mdkits 0.1.29__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mdkits might be problematic. Click here for more details.

mdkits/md_cli/vac.py ADDED
@@ -0,0 +1,68 @@
1
+ import numpy as np
2
+ import click
3
+ import MDAnalysis
4
+ from MDAnalysis import Universe
5
+ from MDAnalysis.analysis.base import AnalysisBase
6
+ from mdkits.util import os_operation, arg_type
7
+
8
+
9
+ class Velocity_AutoCorrelation(AnalysisBase):
10
+ def __init__(self, filename, select, dt=0.001):
11
+ u = Universe(filename)
12
+ u.trajectory.ts.dt = dt
13
+ self.u = u
14
+ self.atomgroup = u.select_atoms(select)
15
+
16
+ super(Velocity_AutoCorrelation, self).__init__(self.atomgroup.universe.trajectory, verbose=True)
17
+
18
+ def _prepare(self):
19
+ self.cvv = []
20
+ self.v0 = self.atomgroup.positions
21
+ self.normalize = 1/np.sum(self.v0*self.v0)
22
+ self.cvv.append(np.sum(self.v0*self.v0)*self.normalize)
23
+
24
+
25
+ def _append(self, cvv):
26
+ self.cvv.append(cvv*self.normalize)
27
+
28
+ def _single_frame(self):
29
+ cvv = np.sum(self.atomgroup.positions*self.v0)
30
+ self._append(cvv)
31
+
32
+ def _conclude(self):
33
+ self.cvv = np.array(self.cvv)
34
+
35
+ sf = self.cvv.shape[0]
36
+ t = 1/sf
37
+ f = np.fft.fft(self.cvv).real
38
+
39
+ faxis = np.fft.fftfreq(sf, d=t)
40
+ pf = np.where(faxis>0)
41
+ faxis = faxis[pf]
42
+ f = f[pf]
43
+
44
+ combine = np.column_stack((np.arange(len(self.cvv)), self.cvv))
45
+
46
+ np.savetxt('vac.dat', combine, fmt='%.5f', header="frame\tvac")
47
+ np.savetxt('f.dat', np.column_stack((faxis, f)), fmt='%.5f')
48
+
49
+
50
+ @click.command(name="vac")
51
+ @click.argument("filename", type=click.Path(exists=True), default=os_operation.default_file_name('*-vel-1.xyz', last=True))
52
+ @click.option("--select", type=str, default="all", help="atom selection", show_default=True)
53
+ @click.option('-r', type=arg_type.FrameRange, help='range of frame to analysis')
54
+ def main(filename, select, r):
55
+ """analysis velocity autocorrelation function"""
56
+ a = Velocity_AutoCorrelation(filename, select)
57
+
58
+ if r is not None:
59
+ if len(r) == 2:
60
+ a.run(start=r[0], stop=r[1])
61
+ elif len(r) == 3:
62
+ a.run(start=r[0], stop=r[1], step=r[2])
63
+ else:
64
+ a.run()
65
+
66
+
67
+ if __name__ == '__main__':
68
+ main()
@@ -28,7 +28,7 @@ def main(filename, o, cell):
28
28
  ag.wrap()
29
29
  W.write(ag)
30
30
 
31
- click.echo("\nwrap is done, output file {o} is:")
31
+ click.echo(f"\nwrap is done, output file {o} is:")
32
32
  click.echo(os.path.abspath(o))
33
33
 
34
34
 
mdkits/mdkits.py CHANGED
@@ -4,7 +4,6 @@ from mdkits.dft_cli import dft_cli
4
4
  from mdkits.md_cli import md_cli
5
5
  from mdkits.cli import (
6
6
  convert,
7
- wrap,
8
7
  extract,
9
8
  data,
10
9
  plot,
@@ -19,11 +18,10 @@ def cli(ctx):
19
18
  pass
20
19
 
21
20
 
22
- cli.add_command(md_cli.main)
23
- cli.add_command(dft_cli.main)
21
+ cli.add_command(md_cli.cli)
24
22
  cli.add_command(build_cli.cli_build)
23
+ cli.add_command(dft_cli.main)
25
24
  cli.add_command(convert.main)
26
- cli.add_command(wrap.main)
27
25
  cli.add_command(extract.main)
28
26
  cli.add_command(data.main)
29
27
  cli.add_command(plot.main)
mdkits/util/arg_type.py CHANGED
@@ -6,7 +6,7 @@ from mdkits.util import os_operation, cp2k_input_parsing, out_err
6
6
 
7
7
 
8
8
  class CellType(click.ParamType):
9
- name = "pbc cell type"
9
+ name = "cell type"
10
10
 
11
11
  def convert(self, value, param, ctx):
12
12
  if isinstance(value, str):
@@ -36,7 +36,7 @@ class FrameRangeType(click.ParamType):
36
36
 
37
37
 
38
38
  class StructureType(click.ParamType):
39
- name = "structure file type"
39
+ name = "structure type"
40
40
  def convert(self, value, param, ctx):
41
41
  no_cell=np.array([0., 0., 0., 90., 90., 90.])
42
42
  if isinstance(value, str):
mdkits/util/numpy_geo.py CHANGED
@@ -45,7 +45,10 @@ def vector_between_two_vector(vector1, vector2):
45
45
 
46
46
 
47
47
  def vector_vector_angle(vector, surface_vector):
48
- cos = np.dot(vector, surface_vector) / (np.linalg.norm(vector, axis=1) * np.linalg.norm(surface_vector))
48
+ if len(vector.shape) == 1:
49
+ cos = np.dot(vector, surface_vector) / (np.linalg.norm(vector) * np.linalg.norm(surface_vector))
50
+ else:
51
+ cos = np.dot(vector, surface_vector) / (np.linalg.norm(vector, axis=1) * np.linalg.norm(surface_vector))
49
52
  vector_vector_angle = np.arccos(np.clip(cos, -1.0, 1.0))
50
53
  vector_vector_angle = np.degrees(vector_vector_angle)
51
54
  return vector_vector_angle
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: mdkits
3
- Version: 0.1.29
3
+ Version: 0.2.0
4
4
  Summary: kits for md or dft
5
5
  License: MIT
6
6
  Keywords: molecular dynamics,density functional theory
@@ -21,102 +21,144 @@ Requires-Dist: julia (>=0.6.2,<0.7.0)
21
21
  Requires-Dist: matplotlib (>=3.9.0,<4.0.0)
22
22
  Requires-Dist: numpy (>=1.26.4,<2.0.0)
23
23
  Requires-Dist: pyyaml (>=6.0.1,<7.0.0)
24
+ Requires-Dist: tidynamics (>=1.1.2,<2.0.0)
24
25
  Project-URL: Repository, https://github.com/jxxcr/mdkits
25
26
  Description-Content-Type: text/markdown
26
27
 
27
- # MD 轨迹分析脚本
28
+ # mdkits
28
29
  `mdkits` 提供了多种工具, 安装脚本:
29
30
  ```bash
30
31
  pip install mdkits --upgrade
31
32
  ```
33
+ ## 通用的选项参数类型
34
+ 1. `CELL TYPE`: 指定晶胞参数, 如`10,10,10`, `10,10,10,90,90,90`等
35
+ 2. `FRAME RANGE`: 指定帧范围, 如`1`, `1:10:2`等
36
+ 3. `--group`和`--surface`: 按[选择语言](https://userguide.mdanalysis.org/stable/selections.html)选取分析对象
37
+ 4. `--update_water`, `--distance` 和 `--angle`: 在分析轨迹的过程中开启动态更新水分子的功能
32
38
 
39
+ ## 轨迹文件处理脚本
40
+ `md`为轨迹文件处理工具, 其中包含多个处理工具
33
41
  ### 密度分布
34
- `density`用于分析体系中的某种元素沿z轴的密度分布, 如分析体系中的`O`元素沿z轴的密度分布, `--element`选项指定元素使用`MDAnalysis`的[选择语言](https://userguide.mdanalysis.org/stable/selections.html):
42
+ `density`用于分析体系中的某种元素沿z轴的密度分布, 如分析体系中的`O`元素沿z轴的密度分布:
35
43
  ```bash
36
- mdkits density [FILENAME] --element="name H" --cell [FILENAME]
44
+ mdkits md density [FILENAME] --group="name H" --cell [FILENAME]
37
45
  ```
38
46
  这样会输出一个文件名为`density_name_H.dat`的文件, 第一列为z轴坐标, 第二列为浓度分布, 单位为 mol/L. 如果想输出为单位为 $g/cm^3$ 的密度分布, 可以指定`--atomic_mass` 选项, 如:
39
47
  ```bash
40
- mdkits density [FILENAME] --element="name H" --cell [FILENAME] --atomic_mass=1.00784
48
+ mdkits md density [FILENAME] --group="name H" --cell [FILENAME] --atomic_mass=1.00784
41
49
  ```
42
50
  则输出单位为 $g/cm^3$ 的密度分布. 可以指定表面原子来将密度分布归一化到表面, 如:
43
51
  ```bash
44
- mdkits density [FILENAME] --element="name O" --cell 10,10,10 --atomic_mass=18.01528 --surface="name Pt and name Ru"
52
+ mdkits md density [FILENAME] --group="name O" --cell 10,10,10 --atomic_mass=18.01528 --surface="name Pt and name Ru"
45
53
  ```
46
54
  这样会将密度分布归一化到表面, 同时以O原子的位置作为水分子的位置分析处理水分子的密度分布. 对于体系中存在 $OH^-$ 离子的体系可以使用`--update_water`的选项在每一帧更新水分子的位置, 不需要额外指定元素, 如:
47
55
  ```bash
48
- mdkits density [FILENAME] --update_water --cell 10,10,10 --atomic_mass=18.01528 --surface="name Pt and name Ru"
56
+ mdkits md density [FILENAME] --update_water --cell 10,10,10 --atomic_mass=18.01528 --surface="name Pt and name Ru"
49
57
  ```
50
58
  输出的文件名为`density_water.dat`.
51
59
 
52
60
  ### 氢键
53
-
54
- #### 单个水分子
55
-
56
- #### 氢键分布
61
+ `hb`用于分析体系中的氢键, 如分析体系中的氢键在z轴上的分布:
62
+ ```bash
63
+ mdkits md hb [FILENAME] --cell 10,10,40 --surface "prop z < 10" --update_water
64
+ ```
65
+ 或分析单个水分子的氢键:
66
+ ```bash
67
+ mdkits md hb [FILENAME] --cell 10,10,40 --index 15
68
+ ```
57
69
 
58
70
  ### 角度
71
+ `angel`用于分析水分子中的二分向量和OH向量与表面法向量的夹角的丰度分布, 如分析距离表面 5 Å 的水分子的角度丰度分布:
72
+ ```bash
73
+ mdkits md angle [FILENAME] --cell 10,10,40 --surface "name Pt" --water_height 5
74
+ ```
59
75
 
60
- #### 与表面法向量夹角分布
76
+ ### 偶极分布
77
+ `diople`用于分析体系中的偶极($\cos \phi \rho_{H_2 O}$)分布, 如分析体系中的 $\cos \phi \rho_{H_2 O}$ 分布:
78
+ ```bash
79
+ mdkits md diople [FILENAME] --cell 10,10,40 --surface "name Pt"
80
+ ```
61
81
 
62
- #### ion - O - ion 夹角分布
82
+ ### 径向分布函数(RDF)
83
+ `rdf`用于分析两个`group`之间的径向分布函数, 如分析体系中的`O`元素与`H`元素之间的径向分布函数:
84
+ ```bash
85
+ mdkits md rdf [FILENAME] --group "name O" "name H" --cell 10,10,40 --range 0.1 5
86
+ ```
63
87
 
64
- #### $\cos \phi \rho_{H_2 O}$ 分布
88
+ ### 均方位移(MSD)
89
+ `msd`用于分析体系中某些原子的均方位移, 如分析体系中`Li`原子在z轴上的均方位移:
90
+ ```bash
91
+ mdkits md msd [FILENAME] z "name Li"
92
+ ```
65
93
 
66
- ### RDF
94
+ ### 监控
95
+ `monitor`用于监控体系中原子高度, 键长和键角的变化, 如监控`index`为0的原子的高度:
96
+ ```bash
97
+ mdkits md monitor [FILENAME] --cell 10,10,40 --surface "name Pt" -i 0
98
+ ```
99
+ 会输出0距离表面的高度随每一帧的变化, 如监控0-1的键长:
100
+ ```bash
101
+ mdkits md monitor [FILENAME] --cell 10,10,40 --surface "name Pt" -i 0 -i 1
102
+ ```
103
+ 会输出0和1距离表面的高度和0-1之间的键长随每一帧的变化, 如监控1-0-2的键角:
104
+ ```bash
105
+ mdkits md monitor [FILENAME] --cell 10,10,40 --surface "name Pt" -i 1 -i 0 -i 2
106
+ ```
107
+ 会输出1, 0, 2距离表面的高度, 1-0和0-2的键长和1-0-2的键角随每一帧的变化, 注意位于角上的原子应该放在中间
67
108
 
68
109
  ### 位置归一化
69
110
  `wrap`用于将轨迹文件中的原子位置进行归一化处理, 如将`[FILENAME]`中的原子位置归一化到晶胞中, 并输出为`wrapped.xyz`, 默认从`cp2k`的输出文件`input_inp`中读取`ABC`和`ALPHA_BETA_GAMMA`信息作为晶胞参数:
70
111
  ```bash
71
- mdkits wrap [FILENAME]
112
+ mdkits md wrap [FILENAME]
72
113
  ```
73
114
  或指定`cp2k`的输入文件:
74
115
  ```bash
75
- mdkits wrap [FILENAME] --cp2k_input_file setting.inp
116
+ mdkits md wrap [FILENAME] --cp2k_input_file setting.inp
76
117
  ```
77
118
  或指定晶胞参数:
78
119
  ```bash
79
- mdkits wrap [FILENAME] --cell 10,10,10
120
+ mdkits md wrap [FILENAME] --cell 10,10,10
80
121
  ```
81
122
  默认的`[FILENAME]`为`*-pos-1.xyz`
82
123
 
83
124
  ## DFT 性质分析脚本
125
+ `dft`为DFT性质分析工具, 其中包含多个分析工具
84
126
  ### PDOS
85
127
  `pdos`用于分析体系中的pdos, 分析[FILENAME]的d轨道的dos:
86
128
  ```bash
87
- mdkits pdos [FILENAME] -t d
129
+ mdkits dft pdos [FILENAME] -t d
88
130
  ```
89
131
 
90
132
  ### CUBE 文件
91
133
  `cube`用于处理[`cube`格式](https://paulbourke.net/dataformats/cube/)的文件, 将其在z轴上进行平均:
92
134
  ```bash
93
- mdkits cube [FILENAME]
135
+ mdkits dft cube [FILENAME]
94
136
  ```
95
137
  分析好的数据会输出为`cube.out`, 可以同时计算一个区域内的平均值:
96
138
  ```bash
97
- mdkits cube [FILENAME] -b 1 2
139
+ mdkits dft cube [FILENAME] -b 1 2
98
140
  ```
99
141
  会将平均值打印在屏幕上, 同时记录在`cube.out`中的注释行.
100
142
 
101
143
  ## 建模
102
- `build`为界面的工具, 其中包含多个建模工具
144
+ `build`为建模的工具, 其中包含多个建模工具
103
145
 
104
146
  ### 构建体相模型
105
147
  `bulk`用于构建体相模型, 如构建`Pt`的`fcc`体相模型:
106
148
  ```bash
107
- mdkits build_bulk Pt fcc
149
+ mdkits build bulk Pt fcc
108
150
  ```
109
151
  构建为常胞模型:
110
152
  ```bash
111
- mdkits build_bulk Pt fcc --cubic
153
+ mdkits build bulk Pt fcc --cubic
112
154
  ```
113
155
  构建一个`Caesium chloride`结构的模型:
114
156
  ```bash
115
- mdkits build_bulk CsCl cesiumchloride -a 4.123
157
+ mdkits build bulk CsCl cesiumchloride -a 4.123
116
158
  ```
117
159
  构建一个`fluorite `结构的模型:
118
160
  ```bash
119
- mdkits build_bulk BaF2 fluorite -a 6.196
161
+ mdkits build bulk BaF2 fluorite -a 6.196
120
162
  ```
121
163
 
122
164
  ### 构建表面模型
@@ -133,6 +175,60 @@ mdkits build surface Pt fcc111 2 2 3 --vacuum 15
133
175
  mdkits build surface C2 graphene 3 3 1 --vacuum 15
134
176
  ```
135
177
 
178
+ ### 从现有结构中构建表面模型
179
+ `cut`用于从现有的结构中构建表面模型(模型必须为常胞模型), 如从`Pt_fcc.cif`中构建`fcc331`表面模型:
180
+ ```bash
181
+ mdkits build cut Pt_fcc.cif --face 3 3 1 --size 3 3 5 --vacuum 15
182
+ ```
183
+
184
+ ### 在表面结构上添加吸附物
185
+ `adsorbate`用于在表面结构上添加吸附物, 如在`surface.cif`上添加`H`原子:
186
+ ```bash
187
+ mdkits build adsorbate surface.cif H --select "index 0" --height 1
188
+ ```
189
+ 或在`Pt_fcc111_335.cif`上添加覆盖度为5的`H`原子:
190
+ ```bash
191
+ mdkits build adsorbate Pt_fcc111_335.cif H --select "prop z > 16" --height 2 --cover 5
192
+ ```
193
+
194
+ ### 构建溶液相模型
195
+ `solution`用于构建溶液相模型, 初次使用时应先安装`juliaup`:
196
+ ```bash
197
+ mdkits build solution --install_julia
198
+ ```
199
+ 然后安装`Packmol`:
200
+ ```bash
201
+ mdkits build solution --install_packmol
202
+ ```
203
+ 成功安装后就可以使用`solution`功能了, 如构建一个32个水分子的水盒子:
204
+ ```bash
205
+ mdkits build solution --water_number 32 --cell 9.86,9.86,9.86
206
+ ```
207
+ 或构建一个含有离子的溶液:
208
+ ```bash
209
+ mdkits build solution li.xyz k.xyz --water_number 64 --tolerance 2.5 -n 25 -n 45 --cell 15,15,15
210
+ ```
211
+ 其中`-n`的个数必须与指定的溶剂分子种类数量一致, 用于分别指定添加的溶剂的数量. 或者从`packmol`的输入文件中构建溶液相模型:
212
+ ```bash
213
+ mdkits build solution input.pm input2.pm --infile
214
+ ```
215
+
216
+ ### 构建界面模型
217
+ `interface`用于构建界面模型, 如构建一个没有真空的界面模型:
218
+ ```bash
219
+ mdkits build interface --slab Pt_fcc100_555.cif --sol water_160.cif
220
+ ```
221
+ 或构建一个带有气相模型的界面:
222
+ ```bash
223
+ mdkits build interface --slab Pt_fcc100_555.cif --sol water_160.cif --cap ne --vacuum 20
224
+ ```
225
+
226
+ ### 构建超胞模型
227
+ `supercell`用于构建超胞模型:
228
+ ```bash
229
+ mdkits build supercell Li3PO4.cif 2 2 2
230
+ ```
231
+
136
232
  ## 其他
137
233
  ### 轨迹提取
138
234
  `extract`用于提取轨迹文件中的特定的帧, 如从`frames.xyz`中提取第 1000 帧到第 2000 帧的轨迹文件, 并输出为`1000-2000.xyz`, `-r`选项的参数与`Python`的切片语法一致:
@@ -1,47 +1,48 @@
1
1
  mdkits/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  mdkits/build_cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- mdkits/build_cli/adsorbate.py,sha256=Zp21i-miFv5zQlYjZnZuVpMxvNVT-6RtdlaoWDMwaOg,1900
3
+ mdkits/build_cli/adsorbate.py,sha256=9D_IYpnXd30pALC6JIvVPPxuxDfpsoArgMhE2hSeOSw,1947
4
4
  mdkits/build_cli/build_bulk.py,sha256=o3SFov5Ggk-qKcy6-NBoIYKvZV24OhcH3-du1d0U6H4,1593
5
5
  mdkits/build_cli/build_cli.py,sha256=sqjnq5aHWLYLbNzN5SORkEYeYaewLagFuSvspJxyh7E,725
6
6
  mdkits/build_cli/build_interface.py,sha256=3EDxUb-vGHFuat1Ex_wojVsN8PtzHiGrnDQIEa9WZ60,2448
7
7
  mdkits/build_cli/build_solution.py,sha256=7bwaDH-vLBNRzGoYXT72bzLVXdQAZ4HXNuUDuR7AI78,5377
8
- mdkits/build_cli/build_surface.py,sha256=cBEQ-KR_6j-Mcsxrwvzyl6p1SiY_chIytrCu7MS3q08,2794
8
+ mdkits/build_cli/build_surface.py,sha256=9GGpmQlCG6vxNevMyWcfI2EL_JiAAKIhxNokZyEzVLU,2739
9
9
  mdkits/build_cli/cut_surface.py,sha256=_f0t2OyBKb8ZV04b3GezfSDUN4XFd5kQM-yWbSmOofs,2742
10
10
  mdkits/build_cli/supercell.py,sha256=3iTTt3DHaERWDFonhBRS0oqWhjFh6pbS5SpIR-O1gYg,1034
11
11
  mdkits/build_cli/water.xyz,sha256=ByLDz-rYhw_wLPBU78lIQHe4s4Xf5Ckjft-Dus3czIc,171
12
- "mdkits/cli/,hb_distribution_down.py",sha256=i3NguzGebqCgy4uuVBeFajZRZnXtjhsJBPDGDdumlWA,4733
13
12
  mdkits/cli/convert.py,sha256=OmQ-7hmw0imgfgCJaWFEy3ePixsU7VKf0mGuJ6jRpn0,1795
14
13
  mdkits/cli/data.py,sha256=FGA4S9Cfo6WUJBSPWKOJrrZXHo_Qza-jNG1P_Dw7yi4,3262
15
- mdkits/cli/extract.py,sha256=bqqJBmSaVyPYyEseGpUJcMBufIfDLTNRdmUfJ0txE5E,2498
16
- mdkits/cli/hartree_potential.py,sha256=XcJfsJ5Y2d5MQfD45p06_gV1fTJbDSrNhCnZ3Sz2Vb0,2233
17
- mdkits/cli/hartree_potential_ave.py,sha256=25oy3QsgIdxrTFpTqpnGvLAheb-d6poeLMN7iuGT3Xk,3335
18
- mdkits/cli/hb.py,sha256=lADr4tlctbtQ3_f_UpznkLnSI0MJlAT-pknEf_dwrnU,5330
19
- mdkits/cli/packmol_input.py,sha256=76MjjMMRDaW2q459B5mEpXDYSSn14W-JXudOOsx-8E4,2849
14
+ mdkits/cli/extract.py,sha256=JUDqASPcI0PJy6h0tyOBA1vL1AIgFo5ldpoIsYNU2M8,2910
20
15
  mdkits/cli/plot.py,sha256=1yh5dq5jnQDuyWlxV_9g5ztsnuFHVu4ouYQ9VJYSrUU,8938
21
- mdkits/cli/wrap.py,sha256=AUxGISuiCfEjdMYl-TKc2VMCPHSybWKrMIOTn_6kSp0,1043
22
16
  mdkits/config/__init__.py,sha256=ZSwmnPK02LxJLMgcYmNb-tIOk8fEuHf5jpqD3SDHWLg,1039
23
17
  mdkits/config/settings.yml,sha256=PY7u0PbFLuxSnd54H5tI9oMjUf-mzyADqSZtm99BwG0,71
24
18
  mdkits/dft_cli/cube.py,sha256=G-QNup8W6J1-LCcEl1EHsV3nstd23byePDOcE_95t18,1176
25
19
  mdkits/dft_cli/dft_cli.py,sha256=Ou9-e4uGhDJJk2Gdg7tcj6iKApkAJZFSbN1hr7SlCMc,281
26
20
  mdkits/dft_cli/pdos.py,sha256=ALAZ5uOaoT0UpCyKYleWxwmk569HMzKTTK-lMJeicM8,1411
27
- mdkits/md_cli/angle.py,sha256=PaqFnlVnWHy6t6eDOQdq7J0jhMpCnekIzNCjhTMpdqw,5930
28
- mdkits/md_cli/density.py,sha256=-o1argCiwWr9mjggeetuX0sDMxjhRSPMG25sOS3KZYU,5574
29
- mdkits/md_cli/hb_distribution.py,sha256=MPrYfVW0MC01G1GZTxTca58jSlD0rVRnR1g1DmvdE00,8301
30
- mdkits/md_cli/md_cli.py,sha256=7hefzX0NIydlL2AjqTkTwLUg6yIOMSCn3zQ1zU9pP3s,348
31
- mdkits/mdkits.py,sha256=UGCAbVml8MdXXG--LGo8BUm9BXofg9P3HKIEDTUbd48,635
21
+ mdkits/md_cli/angle.py,sha256=cfhI6dsn_hIy-YXSTXemu1m1O_l2HuL_x6zx_3uL-Uw,5450
22
+ mdkits/md_cli/density.py,sha256=_w6UunY6alTp0jLa8cyqR8sSYubN0XbM-PDF4SkzsJU,5058
23
+ mdkits/md_cli/dipole.py,sha256=tXTO8CZAQTVY55GwuXWJNGo7EQ4Tb2611g5IHucdlec,4836
24
+ mdkits/md_cli/hb_distribution.py,sha256=ForMmNjfJxpXHqo1Au0OXOmwgvHxIuVR8qnpu3iS7Eg,7897
25
+ mdkits/md_cli/md_cli.py,sha256=2vH04o_3d5kCJsn3qEq-iUPhebKJOrS-e7HJtyiZTiQ,571
26
+ mdkits/md_cli/monitor.py,sha256=JNEgz5RGbFn4x_E85pAiPUY1NVIyZ3b2vjpBk_d1dR8,4536
27
+ mdkits/md_cli/msd.py,sha256=v-9TPKBGHz6ce2PUwexrekVq_9eiutIOQYaw582yN30,965
28
+ mdkits/md_cli/rdf.py,sha256=p4HMMYZLfFRPnGx7YHQU6kZnMAfoL6vOyOVpZhfdBfM,1712
29
+ mdkits/md_cli/setting.py,sha256=mxMTYpm6DUjMt9hOKsJbBSKwCqzMilOR0bo1azSdJP0,846
30
+ mdkits/md_cli/vac.py,sha256=9YZ9QviJ9VPfF29_cFKUYPwxkszYZ7cHTB7AMgUV4go,2147
31
+ mdkits/md_cli/wrap.py,sha256=YdUpvhRyKn7bYnIAVgP39qItPdrEoTeJl55TmbS7Qqk,1044
32
+ mdkits/mdkits.py,sha256=EiAt7dxGTaHuuj7bCNxgAqZbX0i3sldO0mBxOG-aMnY,595
32
33
  mdkits/util/.fig_operation.py.swp,sha256=iZYqdYMj4UKS1rmbXv8Ve2FcVBcNljX7Y43-neMdPSk,12288
33
34
  mdkits/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
- mdkits/util/arg_type.py,sha256=o4Fz5VaNBpCWvnJ0u7tKex1sOGx9d2PFtXHmEFMJbA4,2437
35
+ mdkits/util/arg_type.py,sha256=_WmcFKUeOvG5LmQwzcL8-xBQgdwIxUP3gMqEqU7FYNU,2428
35
36
  mdkits/util/cp2k_input_parsing.py,sha256=7NMVOYEGycarokLJlhLoWWilciM7sd8MWp5FVTF7hqI,1223
36
37
  mdkits/util/encapsulated_ase.py,sha256=uhqIhsALxzwJYuFrfOYGGC6U0QLm_dcZNridvfl_XGc,4339
37
38
  mdkits/util/encapsulated_mda.py,sha256=m3i-XrcscMcM5V7JzLnor3JtAOfuDx3LLMl0tZt0n-w,2325
38
39
  mdkits/util/fig_operation.py,sha256=FwffNUtXorMl6qE04FipgzcVljEQii7wrNJUCJMyY3E,1045
39
- mdkits/util/numpy_geo.py,sha256=SUBkR1BsotELTbfSb-OIdheYozPDXGJQgktPlOYz4I4,3724
40
+ mdkits/util/numpy_geo.py,sha256=zkh3uNC3HGHIwtHOmiDXborab5_40PmaJF54jSQ-njU,3874
40
41
  mdkits/util/os_operation.py,sha256=ErN2ExjX9vZRfPe3ypsj4eyoQTEePqzlEX0Xm1N4lL4,980
41
42
  mdkits/util/out_err.py,sha256=7vGDI7wVoJWe1S0BDbcq-UC2KAhblCzg-NAYZKBZ4lo,900
42
43
  mdkits/util/structure_parsing.py,sha256=mRPMJeih3O-ST7HeETDvBEkfV-1psT-XgxyYgDadV0U,4152
43
- mdkits-0.1.29.dist-info/entry_points.txt,sha256=xoWWZ_yL87S501AzCO2ZjpnVuYkElC6z-8J3tmuIGXQ,44
44
- mdkits-0.1.29.dist-info/LICENSE,sha256=VLaqyB0r_H7y3hUntfpPWcE3OATTedHWI983htLftcQ,1081
45
- mdkits-0.1.29.dist-info/METADATA,sha256=MnKaR5Xv424kq5SmB1-BHCPBzpPHAL_F6ylSHKViz50,6907
46
- mdkits-0.1.29.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
47
- mdkits-0.1.29.dist-info/RECORD,,
44
+ mdkits-0.2.0.dist-info/entry_points.txt,sha256=xoWWZ_yL87S501AzCO2ZjpnVuYkElC6z-8J3tmuIGXQ,44
45
+ mdkits-0.2.0.dist-info/LICENSE,sha256=VLaqyB0r_H7y3hUntfpPWcE3OATTedHWI983htLftcQ,1081
46
+ mdkits-0.2.0.dist-info/METADATA,sha256=tDq50lJJD0-8TPS7UKxZiXVD7EaK7n4xf_RuZheZldY,10963
47
+ mdkits-0.2.0.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
48
+ mdkits-0.2.0.dist-info/RECORD,,
@@ -1,114 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- import numpy as np
4
- import argparse
5
- import MDAnalysis
6
- from MDAnalysis import Universe
7
- from MDAnalysis.analysis.base import AnalysisBase
8
- from util import cp2k_input_parsing
9
- import warnings
10
- warnings.filterwarnings("ignore")
11
-
12
-
13
- class Hb_distribution(AnalysisBase):
14
- def __init__(self, filename, cell, surface, dt=0.001, hb_distance=3.5, hb_angle=35, bin_size=0.2):
15
- u = Universe(filename)
16
- u.trajectory.ts.dt = dt
17
- u.dimensions = cell
18
- self.u = u
19
- self.atomgroup = u.select_atoms("all")
20
- self.hb_distance = hb_distance
21
- self.hb_angle = hb_angle
22
- self.bin_size = bin_size
23
- self.surface = surface
24
- self.frame_count = 0
25
- super(Hb_distribution, self).__init__(self.atomgroup.universe.trajectory, verbose=True)
26
-
27
- def _prepare(self):
28
- bin_num = int(self.u.dimensions[2] / self.bin_size) + 2
29
- self.donor = np.zeros(bin_num, dtype=np.float64)
30
-
31
- def _append(self, hb_d):
32
- bins_d = np.floor(hb_d / self.bin_size).astype(int) + 1
33
-
34
- bins_d = bins_d[bins_d < len(self.donor)]
35
-
36
- np.add.at(self.donor, bins_d, 1)
37
-
38
- self.frame_count += 1
39
-
40
- def _single_frame(self):
41
- o_group = self.atomgroup.select_atoms("name O")
42
- o_pair = MDAnalysis.lib.distances.capped_distance(o_group.positions, o_group.positions, min_cutoff=0, max_cutoff=self.hb_distance, box=self.u.dimensions, return_distances=False)
43
-
44
- o0 = o_group[o_pair[:, 0]]
45
- o1 = o_group[o_pair[:, 1]]
46
-
47
- o0h1 = self.atomgroup[o0.indices + 1]
48
- o0h2 = self.atomgroup[o0.indices + 2]
49
-
50
- angle_o0h1_o0_o1 = np.degrees(
51
- MDAnalysis.lib.distances.calc_angles(o0h1.positions, o0.positions, o1.positions, box=self.u.dimensions)
52
- )
53
- angle_o0h2_o0_o1 = np.degrees(
54
- MDAnalysis.lib.distances.calc_angles(o0h2.positions, o0.positions, o1.positions, box=self.u.dimensions)
55
- )
56
-
57
- mid_z = (self.surface[0] + self.surface[1]) / 2
58
-
59
- condition_d = ((angle_o0h1_o0_o1 < self.hb_angle) | (angle_o0h2_o0_o1 < self.hb_angle)) & (o0.positions[:, 2] - o1.positions[:, 2] > 0)
60
- #condition_d = ((angle_o0h1_o0_o1 < self.hb_angle) | (angle_o0h2_o0_o1 < self.hb_angle)) & (((o0.positions[:, 2] < mid_z) & (o0.positions[:, 2] - o1.positions[:, 2] > 0)) | ((o0.positions[:, 2] > mid_z) & (o0.positions[:, 2] - o1.positions[:, 2] < 0)))
61
- #condition_a = ((angle_o1h1_o1_o0 < self.hb_angle) | (angle_o1h2_o1_o0 < self.hb_angle)) & (((o1.positions[:, 2] < mid_z) & (o1.positions[:, 2] - o0.positions[:, 2] > 1.5)) | ((o1.positions[:, 2] > mid_z) & (o1.positions[:, 2] - o0.positions[:, 2] < -1.5)))
62
-
63
- hb_d = (o0.positions[:, 2][condition_d] + o1.positions[:, 2][condition_d]) / 2
64
- #hb_a = (o0.positions[:, 2][condition_a] + o1.positions[:, 2][condition_a]) / 2
65
-
66
- self._append(hb_d)
67
-
68
- def _conclude(self):
69
- if self.frame_count > 0:
70
- average_donor = self.donor / self.frame_count
71
-
72
- bins_z = np.arange(len(self.donor)) * self.bin_size
73
-
74
- lower_z, upper_z = self.surface
75
- mask = (bins_z >= lower_z) & (bins_z <= upper_z)
76
- filtered_bins_z = bins_z[mask] - lower_z
77
- filtered_average_donor = average_donor[mask]
78
-
79
- combined_data = np.column_stack((filtered_bins_z, filtered_average_donor))
80
-
81
- filename = 'hb_distribution_down.dat'
82
- np.savetxt(filename, combined_data, header="Z\tDonor", fmt='%.5f', delimiter='\t')
83
-
84
-
85
- def parse_data(s):
86
- return [float(x) for x in s.replace(',', ' ').split()]
87
-
88
-
89
- def parse_r(s):
90
- return [int(x) for x in s.replace(':', ' ').split()]
91
-
92
-
93
- def parse_argument():
94
- parser = argparse.ArgumentParser(description="analysis hb distribution")
95
- parser.add_argument('filename', type=str, help='filename to analysis')
96
- parser.add_argument('--cp2k_input_file', type=str, help='input file name of cp2k, default is "input.inp"', default='input.inp')
97
- parser.add_argument('-r', type=parse_r, help='range of analysis', default=[0, -1, 1])
98
- parser.add_argument('--cell', type=parse_data, help='set cell, a list of lattice, --cell x,y,z or x,y,z,a,b,c')
99
- parser.add_argument('--surface', type=parse_data, help='[down_surface_z, up_surface_z]')
100
- parser.add_argument('--hb_param', type=parse_data, help='[hb_distance, hb_angle], default is [3.5, 35]', default=[3.5, 35])
101
-
102
- return parser.parse_args()
103
-
104
-
105
- def main():
106
- args = parse_argument()
107
- cell = cp2k_input_parsing.get_cell(args.cp2k_input_file, args.cell)
108
-
109
- hb_dist = Hb_distribution(args.filename, cell, args.surface, hb_distance=args.hb_param[0], hb_angle=args.hb_param[1])
110
- hb_dist.run(start=args.r[0], stop=args.r[1], step=args.r[2])
111
-
112
-
113
- if __name__ == '__main__':
114
- main()
@@ -1,59 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- ################################################
4
- # averange cp2k output(or some else file correspond to ase.io.read_cube_data) hartree.cube to z coordinate with python
5
- ## file path is need to pay attention
6
- ## cycle parameter is need to pay attention
7
- ## buck range is need to pay attention
8
- ################################################
9
-
10
- from numpy import empty, array, mean, append, concatenate
11
- from argparse import ArgumentParser
12
- from util import encapsulated_ase, os_operation
13
-
14
-
15
- def array_type(string):
16
- number_list = string.split(',')
17
- number_array = array(number_list, dtype=float)
18
- return number_array
19
-
20
-
21
- def buck_potential(xaxe, potential, range):
22
- mix = concatenate((xaxe.reshape(-1, 1), potential.reshape(-1, 1)), axis=1)
23
- mask = (mix[:,0] >= range[0]) & (mix[:,0] <=range[1])
24
- buck_potential = mix[mask]
25
- ave_potential = mean(buck_potential[:,1])
26
- return ave_potential
27
-
28
-
29
- # set argument
30
- parser = ArgumentParser(description='to handle cp2k output file hartree cube, name should be "hartree-*.cube"')
31
- parser.add_argument('file_name', type=str, nargs='?', help='hartree cube file', default=os_operation.default_file_name('*-v_hartree-1_*.cube', last=True))
32
- parser.add_argument('-b', '--buck_range', type=array_type, help='parameter to calculate mean value of buck', default=None)
33
- parser.add_argument('-o', type=str, help='output file name, default is "out.put"', default='hartree.out')
34
-
35
- args = parser.parse_args()
36
-
37
-
38
- ## init output potential file's shape, and define a z axe
39
- init_array = encapsulated_ase.ave_potential(args.file_name)
40
- potential = empty((0, init_array[0].shape[0]))
41
- z_coordinates = array((init_array[1])).reshape(-1, 1)
42
-
43
- potential = encapsulated_ase.ave_potential(args.file_name)[0]
44
-
45
- aved = mean(potential, axis=0)
46
- total_potential = append(z_coordinates, potential.reshape(-1, 1), axis=1)
47
-
48
- ## if buck range is exit, out put a difference of potential
49
- if args.buck_range is not None:
50
- buck_potential = buck_potential(z_coordinates, potential, args.buck_range)
51
- print(buck_potential)
52
- with open('hartree_potential.dat', 'w') as f:
53
- f.write(f"{buck_potential}" + '\n')
54
-
55
- ## write output
56
- with open(args.o, 'w') as f:
57
- for value in total_potential:
58
- f.write(" ".join(map(str, value)) + '\n')
59
-