optional[str] = None,
|
475
|
+
norm_mean: Optional[List[float]] = None,
|
476
|
+
norm_std: Optional[List[float]] = None,
|
477
|
+
color_space_type: Optional[int] = _metadata_fb.ColorSpaceType.UNKNOWN,
|
478
|
+
tensor_type: Optional["_schema_fb.TensorType"] = None) -> None:
|
479
|
+
"""Initializes the instance of InputImageTensorMd.
|
480
|
+
|
481
|
+
Args:
|
482
|
+
name: name of the tensor.
|
483
|
+
description: description of what the tensor is.
|
484
|
+
norm_mean: the mean value used in tensor normalization [1].
|
485
|
+
norm_std: the std value used in the tensor normalization [1]. norm_mean
|
486
|
+
and norm_std must have the same dimension.
|
487
|
+
color_space_type: the color space type of the input image [2].
|
488
|
+
tensor_type: data type of the tensor.
|
489
|
+
[1]:
|
490
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L389
|
491
|
+
[2]:
|
492
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L198
|
493
|
+
|
494
|
+
Raises:
|
495
|
+
ValueError: if norm_mean and norm_std have different dimensions.
|
496
|
+
"""
|
497
|
+
if norm_std and norm_mean and len(norm_std) != len(norm_mean):
|
498
|
+
raise ValueError(
|
499
|
+
f"norm_mean and norm_std are expected to be the same dim. But got "
|
500
|
+
f"{len(norm_mean)} and {len(norm_std)}")
|
501
|
+
|
502
|
+
if tensor_type is _schema_fb.TensorType.UINT8:
|
503
|
+
min_values = [_MIN_UINT8]
|
504
|
+
max_values = [_MAX_UINT8]
|
505
|
+
elif tensor_type is _schema_fb.TensorType.FLOAT32 and norm_std and norm_mean:
|
506
|
+
min_values = [
|
507
|
+
float(self._MIN_PIXEL - mean) / std
|
508
|
+
for mean, std in zip(norm_mean, norm_std)
|
509
|
+
]
|
510
|
+
max_values = [
|
511
|
+
float(self._MAX_PIXEL - mean) / std
|
512
|
+
for mean, std in zip(norm_mean, norm_std)
|
513
|
+
]
|
514
|
+
else:
|
515
|
+
# Uint8 and Float32 are the two major types currently. And Task library
|
516
|
+
# doesn't support other types so far.
|
517
|
+
min_values = None
|
518
|
+
max_values = None
|
519
|
+
|
520
|
+
super().__init__(name, description, min_values, max_values,
|
521
|
+
_metadata_fb.ContentProperties.ImageProperties)
|
522
|
+
self.norm_mean = norm_mean
|
523
|
+
self.norm_std = norm_std
|
524
|
+
self.color_space_type = color_space_type
|
525
|
+
|
526
|
+
def create_metadata(self) -> _metadata_fb.TensorMetadataT:
|
527
|
+
"""Creates the input image metadata based on the information.
|
528
|
+
|
529
|
+
Returns:
|
530
|
+
A Flatbuffers Python object of the input image metadata.
|
531
|
+
"""
|
532
|
+
tensor_metadata = super().create_metadata()
|
533
|
+
tensor_metadata.content.contentProperties.colorSpace = self.color_space_type
|
534
|
+
# Create normalization parameters
|
535
|
+
if self.norm_mean and self.norm_std:
|
536
|
+
normalization = _metadata_fb.ProcessUnitT()
|
537
|
+
normalization.optionsType = (
|
538
|
+
_metadata_fb.ProcessUnitOptions.NormalizationOptions)
|
539
|
+
normalization.options = _metadata_fb.NormalizationOptionsT()
|
540
|
+
normalization.options.mean = self.norm_mean
|
541
|
+
normalization.options.std = self.norm_std
|
542
|
+
tensor_metadata.processUnits = [normalization]
|
543
|
+
return tensor_metadata
|
544
|
+
|
545
|
+
|
546
|
+
class InputTextTensorMd(TensorMd):
|
547
|
+
"""A container for the input text tensor metadata information.
|
548
|
+
|
549
|
+
Attributes:
|
550
|
+
tokenizer_md: information of the tokenizer in the input text tensor, if any.
|
551
|
+
"""
|
552
|
+
|
553
|
+
def __init__(self,
|
554
|
+
name: Optional[str] = None,
|
555
|
+
description: Optional[str] = None,
|
556
|
+
tokenizer_md: Optional[RegexTokenizerMd] = None):
|
557
|
+
"""Initializes the instance of InputTextTensorMd.
|
558
|
+
|
559
|
+
Args:
|
560
|
+
name: name of the tensor.
|
561
|
+
description: description of what the tensor is.
|
562
|
+
tokenizer_md: information of the tokenizer in the input text tensor, if
|
563
|
+
any. Only `RegexTokenizer` [1] is currently supported. If the tokenizer
|
564
|
+
is `BertTokenizer` [2] or `SentencePieceTokenizer` [3], refer to
|
565
|
+
`BertInputTensorsMd` class.
|
566
|
+
[1]:
|
567
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L500
|
568
|
+
[2]:
|
569
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L477
|
570
|
+
[3]:
|
571
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L485
|
572
|
+
"""
|
573
|
+
super().__init__(name, description)
|
574
|
+
self.tokenizer_md = tokenizer_md
|
575
|
+
|
576
|
+
def create_metadata(self) -> _metadata_fb.TensorMetadataT:
|
577
|
+
"""Creates the input text metadata based on the information.
|
578
|
+
|
579
|
+
Returns:
|
580
|
+
A Flatbuffers Python object of the input text metadata.
|
581
|
+
|
582
|
+
Raises:
|
583
|
+
ValueError: if the type of tokenizer_md is unsupported.
|
584
|
+
"""
|
585
|
+
if not isinstance(self.tokenizer_md, (type(None), RegexTokenizerMd)):
|
586
|
+
raise ValueError(
|
587
|
+
f"The type of tokenizer_options, {type(self.tokenizer_md)}, is "
|
588
|
+
f"unsupported")
|
589
|
+
|
590
|
+
tensor_metadata = super().create_metadata()
|
591
|
+
if self.tokenizer_md:
|
592
|
+
tensor_metadata.processUnits = [self.tokenizer_md.create_metadata()]
|
593
|
+
return tensor_metadata
|
594
|
+
|
595
|
+
|
596
|
+
def _get_file_paths(files: List[_metadata_fb.AssociatedFileT]) -> List[str]:
|
597
|
+
"""Gets file paths from a list of associated files."""
|
598
|
+
if not files:
|
599
|
+
return []
|
600
|
+
return [file.name for file in files]
|
601
|
+
|
602
|
+
|
603
|
+
def _get_tokenizer_associated_files(
|
604
|
+
tokenizer_options: Optional[
|
605
|
+
Union[_metadata_fb.BertTokenizerOptionsT,
|
606
|
+
_metadata_fb.SentencePieceTokenizerOptionsT]]
|
607
|
+
) -> List[str]:
|
608
|
+
"""Gets a list of associated files packed in the tokenizer_options.
|
609
|
+
|
610
|
+
Args:
|
611
|
+
tokenizer_options: a tokenizer metadata object. Support the following
|
612
|
+
tokenizer types:
|
613
|
+
1. BertTokenizerOptions:
|
614
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L477
|
615
|
+
2. SentencePieceTokenizerOptions:
|
616
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L485
|
617
|
+
|
618
|
+
Returns:
|
619
|
+
A list of associated files included in tokenizer_options.
|
620
|
+
"""
|
621
|
+
|
622
|
+
if not tokenizer_options:
|
623
|
+
return []
|
624
|
+
|
625
|
+
if isinstance(tokenizer_options, _metadata_fb.BertTokenizerOptionsT):
|
626
|
+
return _get_file_paths(tokenizer_options.vocabFile)
|
627
|
+
elif isinstance(tokenizer_options,
|
628
|
+
_metadata_fb.SentencePieceTokenizerOptionsT):
|
629
|
+
return _get_file_paths(tokenizer_options.vocabFile) + _get_file_paths(
|
630
|
+
tokenizer_options.sentencePieceModel)
|
631
|
+
else:
|
632
|
+
return []
|
633
|
+
|
634
|
+
|
635
|
+
class BertInputTensorsMd:
|
636
|
+
"""A container for the input tensor metadata information of Bert models."""
|
637
|
+
|
638
|
+
_IDS_NAME = "ids"
|
639
|
+
_IDS_DESCRIPTION = "Tokenized ids of the input text."
|
640
|
+
_MASK_NAME = "mask"
|
641
|
+
_MASK_DESCRIPTION = ("Mask with 1 for real tokens and 0 for padding "
|
642
|
+
"tokens.")
|
643
|
+
_SEGMENT_IDS_NAME = "segment_ids"
|
644
|
+
_SEGMENT_IDS_DESCRIPTION = (
|
645
|
+
"0 for the first sequence, 1 for the second sequence if exists.")
|
646
|
+
|
647
|
+
def __init__(self,
|
648
|
+
model_buffer: bytearray,
|
649
|
+
ids_name: str,
|
650
|
+
mask_name: str,
|
651
|
+
segment_name: str,
|
652
|
+
tokenizer_md: Union[None, BertTokenizerMd,
|
653
|
+
SentencePieceTokenizerMd] = None):
|
654
|
+
"""Initializes a BertInputTensorsMd object.
|
655
|
+
|
656
|
+
`ids_name`, `mask_name`, and `segment_name` correspond to the `Tensor.name`
|
657
|
+
in the TFLite schema, which help to determine the tensor order when
|
658
|
+
populating metadata.
|
659
|
+
|
660
|
+
Args:
|
661
|
+
model_buffer: valid buffer of the model file.
|
662
|
+
ids_name: name of the ids tensor, which represents the tokenized ids of
|
663
|
+
the input text.
|
664
|
+
mask_name: name of the mask tensor, which represents the mask with `1` for
|
665
|
+
real tokens and `0` for padding tokens.
|
666
|
+
segment_name: name of the segment ids tensor, where `0` stands for the
|
667
|
+
first sequence, and `1` stands for the second sequence if exists.
|
668
|
+
tokenizer_md: information of the tokenizer used to process the input
|
669
|
+
string, if any. Supported tokenizers are: `BertTokenizer` [1] and
|
670
|
+
`SentencePieceTokenizer` [2]. If the tokenizer is `RegexTokenizer` [3],
|
671
|
+
refer to `InputTensorsMd`.
|
672
|
+
[1]:
|
673
|
+
https://github.com/tensorflow/tflite-support/blob/b80289c4cd1224d0e1836c7654e82f070f9eefaa/tensorflow_lite_support/metadata/metadata_schema.fbs#L436
|
674
|
+
[2]:
|
675
|
+
https://github.com/tensorflow/tflite-support/blob/b80289c4cd1224d0e1836c7654e82f070f9eefaa/tensorflow_lite_support/metadata/metadata_schema.fbs#L473
|
676
|
+
[3]:
|
677
|
+
https://github.com/tensorflow/tflite-support/blob/b80289c4cd1224d0e1836c7654e82f070f9eefaa/tensorflow_lite_support/metadata/metadata_schema.fbs#L475
|
678
|
+
"""
|
679
|
+
# Verify that tflite_input_names (read from the model) and
|
680
|
+
# input_name (collected from users) are aligned.
|
681
|
+
tflite_input_names = writer_utils.get_input_tensor_names(model_buffer)
|
682
|
+
input_names = [ids_name, mask_name, segment_name]
|
683
|
+
if collections.Counter(tflite_input_names) != collections.Counter(
|
684
|
+
input_names):
|
685
|
+
raise ValueError(
|
686
|
+
f"The input tensor names ({input_names}) do not match the tensor "
|
687
|
+
f"names read from the model ({tflite_input_names}).")
|
688
|
+
|
689
|
+
ids_md = TensorMd(
|
690
|
+
name=self._IDS_NAME,
|
691
|
+
description=self._IDS_DESCRIPTION,
|
692
|
+
tensor_name=ids_name)
|
693
|
+
|
694
|
+
mask_md = TensorMd(
|
695
|
+
name=self._MASK_NAME,
|
696
|
+
description=self._MASK_DESCRIPTION,
|
697
|
+
tensor_name=mask_name)
|
698
|
+
|
699
|
+
segment_ids_md = TensorMd(
|
700
|
+
name=self._SEGMENT_IDS_NAME,
|
701
|
+
description=self._SEGMENT_IDS_DESCRIPTION,
|
702
|
+
tensor_name=segment_name)
|
703
|
+
|
704
|
+
self._input_md = [ids_md, mask_md, segment_ids_md]
|
705
|
+
|
706
|
+
if not isinstance(tokenizer_md,
|
707
|
+
(type(None), BertTokenizerMd, SentencePieceTokenizerMd)):
|
708
|
+
raise ValueError(
|
709
|
+
f"The type of tokenizer_options, {type(tokenizer_md)}, is unsupported"
|
710
|
+
)
|
711
|
+
|
712
|
+
self._tokenizer_md = tokenizer_md
|
713
|
+
|
714
|
+
def create_input_process_unit_metadata(
|
715
|
+
self) -> List[_metadata_fb.ProcessUnitT]:
|
716
|
+
"""Creates the input process unit metadata."""
|
717
|
+
if self._tokenizer_md:
|
718
|
+
return [self._tokenizer_md.create_metadata()]
|
719
|
+
else:
|
720
|
+
return []
|
721
|
+
|
722
|
+
def get_tokenizer_associated_files(self) -> List[str]:
|
723
|
+
"""Gets the associated files that are packed in the tokenizer."""
|
724
|
+
if self._tokenizer_md:
|
725
|
+
return _get_tokenizer_associated_files(
|
726
|
+
self._tokenizer_md.create_metadata().options)
|
727
|
+
else:
|
728
|
+
return []
|
729
|
+
|
730
|
+
@property
|
731
|
+
def input_md(self) -> List[TensorMd]:
|
732
|
+
return self._input_md
|
733
|
+
|
734
|
+
|
735
|
+
class ClassificationTensorMd(TensorMd):
|
736
|
+
"""A container for the classification tensor metadata information.
|
737
|
+
|
738
|
+
Attributes:
|
739
|
+
label_files: information of the label files [1] in the classification
|
740
|
+
tensor.
|
741
|
+
score_calibration_md: information of the score calibration operation [2] in
|
742
|
+
the classification tensor.
|
743
|
+
score_thresholding_md: information of the score thresholding [3] in the
|
744
|
+
classification tensor.
|
745
|
+
[1]:
|
746
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L99
|
747
|
+
[2]:
|
748
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L456
|
749
|
+
[3]:
|
750
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L468
|
751
|
+
"""
|
752
|
+
|
753
|
+
# Min and max float values for classification results.
|
754
|
+
_MIN_FLOAT = 0.0
|
755
|
+
_MAX_FLOAT = 1.0
|
756
|
+
|
757
|
+
def __init__(
|
758
|
+
self,
|
759
|
+
name: Optional[str] = None,
|
760
|
+
description: Optional[str] = None,
|
761
|
+
label_files: Optional[List[LabelFileMd]] = None,
|
762
|
+
tensor_type: Optional[int] = None,
|
763
|
+
score_calibration_md: Optional[ScoreCalibrationMd] = None,
|
764
|
+
tensor_name: Optional[str] = None,
|
765
|
+
score_thresholding_md: Optional[ScoreThresholdingMd] = None,
|
766
|
+
content_range_md: Optional[ValueRangeMd] = None,
|
767
|
+
) -> None:
|
768
|
+
"""Initializes the instance of ClassificationTensorMd.
|
769
|
+
|
770
|
+
Args:
|
771
|
+
name: name of the tensor.
|
772
|
+
description: description of what the tensor is.
|
773
|
+
label_files: information of the label files [1] in the classification
|
774
|
+
tensor.
|
775
|
+
tensor_type: data type of the tensor.
|
776
|
+
score_calibration_md: information of the score calibration files operation
|
777
|
+
[2] in the classification tensor.
|
778
|
+
tensor_name: name of the corresponding tensor [3] in the TFLite model. It
|
779
|
+
is used to locate the corresponding classification tensor and decide the
|
780
|
+
order of the tensor metadata [4] when populating model metadata.
|
781
|
+
score_thresholding_md: information of the score thresholding [5] in the
|
782
|
+
classification tensor.
|
783
|
+
content_range_md: information of content range [6].
|
784
|
+
[1]:
|
785
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L99
|
786
|
+
[2]:
|
787
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L456
|
788
|
+
[3]:
|
789
|
+
https://github.com/tensorflow/tensorflow/blob/cb67fef35567298b40ac166b0581cd8ad68e5a3a/tensorflow/lite/schema/schema.fbs#L1129-L1136
|
790
|
+
[4]:
|
791
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L623-L640
|
792
|
+
[5]:
|
793
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L468
|
794
|
+
[6]:
|
795
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L385
|
796
|
+
"""
|
797
|
+
self.score_calibration_md = score_calibration_md
|
798
|
+
self.score_thresholding_md = score_thresholding_md
|
799
|
+
|
800
|
+
if tensor_type is _schema_fb.TensorType.UINT8:
|
801
|
+
min_values = [_MIN_UINT8]
|
802
|
+
max_values = [_MAX_UINT8]
|
803
|
+
elif tensor_type is _schema_fb.TensorType.FLOAT32:
|
804
|
+
min_values = [self._MIN_FLOAT]
|
805
|
+
max_values = [self._MAX_FLOAT]
|
806
|
+
else:
|
807
|
+
# Uint8 and Float32 are the two major types currently. And Task library
|
808
|
+
# doesn't support other types so far.
|
809
|
+
min_values = None
|
810
|
+
max_values = None
|
811
|
+
|
812
|
+
associated_files = label_files or []
|
813
|
+
if self.score_calibration_md:
|
814
|
+
associated_files.append(
|
815
|
+
score_calibration_md.create_score_calibration_file_md())
|
816
|
+
|
817
|
+
super().__init__(
|
818
|
+
name,
|
819
|
+
description,
|
820
|
+
min_values,
|
821
|
+
max_values,
|
822
|
+
_metadata_fb.ContentProperties.FeatureProperties,
|
823
|
+
associated_files,
|
824
|
+
tensor_name,
|
825
|
+
content_range_md,
|
826
|
+
)
|
827
|
+
|
828
|
+
def create_metadata(self) -> _metadata_fb.TensorMetadataT:
|
829
|
+
"""Creates the classification tensor metadata based on the information."""
|
830
|
+
tensor_metadata = super().create_metadata()
|
831
|
+
if self.score_calibration_md:
|
832
|
+
tensor_metadata.processUnits = [
|
833
|
+
self.score_calibration_md.create_metadata()
|
834
|
+
]
|
835
|
+
if self.score_thresholding_md:
|
836
|
+
if tensor_metadata.processUnits:
|
837
|
+
tensor_metadata.processUnits.append(
|
838
|
+
self.score_thresholding_md.create_metadata())
|
839
|
+
else:
|
840
|
+
tensor_metadata.processUnits = [
|
841
|
+
self.score_thresholding_md.create_metadata()
|
842
|
+
]
|
843
|
+
return tensor_metadata
|
844
|
+
|
845
|
+
|
846
|
+
class LocationTensorMd(TensorMd):
|
847
|
+
"""A container for the detection location tensor metadata information."""
|
848
|
+
|
849
|
+
# The default order is {left, top, right, bottom}. Denote the order to be
|
850
|
+
# {top, left, bottom, right}.
|
851
|
+
_BOUNDING_BOX_INDEX = (1, 0, 3, 2)
|
852
|
+
|
853
|
+
def __init__(
|
854
|
+
self,
|
855
|
+
name: Optional[str] = None,
|
856
|
+
description: Optional[str] = None,
|
857
|
+
content_range_md: Optional[ValueRangeMd] = None,
|
858
|
+
) -> None:
|
859
|
+
super().__init__(
|
860
|
+
name=name, description=description, content_range_md=content_range_md
|
861
|
+
)
|
862
|
+
|
863
|
+
def create_metadata(self) -> _metadata_fb.TensorMetadataT:
|
864
|
+
"""Creates the detection location tensor metadata."""
|
865
|
+
content = _metadata_fb.ContentT()
|
866
|
+
content.contentPropertiesType = (
|
867
|
+
_metadata_fb.ContentProperties.BoundingBoxProperties
|
868
|
+
)
|
869
|
+
properties = _metadata_fb.BoundingBoxPropertiesT()
|
870
|
+
properties.index = list(self._BOUNDING_BOX_INDEX)
|
871
|
+
properties.type = _metadata_fb.BoundingBoxType.BOUNDARIES
|
872
|
+
properties.coordinateType = _metadata_fb.CoordinateType.RATIO
|
873
|
+
content.contentProperties = properties
|
874
|
+
if self.content_range_md:
|
875
|
+
content.range = self.content_range_md.create_metadata()
|
876
|
+
location_metadata = super().create_metadata()
|
877
|
+
location_metadata.content = content
|
878
|
+
return location_metadata
|
879
|
+
|
880
|
+
|
881
|
+
class CategoryTensorMd(TensorMd):
|
882
|
+
"""A container for the category tensor metadata information."""
|
883
|
+
|
884
|
+
def __init__(
|
885
|
+
self,
|
886
|
+
name: Optional[str] = None,
|
887
|
+
description: Optional[str] = None,
|
888
|
+
label_files: Optional[List[LabelFileMd]] = None,
|
889
|
+
content_range_md: Optional[ValueRangeMd] = None,
|
890
|
+
):
|
891
|
+
"""Initializes a CategoryTensorMd object.
|
892
|
+
|
893
|
+
Args:
|
894
|
+
name: name of the tensor.
|
895
|
+
description: description of what the tensor is.
|
896
|
+
label_files: information of the label files [1] in the category tensor.
|
897
|
+
content_range_md: information of content range [2].
|
898
|
+
[1]:
|
899
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L116
|
900
|
+
[2]:
|
901
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L385
|
902
|
+
"""
|
903
|
+
# In category tensors, label files are in the type of TENSOR_VALUE_LABELS.
|
904
|
+
if label_files:
|
905
|
+
for file in label_files:
|
906
|
+
file.file_type = _metadata_fb.AssociatedFileType.TENSOR_VALUE_LABELS
|
907
|
+
|
908
|
+
super().__init__(
|
909
|
+
name=name,
|
910
|
+
description=description,
|
911
|
+
associated_files=label_files,
|
912
|
+
content_range_md=content_range_md,
|
913
|
+
)
|
914
|
+
|
915
|
+
|
916
|
+
class DetectionOutputTensorsMd:
|
917
|
+
"""A container for the output tensor metadata of detection models."""
|
918
|
+
|
919
|
+
_LOCATION_NAME = "location"
|
920
|
+
_LOCATION_DESCRIPTION = "The locations of the detected boxes."
|
921
|
+
_CATRGORY_NAME = "category"
|
922
|
+
_CATEGORY_DESCRIPTION = "The categories of the detected boxes."
|
923
|
+
_SCORE_NAME = "score"
|
924
|
+
_SCORE_DESCRIPTION = "The scores of the detected boxes."
|
925
|
+
_NUMBER_NAME = "number of detections"
|
926
|
+
_NUMBER_DESCRIPTION = "The number of the detected boxes."
|
927
|
+
_CONTENT_VALUE_DIM = 2
|
928
|
+
|
929
|
+
def __init__(
|
930
|
+
self,
|
931
|
+
model_buffer: bytearray,
|
932
|
+
label_files: Optional[List[LabelFileMd]] = None,
|
933
|
+
score_calibration_md: Optional[ScoreCalibrationMd] = None,
|
934
|
+
) -> None:
|
935
|
+
"""Initializes the instance of DetectionOutputTensorsMd.
|
936
|
+
|
937
|
+
Args:
|
938
|
+
model_buffer: A valid flatbuffer loaded from the TFLite model file.
|
939
|
+
label_files: information of the label files [1] in the classification
|
940
|
+
tensor.
|
941
|
+
score_calibration_md: information of the score calibration files operation
|
942
|
+
[2] in the classification tensor.
|
943
|
+
[1]:
|
944
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L99
|
945
|
+
[2]:
|
946
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L456
|
947
|
+
"""
|
948
|
+
content_range_md = ValueRangeMd(
|
949
|
+
min_value=self._CONTENT_VALUE_DIM, max_value=self._CONTENT_VALUE_DIM
|
950
|
+
)
|
951
|
+
location_md = LocationTensorMd(
|
952
|
+
name=self._LOCATION_NAME,
|
953
|
+
description=self._LOCATION_DESCRIPTION,
|
954
|
+
content_range_md=content_range_md,
|
955
|
+
)
|
956
|
+
category_md = CategoryTensorMd(
|
957
|
+
name=self._CATRGORY_NAME,
|
958
|
+
description=self._CATEGORY_DESCRIPTION,
|
959
|
+
label_files=label_files,
|
960
|
+
content_range_md=content_range_md,
|
961
|
+
)
|
962
|
+
score_md = ClassificationTensorMd(
|
963
|
+
name=self._SCORE_NAME,
|
964
|
+
description=self._SCORE_DESCRIPTION,
|
965
|
+
score_calibration_md=score_calibration_md,
|
966
|
+
content_range_md=content_range_md,
|
967
|
+
)
|
968
|
+
number_md = TensorMd(
|
969
|
+
name=self._NUMBER_NAME, description=self._NUMBER_DESCRIPTION
|
970
|
+
)
|
971
|
+
|
972
|
+
# Get the tensor indices of tflite outputs and then gets the order of the
|
973
|
+
# output metadata by the value of tensor indices. The output tensor indices
|
974
|
+
# follow the order as [location, category, score,# detections]. For
|
975
|
+
# instance, if the output indices are [601, 599, 598, 600], tensor names and
|
976
|
+
# indices aligned as below:
|
977
|
+
# - (598, location)
|
978
|
+
# - (599, category)
|
979
|
+
# - (600, score)
|
980
|
+
# - (601, number of detections)
|
981
|
+
# because of the op's ports of TFLITE_DETECTION_POST_PROCESS
|
982
|
+
# (https://github.com/tensorflow/tensorflow/blob/a4fe268ea084e7d323133ed7b986e0ae259a2bc7/tensorflow/lite/kernels/detection_postprocess.cc#L47-L50).
|
983
|
+
# Thus, the metadata of tensors are paired with output tensor indices & name
|
984
|
+
# in this way.
|
985
|
+
|
986
|
+
# Get the output tensor indices and names from the tflite model.
|
987
|
+
tensor_indices_and_names = zip(
|
988
|
+
writer_utils.get_output_tensor_indices(model_buffer),
|
989
|
+
writer_utils.get_output_tensor_names(model_buffer),
|
990
|
+
)
|
991
|
+
# Sort by the output tensor indices.
|
992
|
+
tensor_indices_and_names = sorted(tensor_indices_and_names)
|
993
|
+
|
994
|
+
# Align tensor names with metadata.
|
995
|
+
self._output_mds = [location_md, category_md, score_md, number_md]
|
996
|
+
if len(self._output_mds) != len(tensor_indices_and_names):
|
997
|
+
raise ValueError(
|
998
|
+
"The size of TFLite output should be " + str(len(self._output_mds))
|
999
|
+
)
|
1000
|
+
for i, output_md in enumerate(self._output_mds):
|
1001
|
+
output_md.tensor_name = tensor_indices_and_names[i][1]
|
1002
|
+
|
1003
|
+
@property
|
1004
|
+
def output_mds(self) -> List[TensorMd]:
|
1005
|
+
return self._output_mds
|
1006
|
+
|
1007
|
+
|
1008
|
+
class RawDetectionOutputTensorsOrder(enum.Enum):
|
1009
|
+
"""Output tensors order for detection models without postprocessing.
|
1010
|
+
|
1011
|
+
Because it is not able to determined the order of output tensors for models
|
1012
|
+
without postprocessing, it is needed to specify the output tensors order for
|
1013
|
+
metadata writer.
|
1014
|
+
"""
|
1015
|
+
|
1016
|
+
UNSPECIFIED = 0
|
1017
|
+
# The first tensor is score, and the second tensor is location.
|
1018
|
+
SCORE_LOCATION = 1
|
1019
|
+
# The first tensor is location, and the second tensor is score.
|
1020
|
+
LOCATION_SCORE = 2
|
1021
|
+
|
1022
|
+
|
1023
|
+
class RawDetectionOutputTensorsMd:
|
1024
|
+
"""A container for the output tensor metadata of detection models without postprocessing."""
|
1025
|
+
|
1026
|
+
_LOCATION_NAME = "location"
|
1027
|
+
_LOCATION_DESCRIPTION = "The locations of the detected boxes."
|
1028
|
+
_SCORE_NAME = "score"
|
1029
|
+
_SCORE_DESCRIPTION = "The scores of the detected boxes."
|
1030
|
+
_CONTENT_VALUE_DIM = 2
|
1031
|
+
|
1032
|
+
def __init__(
|
1033
|
+
self,
|
1034
|
+
model_buffer: bytearray,
|
1035
|
+
label_files: Optional[List[LabelFileMd]] = None,
|
1036
|
+
output_tensors_order: RawDetectionOutputTensorsOrder = RawDetectionOutputTensorsOrder.UNSPECIFIED,
|
1037
|
+
) -> None:
|
1038
|
+
"""Initializes the instance of DetectionOutputTensorsMd.
|
1039
|
+
|
1040
|
+
Args:
|
1041
|
+
model_buffer: A valid flatbuffer loaded from the TFLite model file.
|
1042
|
+
label_files: information of the label files [1] in the classification
|
1043
|
+
tensor.
|
1044
|
+
output_tensors_order: the order of the output tensors.
|
1045
|
+
[1]:
|
1046
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L9
|
1047
|
+
"""
|
1048
|
+
# Get the output tensor indices and names from the tflite model.
|
1049
|
+
tensor_indices_and_names = list(
|
1050
|
+
zip(
|
1051
|
+
writer_utils.get_output_tensor_indices(model_buffer),
|
1052
|
+
writer_utils.get_output_tensor_names(model_buffer),
|
1053
|
+
)
|
1054
|
+
)
|
1055
|
+
location_md = LocationTensorMd(
|
1056
|
+
name=self._LOCATION_NAME,
|
1057
|
+
description=self._LOCATION_DESCRIPTION,
|
1058
|
+
)
|
1059
|
+
score_md = ClassificationTensorMd(
|
1060
|
+
name=self._SCORE_NAME,
|
1061
|
+
description=self._SCORE_DESCRIPTION,
|
1062
|
+
label_files=label_files,
|
1063
|
+
)
|
1064
|
+
|
1065
|
+
if output_tensors_order == RawDetectionOutputTensorsOrder.SCORE_LOCATION:
|
1066
|
+
self._output_mds = [score_md, location_md]
|
1067
|
+
elif output_tensors_order == RawDetectionOutputTensorsOrder.LOCATION_SCORE:
|
1068
|
+
self._output_mds = [location_md, score_md]
|
1069
|
+
else:
|
1070
|
+
raise ValueError(
|
1071
|
+
f"Unsupported OutputTensorsOrder value: {output_tensors_order}"
|
1072
|
+
)
|
1073
|
+
|
1074
|
+
if len(self._output_mds) != len(tensor_indices_and_names):
|
1075
|
+
raise ValueError(
|
1076
|
+
"The size of TFLite output should be " + str(len(self._output_mds))
|
1077
|
+
)
|
1078
|
+
for i, output_md in enumerate(self._output_mds):
|
1079
|
+
output_md.tensor_name = tensor_indices_and_names[i][1]
|
1080
|
+
|
1081
|
+
@property
|
1082
|
+
def output_mds(self) -> List[TensorMd]:
|
1083
|
+
return self._output_mds
|
1084
|
+
|
1085
|
+
|
1086
|
+
class TensorGroupMd:
|
1087
|
+
"""A container for a group of tensor metadata information."""
|
1088
|
+
|
1089
|
+
def __init__(
|
1090
|
+
self, name: Optional[str] = None, tensor_names: Optional[List[str]] = None
|
1091
|
+
) -> None:
|
1092
|
+
"""Initializes a CategoryTensorMd object.
|
1093
|
+
|
1094
|
+
Args:
|
1095
|
+
name: name of tensor group.
|
1096
|
+
tensor_names: Names of the tensors to group together, corresponding to
|
1097
|
+
TensorMetadata.name [1].
|
1098
|
+
[1]:
|
1099
|
+
https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L564
|
1100
|
+
"""
|
1101
|
+
self.name = name
|
1102
|
+
self.tensor_names = tensor_names
|
1103
|
+
|
1104
|
+
def create_metadata(self) -> _metadata_fb.TensorGroupT:
|
1105
|
+
"""Creates the tensor group metadata."""
|
1106
|
+
group = _metadata_fb.TensorGroupT()
|
1107
|
+
group.name = self.name
|
1108
|
+
group.tensorNames = self.tensor_names
|
1109
|
+
return group
|
1110
|
+
|
1111
|
+
|
1112
|
+
class SegmentationMaskMd(TensorMd):
|
1113
|
+
"""A container for the segmentation mask metadata information."""
|
1114
|
+
|
1115
|
+
# The output tensor is in the shape of [1, ImageHeight, ImageWidth, N], where
|
1116
|
+
# N is the number of objects that the segmentation model can recognize. The
|
1117
|
+
# output tensor is essentially a list of grayscale bitmaps, where each value
|
1118
|
+
# is the probability of the corresponding pixel belonging to a certain object
|
1119
|
+
# type. Therefore, the content dimension range of the output tensor is [1, 2].
|
1120
|
+
_CONTENT_DIM_MIN = 1
|
1121
|
+
_CONTENT_DIM_MAX = 2
|
1122
|
+
|
1123
|
+
def __init__(
|
1124
|
+
self,
|
1125
|
+
name: Optional[str] = None,
|
1126
|
+
description: Optional[str] = None,
|
1127
|
+
label_files: Optional[List[LabelFileMd]] = None,
|
1128
|
+
):
|
1129
|
+
self.name = name
|
1130
|
+
self.description = description
|
1131
|
+
associated_files = label_files or []
|
1132
|
+
super().__init__(
|
1133
|
+
name=name, description=description, associated_files=associated_files
|
1134
|
+
)
|
1135
|
+
|
1136
|
+
def create_metadata(self) -> _metadata_fb.TensorMetadataT:
|
1137
|
+
"""Creates the metadata for the segmentation masks tensor."""
|
1138
|
+
masks_metadata = super().create_metadata()
|
1139
|
+
|
1140
|
+
# Create tensor content information.
|
1141
|
+
content = _metadata_fb.ContentT()
|
1142
|
+
content.contentProperties = _metadata_fb.ImagePropertiesT()
|
1143
|
+
content.contentProperties.colorSpace = _metadata_fb.ColorSpaceType.GRAYSCALE
|
1144
|
+
content.contentPropertiesType = (
|
1145
|
+
_metadata_fb.ContentProperties.ImageProperties
|
1146
|
+
)
|
1147
|
+
# Add the content range. See
|
1148
|
+
# https://github.com/google/mediapipe/blob/f8af41b1eb49ff4bdad756ff19d1d36f486be614/mediapipe/tasks/metadata/metadata_schema.fbs#L323-L385
|
1149
|
+
dim_range = _metadata_fb.ValueRangeT()
|
1150
|
+
dim_range.min = self._CONTENT_DIM_MIN
|
1151
|
+
dim_range.max = self._CONTENT_DIM_MAX
|
1152
|
+
content.range = dim_range
|
1153
|
+
masks_metadata.content = content
|
1154
|
+
|
1155
|
+
return masks_metadata
|
1156
|
+
|
1157
|
+
|
1158
|
+
class CustomMetadataMd(abc.ABC):
|
1159
|
+
"""An abstract class of a container for the custom metadata information."""
|
1160
|
+
|
1161
|
+
def __init__(self, name: Optional[str] = None):
|
1162
|
+
self.name = name
|
1163
|
+
|
1164
|
+
@abc.abstractmethod
|
1165
|
+
def create_metadata(self) -> _metadata_fb.CustomMetadataT:
|
1166
|
+
"""Creates the custom metadata based on the information."""
|