mdod 1.0.9__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdod
3
- Version: 1.0.9
3
+ Version: 3.0.0
4
4
  Summary: MDOD, Multi-Dimensional data Outlier Detection
5
5
  Home-page: https://github.com/mddod/mdod
6
6
  Author: Z Shen
@@ -14,17 +14,20 @@ Description-Content-Type: text/markdown
14
14
  License-File: LICENSE.txt
15
15
 
16
16
  # mdod
17
+
17
18
  MDOD, Multi-Dimensional data Outlier Detection
18
19
 
19
20
  Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
20
21
 
21
- # MDOD paper
22
- MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
22
+ # MDOD paper
23
+
24
+ MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
23
25
 
24
26
  https://doi.org/10.1109/ICAIIC60209.2024.10463442
25
27
 
26
28
  # Installation:
27
- pip install mdod
29
+
30
+ pip install mdod
28
31
 
29
32
  or
30
33
 
@@ -35,50 +38,8 @@ cd mdod
35
38
  python setup.py install
36
39
 
37
40
  # usage example:
38
- import numpy as np
39
-
40
- import mdod
41
-
42
- localFile = 'TestDataset.txt'
43
-
44
- dets= np.loadtxt(localFile,delimiter=',')
45
-
46
- nd = 1
47
-
48
- sn = 15
49
-
50
- result = mdod.md(dets,nd,sn)
51
-
52
- print (result)
53
-
54
- # TestDataset.txt format:
55
- data1,data2,data3,data4,data5,data6
56
41
 
57
- data1,data2,data3,data4,data5,data6
58
-
59
- data1,data2,data3,data4,data5,data6
60
-
61
- ...
62
-
63
- # dets format:
64
- [[data1 data2 data3 data4 data5 data6]
65
-
66
- [data1 data2 data3 data4 data5 data6]
67
-
68
- [data1 data2 data3 data4 data5 data6]
69
-
70
- ...]
71
-
72
- # result format:
73
- [value1, '[data1 data2 data3 data4 data5 data6]', '0']
74
-
75
- [value2, '[data1 data2 data3 data4 data5 data6]', '1']
76
-
77
- [value3, '[data1 data2 data3 data4 data5 data6]', '2']
42
+ Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
78
43
 
79
- ...
80
44
 
81
- # file exampls:
82
- Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
83
45
 
84
-
@@ -0,0 +1,5 @@
1
+ mdod-3.0.0.dist-info/LICENSE.txt,sha256=7ToR4JRGCu-ZhydtQcKP7V_h7tesBPP2RAoQM6lfwpk,1492
2
+ mdod-3.0.0.dist-info/METADATA,sha256=b3vwMKHC7RkQ7qtOC3eBzoosElrkCLb9J6CmoTnRCms,1055
3
+ mdod-3.0.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
4
+ mdod-3.0.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
5
+ mdod-3.0.0.dist-info/RECORD,,
@@ -0,0 +1 @@
1
+
mdod/__init__.py DELETED
@@ -1,5 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- from .mdod import md
4
-
5
- __all__ = ['mdod']
mdod/mdod.py DELETED
@@ -1,39 +0,0 @@
1
- # -*-coding: utf-8- -*-
2
- #MDOD, Multi-Dimensional data Outlier Detection
3
- # Author: Z Shen<626456708@qq.com>
4
- # License: BSD 3-Clause License
5
-
6
- import numpy as np
7
-
8
- def md(dets0, nd, sn):
9
- VCS_list = []
10
- i = 0
11
-
12
- for line0 in dets0:
13
- VCSResult_list = []
14
- line0_arr = np.array(line0, dtype=float)
15
-
16
- for j, line1 in enumerate(dets0):
17
- if j == i:
18
- continue
19
-
20
- line1_arr = np.array(line1, dtype=float)
21
-
22
- DenominatorLeft = np.sqrt(np.sum((line0_arr - line0_arr) ** 2) + (nd - 0) ** 2)
23
- DenominatorRight = np.sqrt(np.sum((line0_arr - line1_arr) ** 2) + (nd - 0) ** 2)
24
- DenominatorSum = DenominatorLeft * DenominatorRight
25
-
26
- NumeratorSum = np.sum(np.sqrt((line0_arr - line0_arr) ** 2) * np.sqrt((line0_arr - line1_arr) ** 2))
27
- NumeratorPlus = np.sqrt((nd - 0) ** 2) * np.sqrt((nd - 0) ** 2)
28
- NumeratorSum += NumeratorPlus
29
-
30
- VCSResult = 0 if DenominatorSum == 0 else NumeratorSum / DenominatorSum
31
- VCSResult_list.append(VCSResult)
32
-
33
- VCSResult_list.sort(reverse=True)
34
- VCSTotal = sum(VCSResult_list[:min(sn, len(VCSResult_list))])
35
-
36
- VCS_list.append([VCSTotal, line0.tolist(), i])
37
- i += 1
38
-
39
- return VCS_list
@@ -1,7 +0,0 @@
1
- mdod/__init__.py,sha256=Za_ZM6LquGiu3NYA4UQORA-etiQKDfJ1asE7-SJlTNA,71
2
- mdod/mdod.py,sha256=3im-LLtLh4XLNZw6MMKg_1-HXIW8cXMXBAzWsBlEQfk,1321
3
- mdod-1.0.9.dist-info/LICENSE.txt,sha256=7ToR4JRGCu-ZhydtQcKP7V_h7tesBPP2RAoQM6lfwpk,1492
4
- mdod-1.0.9.dist-info/METADATA,sha256=DbU3aY0zEuxzgxEfXSUxRKiDzGGc4aZ07giY8REHfoY,1753
5
- mdod-1.0.9.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
6
- mdod-1.0.9.dist-info/top_level.txt,sha256=wc3s5DwL33MzLW72ABBR4vg36euFZNFKFD51Og1hnAY,5
7
- mdod-1.0.9.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- mdod
File without changes