mdod 0.1.1__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdod
3
- Version: 0.1.1
3
+ Version: 0.1.6
4
4
  Summary: MDOD, Multi-Dimensional data Outlier Detection
5
5
  Home-page: https://github.com/mddod/mdod
6
6
  Author: Z Shen
@@ -11,6 +11,7 @@ Classifier: Development Status :: 1 - Planning
11
11
  Classifier: Intended Audience :: Developers
12
12
  Classifier: Programming Language :: Python
13
13
  Classifier: Programming Language :: Python :: 3
14
+ License-File: LICENSE.txt
14
15
 
15
- UNKNOWN
16
+ Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm. Please read README.md for detail. or please visit https://github.com/mddod/mdod
16
17
 
@@ -0,0 +1,7 @@
1
+ mdod/__init__.py,sha256=Za_ZM6LquGiu3NYA4UQORA-etiQKDfJ1asE7-SJlTNA,71
2
+ mdod/mdod.py,sha256=d0jxlf9kCaCKSkQDIO2-i8ZHnRHzvSHu9_pLcVga7Cg,2400
3
+ mdod-0.1.6.dist-info/LICENSE.txt,sha256=7ToR4JRGCu-ZhydtQcKP7V_h7tesBPP2RAoQM6lfwpk,1492
4
+ mdod-0.1.6.dist-info/METADATA,sha256=Zgz3wqlRGRLEBelWJf6Sp6GAzMV_IIe6d67zr3f9cDM,625
5
+ mdod-0.1.6.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
6
+ mdod-0.1.6.dist-info/top_level.txt,sha256=wc3s5DwL33MzLW72ABBR4vg36euFZNFKFD51Og1hnAY,5
7
+ mdod-0.1.6.dist-info/RECORD,,
mdod/README.md DELETED
@@ -1,61 +0,0 @@
1
- # mdod
2
- MDOD, Multi-Dimensional data Outlier Detection
3
-
4
- Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
5
-
6
- # Installation:
7
- pip install mdod
8
-
9
- cd mdod
10
-
11
- pip install
12
-
13
- # usage example:
14
- import mdod
15
-
16
- localFile = 'TestDataset.txt'
17
-
18
- dets= np.loadtxt(localFile,delimiter=',')
19
-
20
- nd = 1
21
-
22
- sn = 15
23
-
24
- result = mdod.md(dets,nd,sn)
25
-
26
- print (result)
27
-
28
- # TestDataset.txt format:
29
- data1,data2,data3,data4,data5,data6
30
-
31
- data1,data2,data3,data4,data5,data6
32
-
33
- data1,data2,data3,data4,data5,data6
34
-
35
- ...
36
-
37
- # dets format:
38
- [[data1 data2 data3 data4 data5 data6]
39
-
40
- [data1 data2 data3 data4 data5 data6]
41
-
42
- [data1 data2 data3 data4 data5 data6]
43
-
44
- ...]
45
-
46
- # rusult format:
47
- [value1, '[data1 data2 data3 data4 data5 data6]', '0']
48
-
49
- [value2, '[data1 data2 data3 data4 data5 data6]', '1']
50
-
51
- [value3, '[data1 data2 data3 data4 data5 data6]', '2']
52
-
53
- ...
54
-
55
- # MDOD paper
56
- MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
57
-
58
- https://doi.org/10.1109/ICAIIC60209.2024.10463442
59
-
60
-
61
-
@@ -1,8 +0,0 @@
1
- mdod/LICENSE.txt,sha256=7ToR4JRGCu-ZhydtQcKP7V_h7tesBPP2RAoQM6lfwpk,1492
2
- mdod/README.md,sha256=_xIRoz2H19wgAXyCyFJh0LnKEaVaPqRex-CS29cBERo,1022
3
- mdod/__init__.py,sha256=Za_ZM6LquGiu3NYA4UQORA-etiQKDfJ1asE7-SJlTNA,71
4
- mdod/mdod.py,sha256=d0jxlf9kCaCKSkQDIO2-i8ZHnRHzvSHu9_pLcVga7Cg,2400
5
- mdod-0.1.1.dist-info/METADATA,sha256=lO7JiZna1O5RwqFmReHj7_79LVh8KbkqAxWIC00SqSs,447
6
- mdod-0.1.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
7
- mdod-0.1.1.dist-info/top_level.txt,sha256=wc3s5DwL33MzLW72ABBR4vg36euFZNFKFD51Og1hnAY,5
8
- mdod-0.1.1.dist-info/RECORD,,
File without changes
File without changes